mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-21 23:46:34 +03:00
9f0a21e641
Add the FreeBSD platform code to the OpenZFS repository. As of this commit the source can be compiled and tested on FreeBSD 11 and 12. Subsequent commits are now required to compile on FreeBSD and Linux. Additionally, they must pass the ZFS Test Suite on FreeBSD which is being run by the CI. As of this commit 1230 tests pass on FreeBSD and there are no unexpected failures. Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Richard Laager <rlaager@wiktel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Co-authored-by: Ryan Moeller <ryan@iXsystems.com> Signed-off-by: Matt Macy <mmacy@FreeBSD.org> Signed-off-by: Ryan Moeller <ryan@iXsystems.com> Closes #898 Closes #8987
379 lines
9.8 KiB
C
379 lines
9.8 KiB
C
/*
|
|
* Copyright 2005 Colin Percival
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/types.h>
|
|
|
|
#ifdef _KERNEL
|
|
#include <sys/systm.h>
|
|
#else
|
|
#include <string.h>
|
|
#endif
|
|
|
|
|
|
#include <sys/byteorder.h>
|
|
#include <sys/endian.h>
|
|
#include "sha224.h"
|
|
#include "sha256.h"
|
|
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
|
|
/* Copy a vector of big-endian uint32_t into a vector of bytes */
|
|
#define be32enc_vect(dst, src, len) \
|
|
memcpy((void *)dst, (const void *)src, (size_t)len)
|
|
|
|
/* Copy a vector of bytes into a vector of big-endian uint32_t */
|
|
#define be32dec_vect(dst, src, len) \
|
|
memcpy((void *)dst, (const void *)src, (size_t)len)
|
|
|
|
#else /* BYTE_ORDER != BIG_ENDIAN */
|
|
|
|
/*
|
|
* Encode a length len/4 vector of (uint32_t) into a length len vector of
|
|
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
|
|
*/
|
|
static void
|
|
be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < len / 4; i++)
|
|
be32enc(dst + i * 4, src[i]);
|
|
}
|
|
|
|
/*
|
|
* Decode a big-endian length len vector of (unsigned char) into a length
|
|
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
|
|
*/
|
|
static void
|
|
be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < len / 4; i++)
|
|
dst[i] = be32dec(src + i * 4);
|
|
}
|
|
|
|
#endif /* BYTE_ORDER != BIG_ENDIAN */
|
|
|
|
/* SHA256 round constants. */
|
|
static const uint32_t K[64] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
};
|
|
|
|
/* Elementary functions used by SHA256 */
|
|
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
|
|
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
|
|
#define SHR(x, n) (x >> n)
|
|
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
|
|
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
|
|
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
|
|
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
|
|
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
|
|
|
|
/* SHA256 round function */
|
|
#define RND(a, b, c, d, e, f, g, h, k) \
|
|
h += S1(e) + Ch(e, f, g) + k; \
|
|
d += h; \
|
|
h += S0(a) + Maj(a, b, c);
|
|
|
|
/* Adjusted round function for rotating state */
|
|
#define RNDr(S, W, i, ii) \
|
|
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
|
|
S[(66 - i) % 8], S[(67 - i) % 8], \
|
|
S[(68 - i) % 8], S[(69 - i) % 8], \
|
|
S[(70 - i) % 8], S[(71 - i) % 8], \
|
|
W[i + ii] + K[i + ii])
|
|
|
|
/* Message schedule computation */
|
|
#define MSCH(W, ii, i) \
|
|
W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + \
|
|
s0(W[i + ii + 1]) + W[i + ii]
|
|
|
|
/*
|
|
* SHA256 block compression function. The 256-bit state is transformed via
|
|
* the 512-bit input block to produce a new state.
|
|
*/
|
|
static void
|
|
SHA256_Transform(uint32_t *state, const unsigned char block[64])
|
|
{
|
|
uint32_t W[64];
|
|
uint32_t S[8];
|
|
int i;
|
|
|
|
/* 1. Prepare the first part of the message schedule W. */
|
|
be32dec_vect(W, block, 64);
|
|
|
|
/* 2. Initialize working variables. */
|
|
memcpy(S, state, 32);
|
|
|
|
/* 3. Mix. */
|
|
for (i = 0; i < 64; i += 16) {
|
|
RNDr(S, W, 0, i);
|
|
RNDr(S, W, 1, i);
|
|
RNDr(S, W, 2, i);
|
|
RNDr(S, W, 3, i);
|
|
RNDr(S, W, 4, i);
|
|
RNDr(S, W, 5, i);
|
|
RNDr(S, W, 6, i);
|
|
RNDr(S, W, 7, i);
|
|
RNDr(S, W, 8, i);
|
|
RNDr(S, W, 9, i);
|
|
RNDr(S, W, 10, i);
|
|
RNDr(S, W, 11, i);
|
|
RNDr(S, W, 12, i);
|
|
RNDr(S, W, 13, i);
|
|
RNDr(S, W, 14, i);
|
|
RNDr(S, W, 15, i);
|
|
|
|
if (i == 48)
|
|
break;
|
|
MSCH(W, 0, i);
|
|
MSCH(W, 1, i);
|
|
MSCH(W, 2, i);
|
|
MSCH(W, 3, i);
|
|
MSCH(W, 4, i);
|
|
MSCH(W, 5, i);
|
|
MSCH(W, 6, i);
|
|
MSCH(W, 7, i);
|
|
MSCH(W, 8, i);
|
|
MSCH(W, 9, i);
|
|
MSCH(W, 10, i);
|
|
MSCH(W, 11, i);
|
|
MSCH(W, 12, i);
|
|
MSCH(W, 13, i);
|
|
MSCH(W, 14, i);
|
|
MSCH(W, 15, i);
|
|
}
|
|
|
|
/* 4. Mix local working variables into global state */
|
|
for (i = 0; i < 8; i++)
|
|
state[i] += S[i];
|
|
}
|
|
|
|
static unsigned char PAD[64] = {
|
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
/* Add padding and terminating bit-count. */
|
|
static void
|
|
SHA256_Pad(SHA256_CTX * ctx)
|
|
{
|
|
size_t r;
|
|
|
|
/* Figure out how many bytes we have buffered. */
|
|
r = (ctx->count >> 3) & 0x3f;
|
|
|
|
/* Pad to 56 mod 64, transforming if we finish a block en route. */
|
|
if (r < 56) {
|
|
/* Pad to 56 mod 64. */
|
|
memcpy(&ctx->buf[r], PAD, 56 - r);
|
|
} else {
|
|
/* Finish the current block and mix. */
|
|
memcpy(&ctx->buf[r], PAD, 64 - r);
|
|
SHA256_Transform(ctx->state, ctx->buf);
|
|
|
|
/* The start of the final block is all zeroes. */
|
|
memset(&ctx->buf[0], 0, 56);
|
|
}
|
|
|
|
/* Add the terminating bit-count. */
|
|
be64enc(&ctx->buf[56], ctx->count);
|
|
|
|
/* Mix in the final block. */
|
|
SHA256_Transform(ctx->state, ctx->buf);
|
|
}
|
|
|
|
/* SHA-256 initialization. Begins a SHA-256 operation. */
|
|
void
|
|
SHA256_Init(SHA256_CTX * ctx)
|
|
{
|
|
|
|
/* Zero bits processed so far */
|
|
ctx->count = 0;
|
|
|
|
/* Magic initialization constants */
|
|
ctx->state[0] = 0x6A09E667;
|
|
ctx->state[1] = 0xBB67AE85;
|
|
ctx->state[2] = 0x3C6EF372;
|
|
ctx->state[3] = 0xA54FF53A;
|
|
ctx->state[4] = 0x510E527F;
|
|
ctx->state[5] = 0x9B05688C;
|
|
ctx->state[6] = 0x1F83D9AB;
|
|
ctx->state[7] = 0x5BE0CD19;
|
|
}
|
|
|
|
/* Add bytes into the hash */
|
|
void
|
|
SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
|
|
{
|
|
uint64_t bitlen;
|
|
uint32_t r;
|
|
const unsigned char *src = in;
|
|
|
|
/* Number of bytes left in the buffer from previous updates */
|
|
r = (ctx->count >> 3) & 0x3f;
|
|
|
|
/* Convert the length into a number of bits */
|
|
bitlen = len << 3;
|
|
|
|
/* Update number of bits */
|
|
ctx->count += bitlen;
|
|
|
|
/* Handle the case where we don't need to perform any transforms */
|
|
if (len < 64 - r) {
|
|
memcpy(&ctx->buf[r], src, len);
|
|
return;
|
|
}
|
|
|
|
/* Finish the current block */
|
|
memcpy(&ctx->buf[r], src, 64 - r);
|
|
SHA256_Transform(ctx->state, ctx->buf);
|
|
src += 64 - r;
|
|
len -= 64 - r;
|
|
|
|
/* Perform complete blocks */
|
|
while (len >= 64) {
|
|
SHA256_Transform(ctx->state, src);
|
|
src += 64;
|
|
len -= 64;
|
|
}
|
|
|
|
/* Copy left over data into buffer */
|
|
memcpy(ctx->buf, src, len);
|
|
}
|
|
|
|
/*
|
|
* SHA-256 finalization. Pads the input data, exports the hash value,
|
|
* and clears the context state.
|
|
*/
|
|
void
|
|
SHA256_Final(unsigned char digest[static SHA256_DIGEST_LENGTH], SHA256_CTX *ctx)
|
|
{
|
|
|
|
/* Add padding */
|
|
SHA256_Pad(ctx);
|
|
|
|
/* Write the hash */
|
|
be32enc_vect(digest, ctx->state, SHA256_DIGEST_LENGTH);
|
|
|
|
/* Clear the context state */
|
|
explicit_bzero(ctx, sizeof (*ctx));
|
|
}
|
|
|
|
/* SHA-224: ******************************************************* */
|
|
/*
|
|
* the SHA224 and SHA256 transforms are identical
|
|
*/
|
|
|
|
/* SHA-224 initialization. Begins a SHA-224 operation. */
|
|
void
|
|
SHA224_Init(SHA224_CTX * ctx)
|
|
{
|
|
|
|
/* Zero bits processed so far */
|
|
ctx->count = 0;
|
|
|
|
/* Magic initialization constants */
|
|
ctx->state[0] = 0xC1059ED8;
|
|
ctx->state[1] = 0x367CD507;
|
|
ctx->state[2] = 0x3070DD17;
|
|
ctx->state[3] = 0xF70E5939;
|
|
ctx->state[4] = 0xFFC00B31;
|
|
ctx->state[5] = 0x68581511;
|
|
ctx->state[6] = 0x64f98FA7;
|
|
ctx->state[7] = 0xBEFA4FA4;
|
|
}
|
|
|
|
/* Add bytes into the SHA-224 hash */
|
|
void
|
|
SHA224_Update(SHA224_CTX * ctx, const void *in, size_t len)
|
|
{
|
|
|
|
SHA256_Update((SHA256_CTX *)ctx, in, len);
|
|
}
|
|
|
|
/*
|
|
* SHA-224 finalization. Pads the input data, exports the hash value,
|
|
* and clears the context state.
|
|
*/
|
|
void
|
|
SHA224_Final(unsigned char digest[static SHA224_DIGEST_LENGTH], SHA224_CTX *ctx)
|
|
{
|
|
|
|
/* Add padding */
|
|
SHA256_Pad((SHA256_CTX *)ctx);
|
|
|
|
/* Write the hash */
|
|
be32enc_vect(digest, ctx->state, SHA224_DIGEST_LENGTH);
|
|
|
|
/* Clear the context state */
|
|
explicit_bzero(ctx, sizeof (*ctx));
|
|
}
|
|
|
|
#ifdef WEAK_REFS
|
|
/*
|
|
* When building libmd, provide weak references. Note: this is not
|
|
* activated in the context of compiling these sources for internal
|
|
* use in libcrypt.
|
|
*/
|
|
#undef SHA256_Init
|
|
__weak_reference(_libmd_SHA256_Init, SHA256_Init);
|
|
#undef SHA256_Update
|
|
__weak_reference(_libmd_SHA256_Update, SHA256_Update);
|
|
#undef SHA256_Final
|
|
__weak_reference(_libmd_SHA256_Final, SHA256_Final);
|
|
#undef SHA256_Transform
|
|
__weak_reference(_libmd_SHA256_Transform, SHA256_Transform);
|
|
|
|
#undef SHA224_Init
|
|
__weak_reference(_libmd_SHA224_Init, SHA224_Init);
|
|
#undef SHA224_Update
|
|
__weak_reference(_libmd_SHA224_Update, SHA224_Update);
|
|
#undef SHA224_Final
|
|
__weak_reference(_libmd_SHA224_Final, SHA224_Final);
|
|
#endif
|