mirror_zfs/module/os/linux/zfs/zfs_vnops_os.c
youzhongyang 2a068a1394
Support idmapped mount
Adds support for idmapped mounts.  Supported as of Linux 5.12 this 
functionality allows user and group IDs to be remapped without changing 
their state on disk.  This can be useful for portable home directories
and a variety of container related use cases.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Youzhong Yang <yyang@mathworks.com>
Closes #12923
Closes #13671
2022-10-19 11:17:09 -07:00

4066 lines
100 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
* Copyright (c) 2015 by Chunwei Chen. All rights reserved.
* Copyright 2017 Nexenta Systems, Inc.
*/
/* Portions Copyright 2007 Jeremy Teo */
/* Portions Copyright 2010 Robert Milkowski */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/sysmacros.h>
#include <sys/vfs.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/kmem.h>
#include <sys/taskq.h>
#include <sys/uio.h>
#include <sys/vmsystm.h>
#include <sys/atomic.h>
#include <sys/pathname.h>
#include <sys/cmn_err.h>
#include <sys/errno.h>
#include <sys/zfs_dir.h>
#include <sys/zfs_acl.h>
#include <sys/zfs_ioctl.h>
#include <sys/fs/zfs.h>
#include <sys/dmu.h>
#include <sys/dmu_objset.h>
#include <sys/spa.h>
#include <sys/txg.h>
#include <sys/dbuf.h>
#include <sys/zap.h>
#include <sys/sa.h>
#include <sys/policy.h>
#include <sys/sunddi.h>
#include <sys/sid.h>
#include <sys/zfs_ctldir.h>
#include <sys/zfs_fuid.h>
#include <sys/zfs_quota.h>
#include <sys/zfs_sa.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_rlock.h>
#include <sys/cred.h>
#include <sys/zpl.h>
#include <sys/zil.h>
#include <sys/sa_impl.h>
/*
* Programming rules.
*
* Each vnode op performs some logical unit of work. To do this, the ZPL must
* properly lock its in-core state, create a DMU transaction, do the work,
* record this work in the intent log (ZIL), commit the DMU transaction,
* and wait for the intent log to commit if it is a synchronous operation.
* Moreover, the vnode ops must work in both normal and log replay context.
* The ordering of events is important to avoid deadlocks and references
* to freed memory. The example below illustrates the following Big Rules:
*
* (1) A check must be made in each zfs thread for a mounted file system.
* This is done avoiding races using zfs_enter(zfsvfs).
* A zfs_exit(zfsvfs) is needed before all returns. Any znodes
* must be checked with zfs_verify_zp(zp). Both of these macros
* can return EIO from the calling function.
*
* (2) zrele() should always be the last thing except for zil_commit() (if
* necessary) and zfs_exit(). This is for 3 reasons: First, if it's the
* last reference, the vnode/znode can be freed, so the zp may point to
* freed memory. Second, the last reference will call zfs_zinactive(),
* which may induce a lot of work -- pushing cached pages (which acquires
* range locks) and syncing out cached atime changes. Third,
* zfs_zinactive() may require a new tx, which could deadlock the system
* if you were already holding one. This deadlock occurs because the tx
* currently being operated on prevents a txg from syncing, which
* prevents the new tx from progressing, resulting in a deadlock. If you
* must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
* is a synonym for zrele().
*
* (3) All range locks must be grabbed before calling dmu_tx_assign(),
* as they can span dmu_tx_assign() calls.
*
* (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
* dmu_tx_assign(). This is critical because we don't want to block
* while holding locks.
*
* If no ZPL locks are held (aside from zfs_enter()), use TXG_WAIT. This
* reduces lock contention and CPU usage when we must wait (note that if
* throughput is constrained by the storage, nearly every transaction
* must wait).
*
* Note, in particular, that if a lock is sometimes acquired before
* the tx assigns, and sometimes after (e.g. z_lock), then failing
* to use a non-blocking assign can deadlock the system. The scenario:
*
* Thread A has grabbed a lock before calling dmu_tx_assign().
* Thread B is in an already-assigned tx, and blocks for this lock.
* Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
* forever, because the previous txg can't quiesce until B's tx commits.
*
* If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
* then drop all locks, call dmu_tx_wait(), and try again. On subsequent
* calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
* to indicate that this operation has already called dmu_tx_wait().
* This will ensure that we don't retry forever, waiting a short bit
* each time.
*
* (5) If the operation succeeded, generate the intent log entry for it
* before dropping locks. This ensures that the ordering of events
* in the intent log matches the order in which they actually occurred.
* During ZIL replay the zfs_log_* functions will update the sequence
* number to indicate the zil transaction has replayed.
*
* (6) At the end of each vnode op, the DMU tx must always commit,
* regardless of whether there were any errors.
*
* (7) After dropping all locks, invoke zil_commit(zilog, foid)
* to ensure that synchronous semantics are provided when necessary.
*
* In general, this is how things should be ordered in each vnode op:
*
* zfs_enter(zfsvfs); // exit if unmounted
* top:
* zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
* rw_enter(...); // grab any other locks you need
* tx = dmu_tx_create(...); // get DMU tx
* dmu_tx_hold_*(); // hold each object you might modify
* error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
* if (error) {
* rw_exit(...); // drop locks
* zfs_dirent_unlock(dl); // unlock directory entry
* zrele(...); // release held znodes
* if (error == ERESTART) {
* waited = B_TRUE;
* dmu_tx_wait(tx);
* dmu_tx_abort(tx);
* goto top;
* }
* dmu_tx_abort(tx); // abort DMU tx
* zfs_exit(zfsvfs); // finished in zfs
* return (error); // really out of space
* }
* error = do_real_work(); // do whatever this VOP does
* if (error == 0)
* zfs_log_*(...); // on success, make ZIL entry
* dmu_tx_commit(tx); // commit DMU tx -- error or not
* rw_exit(...); // drop locks
* zfs_dirent_unlock(dl); // unlock directory entry
* zrele(...); // release held znodes
* zil_commit(zilog, foid); // synchronous when necessary
* zfs_exit(zfsvfs); // finished in zfs
* return (error); // done, report error
*/
int
zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
{
(void) cr;
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
int error;
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
return (error);
/* Honor ZFS_APPENDONLY file attribute */
if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
((flag & O_APPEND) == 0)) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EPERM));
}
/* Keep a count of the synchronous opens in the znode */
if (flag & O_SYNC)
atomic_inc_32(&zp->z_sync_cnt);
zfs_exit(zfsvfs, FTAG);
return (0);
}
int
zfs_close(struct inode *ip, int flag, cred_t *cr)
{
(void) cr;
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
int error;
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
return (error);
/* Decrement the synchronous opens in the znode */
if (flag & O_SYNC)
atomic_dec_32(&zp->z_sync_cnt);
zfs_exit(zfsvfs, FTAG);
return (0);
}
#if defined(_KERNEL)
/*
* When a file is memory mapped, we must keep the IO data synchronized
* between the DMU cache and the memory mapped pages. What this means:
*
* On Write: If we find a memory mapped page, we write to *both*
* the page and the dmu buffer.
*/
void
update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
{
struct inode *ip = ZTOI(zp);
struct address_space *mp = ip->i_mapping;
struct page *pp;
uint64_t nbytes;
int64_t off;
void *pb;
off = start & (PAGE_SIZE-1);
for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
nbytes = MIN(PAGE_SIZE - off, len);
pp = find_lock_page(mp, start >> PAGE_SHIFT);
if (pp) {
if (mapping_writably_mapped(mp))
flush_dcache_page(pp);
pb = kmap(pp);
(void) dmu_read(os, zp->z_id, start + off, nbytes,
pb + off, DMU_READ_PREFETCH);
kunmap(pp);
if (mapping_writably_mapped(mp))
flush_dcache_page(pp);
mark_page_accessed(pp);
SetPageUptodate(pp);
ClearPageError(pp);
unlock_page(pp);
put_page(pp);
}
len -= nbytes;
off = 0;
}
}
/*
* When a file is memory mapped, we must keep the IO data synchronized
* between the DMU cache and the memory mapped pages. What this means:
*
* On Read: We "read" preferentially from memory mapped pages,
* else we default from the dmu buffer.
*
* NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
* the file is memory mapped.
*/
int
mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
{
struct inode *ip = ZTOI(zp);
struct address_space *mp = ip->i_mapping;
struct page *pp;
int64_t start, off;
uint64_t bytes;
int len = nbytes;
int error = 0;
void *pb;
start = uio->uio_loffset;
off = start & (PAGE_SIZE-1);
for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
bytes = MIN(PAGE_SIZE - off, len);
pp = find_lock_page(mp, start >> PAGE_SHIFT);
if (pp) {
ASSERT(PageUptodate(pp));
unlock_page(pp);
pb = kmap(pp);
error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
kunmap(pp);
if (mapping_writably_mapped(mp))
flush_dcache_page(pp);
mark_page_accessed(pp);
put_page(pp);
} else {
error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
uio, bytes);
}
len -= bytes;
off = 0;
if (error)
break;
}
return (error);
}
#endif /* _KERNEL */
static unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
/*
* Write the bytes to a file.
*
* IN: zp - znode of file to be written to
* data - bytes to write
* len - number of bytes to write
* pos - offset to start writing at
*
* OUT: resid - remaining bytes to write
*
* RETURN: 0 if success
* positive error code if failure. EIO is returned
* for a short write when residp isn't provided.
*
* Timestamps:
* zp - ctime|mtime updated if byte count > 0
*/
int
zfs_write_simple(znode_t *zp, const void *data, size_t len,
loff_t pos, size_t *residp)
{
fstrans_cookie_t cookie;
int error;
struct iovec iov;
iov.iov_base = (void *)data;
iov.iov_len = len;
zfs_uio_t uio;
zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
cookie = spl_fstrans_mark();
error = zfs_write(zp, &uio, 0, kcred);
spl_fstrans_unmark(cookie);
if (error == 0) {
if (residp != NULL)
*residp = zfs_uio_resid(&uio);
else if (zfs_uio_resid(&uio) != 0)
error = SET_ERROR(EIO);
}
return (error);
}
static void
zfs_rele_async_task(void *arg)
{
iput(arg);
}
void
zfs_zrele_async(znode_t *zp)
{
struct inode *ip = ZTOI(zp);
objset_t *os = ITOZSB(ip)->z_os;
ASSERT(atomic_read(&ip->i_count) > 0);
ASSERT(os != NULL);
/*
* If decrementing the count would put us at 0, we can't do it inline
* here, because that would be synchronous. Instead, dispatch an iput
* to run later.
*
* For more information on the dangers of a synchronous iput, see the
* header comment of this file.
*/
if (!atomic_add_unless(&ip->i_count, -1, 1)) {
VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID);
}
}
/*
* Lookup an entry in a directory, or an extended attribute directory.
* If it exists, return a held inode reference for it.
*
* IN: zdp - znode of directory to search.
* nm - name of entry to lookup.
* flags - LOOKUP_XATTR set if looking for an attribute.
* cr - credentials of caller.
* direntflags - directory lookup flags
* realpnp - returned pathname.
*
* OUT: zpp - znode of located entry, NULL if not found.
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* NA
*/
int
zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
int *direntflags, pathname_t *realpnp)
{
zfsvfs_t *zfsvfs = ZTOZSB(zdp);
int error = 0;
/*
* Fast path lookup, however we must skip DNLC lookup
* for case folding or normalizing lookups because the
* DNLC code only stores the passed in name. This means
* creating 'a' and removing 'A' on a case insensitive
* file system would work, but DNLC still thinks 'a'
* exists and won't let you create it again on the next
* pass through fast path.
*/
if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
return (SET_ERROR(ENOTDIR));
} else if (zdp->z_sa_hdl == NULL) {
return (SET_ERROR(EIO));
}
if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
error = zfs_fastaccesschk_execute(zdp, cr);
if (!error) {
*zpp = zdp;
zhold(*zpp);
return (0);
}
return (error);
}
}
if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0)
return (error);
*zpp = NULL;
if (flags & LOOKUP_XATTR) {
/*
* We don't allow recursive attributes..
* Maybe someday we will.
*/
if (zdp->z_pflags & ZFS_XATTR) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EINVAL));
}
if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
zfs_exit(zfsvfs, FTAG);
return (error);
}
/*
* Do we have permission to get into attribute directory?
*/
if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
B_TRUE, cr, NULL))) {
zrele(*zpp);
*zpp = NULL;
}
zfs_exit(zfsvfs, FTAG);
return (error);
}
if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(ENOTDIR));
}
/*
* Check accessibility of directory.
*/
if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr, NULL))) {
zfs_exit(zfsvfs, FTAG);
return (error);
}
if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EILSEQ));
}
error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
if ((error == 0) && (*zpp))
zfs_znode_update_vfs(*zpp);
zfs_exit(zfsvfs, FTAG);
return (error);
}
/*
* Attempt to create a new entry in a directory. If the entry
* already exists, truncate the file if permissible, else return
* an error. Return the ip of the created or trunc'd file.
*
* IN: dzp - znode of directory to put new file entry in.
* name - name of new file entry.
* vap - attributes of new file.
* excl - flag indicating exclusive or non-exclusive mode.
* mode - mode to open file with.
* cr - credentials of caller.
* flag - file flag.
* vsecp - ACL to be set
* mnt_ns - user namespace of the mount
*
* OUT: zpp - znode of created or trunc'd entry.
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* dzp - ctime|mtime updated if new entry created
* zp - ctime|mtime always, atime if new
*/
int
zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp,
zuserns_t *mnt_ns)
{
znode_t *zp;
zfsvfs_t *zfsvfs = ZTOZSB(dzp);
zilog_t *zilog;
objset_t *os;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
int error;
uid_t uid;
gid_t gid;
zfs_acl_ids_t acl_ids;
boolean_t fuid_dirtied;
boolean_t have_acl = B_FALSE;
boolean_t waited = B_FALSE;
/*
* If we have an ephemeral id, ACL, or XVATTR then
* make sure file system is at proper version
*/
gid = crgetgid(cr);
uid = crgetuid(cr);
if (zfsvfs->z_use_fuids == B_FALSE &&
(vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
return (SET_ERROR(EINVAL));
if (name == NULL)
return (SET_ERROR(EINVAL));
if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
return (error);
os = zfsvfs->z_os;
zilog = zfsvfs->z_log;
if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EILSEQ));
}
if (vap->va_mask & ATTR_XVATTR) {
if ((error = secpolicy_xvattr((xvattr_t *)vap,
crgetuid(cr), cr, vap->va_mode)) != 0) {
zfs_exit(zfsvfs, FTAG);
return (error);
}
}
top:
*zpp = NULL;
if (*name == '\0') {
/*
* Null component name refers to the directory itself.
*/
zhold(dzp);
zp = dzp;
dl = NULL;
error = 0;
} else {
/* possible igrab(zp) */
int zflg = 0;
if (flag & FIGNORECASE)
zflg |= ZCILOOK;
error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
NULL, NULL);
if (error) {
if (have_acl)
zfs_acl_ids_free(&acl_ids);
if (strcmp(name, "..") == 0)
error = SET_ERROR(EISDIR);
zfs_exit(zfsvfs, FTAG);
return (error);
}
}
if (zp == NULL) {
uint64_t txtype;
uint64_t projid = ZFS_DEFAULT_PROJID;
/*
* Create a new file object and update the directory
* to reference it.
*/
if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr,
mnt_ns))) {
if (have_acl)
zfs_acl_ids_free(&acl_ids);
goto out;
}
/*
* We only support the creation of regular files in
* extended attribute directories.
*/
if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
if (have_acl)
zfs_acl_ids_free(&acl_ids);
error = SET_ERROR(EINVAL);
goto out;
}
if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
cr, vsecp, &acl_ids, mnt_ns)) != 0)
goto out;
have_acl = B_TRUE;
if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
projid = zfs_inherit_projid(dzp);
if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
zfs_acl_ids_free(&acl_ids);
error = SET_ERROR(EDQUOT);
goto out;
}
tx = dmu_tx_create(os);
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE);
fuid_dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
if (!zfsvfs->z_use_sa &&
acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, acl_ids.z_aclp->z_acl_bytes);
}
error = dmu_tx_assign(tx,
(waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
zfs_acl_ids_free(&acl_ids);
dmu_tx_abort(tx);
zfs_exit(zfsvfs, FTAG);
return (error);
}
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
error = zfs_link_create(dl, zp, tx, ZNEW);
if (error != 0) {
/*
* Since, we failed to add the directory entry for it,
* delete the newly created dnode.
*/
zfs_znode_delete(zp, tx);
remove_inode_hash(ZTOI(zp));
zfs_acl_ids_free(&acl_ids);
dmu_tx_commit(tx);
goto out;
}
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
if (flag & FIGNORECASE)
txtype |= TX_CI;
zfs_log_create(zilog, tx, txtype, dzp, zp, name,
vsecp, acl_ids.z_fuidp, vap);
zfs_acl_ids_free(&acl_ids);
dmu_tx_commit(tx);
} else {
int aflags = (flag & O_APPEND) ? V_APPEND : 0;
if (have_acl)
zfs_acl_ids_free(&acl_ids);
have_acl = B_FALSE;
/*
* A directory entry already exists for this name.
*/
/*
* Can't truncate an existing file if in exclusive mode.
*/
if (excl) {
error = SET_ERROR(EEXIST);
goto out;
}
/*
* Can't open a directory for writing.
*/
if (S_ISDIR(ZTOI(zp)->i_mode)) {
error = SET_ERROR(EISDIR);
goto out;
}
/*
* Verify requested access to file.
*/
if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr,
mnt_ns))) {
goto out;
}
mutex_enter(&dzp->z_lock);
dzp->z_seq++;
mutex_exit(&dzp->z_lock);
/*
* Truncate regular files if requested.
*/
if (S_ISREG(ZTOI(zp)->i_mode) &&
(vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
/* we can't hold any locks when calling zfs_freesp() */
if (dl) {
zfs_dirent_unlock(dl);
dl = NULL;
}
error = zfs_freesp(zp, 0, 0, mode, TRUE);
}
}
out:
if (dl)
zfs_dirent_unlock(dl);
if (error) {
if (zp)
zrele(zp);
} else {
zfs_znode_update_vfs(dzp);
zfs_znode_update_vfs(zp);
*zpp = zp;
}
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
zfs_exit(zfsvfs, FTAG);
return (error);
}
int
zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp,
zuserns_t *mnt_ns)
{
(void) excl, (void) mode, (void) flag;
znode_t *zp = NULL, *dzp = ITOZ(dip);
zfsvfs_t *zfsvfs = ITOZSB(dip);
objset_t *os;
dmu_tx_t *tx;
int error;
uid_t uid;
gid_t gid;
zfs_acl_ids_t acl_ids;
uint64_t projid = ZFS_DEFAULT_PROJID;
boolean_t fuid_dirtied;
boolean_t have_acl = B_FALSE;
boolean_t waited = B_FALSE;
/*
* If we have an ephemeral id, ACL, or XVATTR then
* make sure file system is at proper version
*/
gid = crgetgid(cr);
uid = crgetuid(cr);
if (zfsvfs->z_use_fuids == B_FALSE &&
(vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
return (SET_ERROR(EINVAL));
if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
return (error);
os = zfsvfs->z_os;
if (vap->va_mask & ATTR_XVATTR) {
if ((error = secpolicy_xvattr((xvattr_t *)vap,
crgetuid(cr), cr, vap->va_mode)) != 0) {
zfs_exit(zfsvfs, FTAG);
return (error);
}
}
top:
*ipp = NULL;
/*
* Create a new file object and update the directory
* to reference it.
*/
if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
if (have_acl)
zfs_acl_ids_free(&acl_ids);
goto out;
}
if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
cr, vsecp, &acl_ids, mnt_ns)) != 0)
goto out;
have_acl = B_TRUE;
if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
projid = zfs_inherit_projid(dzp);
if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
zfs_acl_ids_free(&acl_ids);
error = SET_ERROR(EDQUOT);
goto out;
}
tx = dmu_tx_create(os);
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE);
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
fuid_dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
if (!zfsvfs->z_use_sa &&
acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, acl_ids.z_aclp->z_acl_bytes);
}
error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
if (error) {
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
zfs_acl_ids_free(&acl_ids);
dmu_tx_abort(tx);
zfs_exit(zfsvfs, FTAG);
return (error);
}
zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
/* Add to unlinked set */
zp->z_unlinked = B_TRUE;
zfs_unlinked_add(zp, tx);
zfs_acl_ids_free(&acl_ids);
dmu_tx_commit(tx);
out:
if (error) {
if (zp)
zrele(zp);
} else {
zfs_znode_update_vfs(dzp);
zfs_znode_update_vfs(zp);
*ipp = ZTOI(zp);
}
zfs_exit(zfsvfs, FTAG);
return (error);
}
/*
* Remove an entry from a directory.
*
* IN: dzp - znode of directory to remove entry from.
* name - name of entry to remove.
* cr - credentials of caller.
* flags - case flags.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* dzp - ctime|mtime
* ip - ctime (if nlink > 0)
*/
static uint64_t null_xattr = 0;
int
zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
{
znode_t *zp;
znode_t *xzp;
zfsvfs_t *zfsvfs = ZTOZSB(dzp);
zilog_t *zilog;
uint64_t acl_obj, xattr_obj;
uint64_t xattr_obj_unlinked = 0;
uint64_t obj = 0;
uint64_t links;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
boolean_t may_delete_now, delete_now = FALSE;
boolean_t unlinked, toobig = FALSE;
uint64_t txtype;
pathname_t *realnmp = NULL;
pathname_t realnm;
int error;
int zflg = ZEXISTS;
boolean_t waited = B_FALSE;
if (name == NULL)
return (SET_ERROR(EINVAL));
if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
return (error);
zilog = zfsvfs->z_log;
if (flags & FIGNORECASE) {
zflg |= ZCILOOK;
pn_alloc(&realnm);
realnmp = &realnm;
}
top:
xattr_obj = 0;
xzp = NULL;
/*
* Attempt to lock directory; fail if entry doesn't exist.
*/
if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
NULL, realnmp))) {
if (realnmp)
pn_free(realnmp);
zfs_exit(zfsvfs, FTAG);
return (error);
}
if ((error = zfs_zaccess_delete(dzp, zp, cr, NULL))) {
goto out;
}
/*
* Need to use rmdir for removing directories.
*/
if (S_ISDIR(ZTOI(zp)->i_mode)) {
error = SET_ERROR(EPERM);
goto out;
}
mutex_enter(&zp->z_lock);
may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
!(zp->z_is_mapped);
mutex_exit(&zp->z_lock);
/*
* We may delete the znode now, or we may put it in the unlinked set;
* it depends on whether we're the last link, and on whether there are
* other holds on the inode. So we dmu_tx_hold() the right things to
* allow for either case.
*/
obj = zp->z_id;
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
zfs_sa_upgrade_txholds(tx, dzp);
if (may_delete_now) {
toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
/* if the file is too big, only hold_free a token amount */
dmu_tx_hold_free(tx, zp->z_id, 0,
(toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
}
/* are there any extended attributes? */
error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
&xattr_obj, sizeof (xattr_obj));
if (error == 0 && xattr_obj) {
error = zfs_zget(zfsvfs, xattr_obj, &xzp);
ASSERT0(error);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
}
mutex_enter(&zp->z_lock);
if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
mutex_exit(&zp->z_lock);
/* charge as an update -- would be nice not to charge at all */
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
/*
* Mark this transaction as typically resulting in a net free of space
*/
dmu_tx_mark_netfree(tx);
error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
zrele(zp);
if (xzp)
zrele(xzp);
goto top;
}
if (realnmp)
pn_free(realnmp);
dmu_tx_abort(tx);
zrele(zp);
if (xzp)
zrele(xzp);
zfs_exit(zfsvfs, FTAG);
return (error);
}
/*
* Remove the directory entry.
*/
error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
if (error) {
dmu_tx_commit(tx);
goto out;
}
if (unlinked) {
/*
* Hold z_lock so that we can make sure that the ACL obj
* hasn't changed. Could have been deleted due to
* zfs_sa_upgrade().
*/
mutex_enter(&zp->z_lock);
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
&xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
delete_now = may_delete_now && !toobig &&
atomic_read(&ZTOI(zp)->i_count) == 1 &&
!(zp->z_is_mapped) && xattr_obj == xattr_obj_unlinked &&
zfs_external_acl(zp) == acl_obj;
}
if (delete_now) {
if (xattr_obj_unlinked) {
ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
mutex_enter(&xzp->z_lock);
xzp->z_unlinked = B_TRUE;
clear_nlink(ZTOI(xzp));
links = 0;
error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
&links, sizeof (links), tx);
ASSERT3U(error, ==, 0);
mutex_exit(&xzp->z_lock);
zfs_unlinked_add(xzp, tx);
if (zp->z_is_sa)
error = sa_remove(zp->z_sa_hdl,
SA_ZPL_XATTR(zfsvfs), tx);
else
error = sa_update(zp->z_sa_hdl,
SA_ZPL_XATTR(zfsvfs), &null_xattr,
sizeof (uint64_t), tx);
ASSERT0(error);
}
/*
* Add to the unlinked set because a new reference could be
* taken concurrently resulting in a deferred destruction.
*/
zfs_unlinked_add(zp, tx);
mutex_exit(&zp->z_lock);
} else if (unlinked) {
mutex_exit(&zp->z_lock);
zfs_unlinked_add(zp, tx);
}
txtype = TX_REMOVE;
if (flags & FIGNORECASE)
txtype |= TX_CI;
zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
dmu_tx_commit(tx);
out:
if (realnmp)
pn_free(realnmp);
zfs_dirent_unlock(dl);
zfs_znode_update_vfs(dzp);
zfs_znode_update_vfs(zp);
if (delete_now)
zrele(zp);
else
zfs_zrele_async(zp);
if (xzp) {
zfs_znode_update_vfs(xzp);
zfs_zrele_async(xzp);
}
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
zfs_exit(zfsvfs, FTAG);
return (error);
}
/*
* Create a new directory and insert it into dzp using the name
* provided. Return a pointer to the inserted directory.
*
* IN: dzp - znode of directory to add subdir to.
* dirname - name of new directory.
* vap - attributes of new directory.
* cr - credentials of caller.
* flags - case flags.
* vsecp - ACL to be set
* mnt_ns - user namespace of the mount
*
* OUT: zpp - znode of created directory.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* dzp - ctime|mtime updated
* zpp - ctime|mtime|atime updated
*/
int
zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
cred_t *cr, int flags, vsecattr_t *vsecp, zuserns_t *mnt_ns)
{
znode_t *zp;
zfsvfs_t *zfsvfs = ZTOZSB(dzp);
zilog_t *zilog;
zfs_dirlock_t *dl;
uint64_t txtype;
dmu_tx_t *tx;
int error;
int zf = ZNEW;
uid_t uid;
gid_t gid = crgetgid(cr);
zfs_acl_ids_t acl_ids;
boolean_t fuid_dirtied;
boolean_t waited = B_FALSE;
ASSERT(S_ISDIR(vap->va_mode));
/*
* If we have an ephemeral id, ACL, or XVATTR then
* make sure file system is at proper version
*/
uid = crgetuid(cr);
if (zfsvfs->z_use_fuids == B_FALSE &&
(vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
return (SET_ERROR(EINVAL));
if (dirname == NULL)
return (SET_ERROR(EINVAL));
if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
return (error);
zilog = zfsvfs->z_log;
if (dzp->z_pflags & ZFS_XATTR) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EINVAL));
}
if (zfsvfs->z_utf8 && u8_validate(dirname,
strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EILSEQ));
}
if (flags & FIGNORECASE)
zf |= ZCILOOK;
if (vap->va_mask & ATTR_XVATTR) {
if ((error = secpolicy_xvattr((xvattr_t *)vap,
crgetuid(cr), cr, vap->va_mode)) != 0) {
zfs_exit(zfsvfs, FTAG);
return (error);
}
}
if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
vsecp, &acl_ids, mnt_ns)) != 0) {
zfs_exit(zfsvfs, FTAG);
return (error);
}
/*
* First make sure the new directory doesn't exist.
*
* Existence is checked first to make sure we don't return
* EACCES instead of EEXIST which can cause some applications
* to fail.
*/
top:
*zpp = NULL;
if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
NULL, NULL))) {
zfs_acl_ids_free(&acl_ids);
zfs_exit(zfsvfs, FTAG);
return (error);
}
if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr,
mnt_ns))) {
zfs_acl_ids_free(&acl_ids);
zfs_dirent_unlock(dl);
zfs_exit(zfsvfs, FTAG);
return (error);
}
if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
zfs_acl_ids_free(&acl_ids);
zfs_dirent_unlock(dl);
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EDQUOT));
}
/*
* Add a new entry to the directory.
*/
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
fuid_dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
acl_ids.z_aclp->z_acl_bytes);
}
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE);
error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
zfs_acl_ids_free(&acl_ids);
dmu_tx_abort(tx);
zfs_exit(zfsvfs, FTAG);
return (error);
}
/*
* Create new node.
*/
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
/*
* Now put new name in parent dir.
*/
error = zfs_link_create(dl, zp, tx, ZNEW);
if (error != 0) {
zfs_znode_delete(zp, tx);
remove_inode_hash(ZTOI(zp));
goto out;
}
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
*zpp = zp;
txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
if (flags & FIGNORECASE)
txtype |= TX_CI;
zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
acl_ids.z_fuidp, vap);
out:
zfs_acl_ids_free(&acl_ids);
dmu_tx_commit(tx);
zfs_dirent_unlock(dl);
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
if (error != 0) {
zrele(zp);
} else {
zfs_znode_update_vfs(dzp);
zfs_znode_update_vfs(zp);
}
zfs_exit(zfsvfs, FTAG);
return (error);
}
/*
* Remove a directory subdir entry. If the current working
* directory is the same as the subdir to be removed, the
* remove will fail.
*
* IN: dzp - znode of directory to remove from.
* name - name of directory to be removed.
* cwd - inode of current working directory.
* cr - credentials of caller.
* flags - case flags
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* dzp - ctime|mtime updated
*/
int
zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
int flags)
{
znode_t *zp;
zfsvfs_t *zfsvfs = ZTOZSB(dzp);
zilog_t *zilog;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
int error;
int zflg = ZEXISTS;
boolean_t waited = B_FALSE;
if (name == NULL)
return (SET_ERROR(EINVAL));
if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
return (error);
zilog = zfsvfs->z_log;
if (flags & FIGNORECASE)
zflg |= ZCILOOK;
top:
zp = NULL;
/*
* Attempt to lock directory; fail if entry doesn't exist.
*/
if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
NULL, NULL))) {
zfs_exit(zfsvfs, FTAG);
return (error);
}
if ((error = zfs_zaccess_delete(dzp, zp, cr, NULL))) {
goto out;
}
if (!S_ISDIR(ZTOI(zp)->i_mode)) {
error = SET_ERROR(ENOTDIR);
goto out;
}
if (zp == cwd) {
error = SET_ERROR(EINVAL);
goto out;
}
/*
* Grab a lock on the directory to make sure that no one is
* trying to add (or lookup) entries while we are removing it.
*/
rw_enter(&zp->z_name_lock, RW_WRITER);
/*
* Grab a lock on the parent pointer to make sure we play well
* with the treewalk and directory rename code.
*/
rw_enter(&zp->z_parent_lock, RW_WRITER);
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
zfs_sa_upgrade_txholds(tx, zp);
zfs_sa_upgrade_txholds(tx, dzp);
dmu_tx_mark_netfree(tx);
error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
if (error) {
rw_exit(&zp->z_parent_lock);
rw_exit(&zp->z_name_lock);
zfs_dirent_unlock(dl);
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
zrele(zp);
goto top;
}
dmu_tx_abort(tx);
zrele(zp);
zfs_exit(zfsvfs, FTAG);
return (error);
}
error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
if (error == 0) {
uint64_t txtype = TX_RMDIR;
if (flags & FIGNORECASE)
txtype |= TX_CI;
zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
B_FALSE);
}
dmu_tx_commit(tx);
rw_exit(&zp->z_parent_lock);
rw_exit(&zp->z_name_lock);
out:
zfs_dirent_unlock(dl);
zfs_znode_update_vfs(dzp);
zfs_znode_update_vfs(zp);
zrele(zp);
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
zfs_exit(zfsvfs, FTAG);
return (error);
}
/*
* Read directory entries from the given directory cursor position and emit
* name and position for each entry.
*
* IN: ip - inode of directory to read.
* ctx - directory entry context.
* cr - credentials of caller.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* ip - atime updated
*
* Note that the low 4 bits of the cookie returned by zap is always zero.
* This allows us to use the low range for "special" directory entries:
* We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
* we use the offset 2 for the '.zfs' directory.
*/
int
zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr)
{
(void) cr;
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
objset_t *os;
zap_cursor_t zc;
zap_attribute_t zap;
int error;
uint8_t prefetch;
uint8_t type;
int done = 0;
uint64_t parent;
uint64_t offset; /* must be unsigned; checks for < 1 */
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
return (error);
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
&parent, sizeof (parent))) != 0)
goto out;
/*
* Quit if directory has been removed (posix)
*/
if (zp->z_unlinked)
goto out;
error = 0;
os = zfsvfs->z_os;
offset = ctx->pos;
prefetch = zp->z_zn_prefetch;
/*
* Initialize the iterator cursor.
*/
if (offset <= 3) {
/*
* Start iteration from the beginning of the directory.
*/
zap_cursor_init(&zc, os, zp->z_id);
} else {
/*
* The offset is a serialized cursor.
*/
zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
}
/*
* Transform to file-system independent format
*/
while (!done) {
uint64_t objnum;
/*
* Special case `.', `..', and `.zfs'.
*/
if (offset == 0) {
(void) strcpy(zap.za_name, ".");
zap.za_normalization_conflict = 0;
objnum = zp->z_id;
type = DT_DIR;
} else if (offset == 1) {
(void) strcpy(zap.za_name, "..");
zap.za_normalization_conflict = 0;
objnum = parent;
type = DT_DIR;
} else if (offset == 2 && zfs_show_ctldir(zp)) {
(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
zap.za_normalization_conflict = 0;
objnum = ZFSCTL_INO_ROOT;
type = DT_DIR;
} else {
/*
* Grab next entry.
*/
if ((error = zap_cursor_retrieve(&zc, &zap))) {
if (error == ENOENT)
break;
else
goto update;
}
/*
* Allow multiple entries provided the first entry is
* the object id. Non-zpl consumers may safely make
* use of the additional space.
*
* XXX: This should be a feature flag for compatibility
*/
if (zap.za_integer_length != 8 ||
zap.za_num_integers == 0) {
cmn_err(CE_WARN, "zap_readdir: bad directory "
"entry, obj = %lld, offset = %lld, "
"length = %d, num = %lld\n",
(u_longlong_t)zp->z_id,
(u_longlong_t)offset,
zap.za_integer_length,
(u_longlong_t)zap.za_num_integers);
error = SET_ERROR(ENXIO);
goto update;
}
objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
type = ZFS_DIRENT_TYPE(zap.za_first_integer);
}
done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name),
objnum, type);
if (done)
break;
/* Prefetch znode */
if (prefetch) {
dmu_prefetch(os, objnum, 0, 0, 0,
ZIO_PRIORITY_SYNC_READ);
}
/*
* Move to the next entry, fill in the previous offset.
*/
if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
zap_cursor_advance(&zc);
offset = zap_cursor_serialize(&zc);
} else {
offset += 1;
}
ctx->pos = offset;
}
zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
update:
zap_cursor_fini(&zc);
if (error == ENOENT)
error = 0;
out:
zfs_exit(zfsvfs, FTAG);
return (error);
}
/*
* Get the basic file attributes and place them in the provided kstat
* structure. The inode is assumed to be the authoritative source
* for most of the attributes. However, the znode currently has the
* authoritative atime, blksize, and block count.
*
* IN: ip - inode of file.
*
* OUT: sp - kstat values.
*
* RETURN: 0 (always succeeds)
*/
int
zfs_getattr_fast(struct user_namespace *user_ns, struct inode *ip,
struct kstat *sp)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
uint32_t blksize;
u_longlong_t nblocks;
int error;
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
return (error);
mutex_enter(&zp->z_lock);
zpl_generic_fillattr(user_ns, ip, sp);
/*
* +1 link count for root inode with visible '.zfs' directory.
*/
if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
if (sp->nlink < ZFS_LINK_MAX)
sp->nlink++;
sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
sp->blksize = blksize;
sp->blocks = nblocks;
if (unlikely(zp->z_blksz == 0)) {
/*
* Block size hasn't been set; suggest maximal I/O transfers.
*/
sp->blksize = zfsvfs->z_max_blksz;
}
mutex_exit(&zp->z_lock);
/*
* Required to prevent NFS client from detecting different inode
* numbers of snapshot root dentry before and after snapshot mount.
*/
if (zfsvfs->z_issnap) {
if (ip->i_sb->s_root->d_inode == ip)
sp->ino = ZFSCTL_INO_SNAPDIRS -
dmu_objset_id(zfsvfs->z_os);
}
zfs_exit(zfsvfs, FTAG);
return (0);
}
/*
* For the operation of changing file's user/group/project, we need to
* handle not only the main object that is assigned to the file directly,
* but also the ones that are used by the file via hidden xattr directory.
*
* Because the xattr directory may contains many EA entries, as to it may
* be impossible to change all of them via the transaction of changing the
* main object's user/group/project attributes. Then we have to change them
* via other multiple independent transactions one by one. It may be not good
* solution, but we have no better idea yet.
*/
static int
zfs_setattr_dir(znode_t *dzp)
{
struct inode *dxip = ZTOI(dzp);
struct inode *xip = NULL;
zfsvfs_t *zfsvfs = ZTOZSB(dzp);
objset_t *os = zfsvfs->z_os;
zap_cursor_t zc;
zap_attribute_t zap;
zfs_dirlock_t *dl;
znode_t *zp = NULL;
dmu_tx_t *tx = NULL;
uint64_t uid, gid;
sa_bulk_attr_t bulk[4];
int count;
int err;
zap_cursor_init(&zc, os, dzp->z_id);
while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
count = 0;
if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
err = ENXIO;
break;
}
err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
ZEXISTS, NULL, NULL);
if (err == ENOENT)
goto next;
if (err)
break;
xip = ZTOI(zp);
if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
zp->z_projid == dzp->z_projid)
goto next;
tx = dmu_tx_create(os);
if (!(zp->z_pflags & ZFS_PROJID))
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
else
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err)
break;
mutex_enter(&dzp->z_lock);
if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
xip->i_uid = dxip->i_uid;
uid = zfs_uid_read(dxip);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
&uid, sizeof (uid));
}
if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
xip->i_gid = dxip->i_gid;
gid = zfs_gid_read(dxip);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
&gid, sizeof (gid));
}
if (zp->z_projid != dzp->z_projid) {
if (!(zp->z_pflags & ZFS_PROJID)) {
zp->z_pflags |= ZFS_PROJID;
SA_ADD_BULK_ATTR(bulk, count,
SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
sizeof (zp->z_pflags));
}
zp->z_projid = dzp->z_projid;
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
NULL, &zp->z_projid, sizeof (zp->z_projid));
}
mutex_exit(&dzp->z_lock);
if (likely(count > 0)) {
err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
dmu_tx_commit(tx);
} else {
dmu_tx_abort(tx);
}
tx = NULL;
if (err != 0 && err != ENOENT)
break;
next:
if (zp) {
zrele(zp);
zp = NULL;
zfs_dirent_unlock(dl);
}
zap_cursor_advance(&zc);
}
if (tx)
dmu_tx_abort(tx);
if (zp) {
zrele(zp);
zfs_dirent_unlock(dl);
}
zap_cursor_fini(&zc);
return (err == ENOENT ? 0 : err);
}
/*
* Set the file attributes to the values contained in the
* vattr structure.
*
* IN: zp - znode of file to be modified.
* vap - new attribute values.
* If ATTR_XVATTR set, then optional attrs are being set
* flags - ATTR_UTIME set if non-default time values provided.
* - ATTR_NOACLCHECK (CIFS context only).
* cr - credentials of caller.
* mnt_ns - user namespace of the mount
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* ip - ctime updated, mtime updated if size changed.
*/
int
zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr, zuserns_t *mnt_ns)
{
struct inode *ip;
zfsvfs_t *zfsvfs = ZTOZSB(zp);
objset_t *os = zfsvfs->z_os;
zilog_t *zilog;
dmu_tx_t *tx;
vattr_t oldva;
xvattr_t *tmpxvattr;
uint_t mask = vap->va_mask;
uint_t saved_mask = 0;
int trim_mask = 0;
uint64_t new_mode;
uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid;
uint64_t xattr_obj;
uint64_t mtime[2], ctime[2], atime[2];
uint64_t projid = ZFS_INVALID_PROJID;
znode_t *attrzp;
int need_policy = FALSE;
int err, err2 = 0;
zfs_fuid_info_t *fuidp = NULL;
xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
xoptattr_t *xoap;
zfs_acl_t *aclp;
boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
boolean_t fuid_dirtied = B_FALSE;
boolean_t handle_eadir = B_FALSE;
sa_bulk_attr_t *bulk, *xattr_bulk;
int count = 0, xattr_count = 0, bulks = 8;
if (mask == 0)
return (0);
if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
return (err);
ip = ZTOI(zp);
/*
* If this is a xvattr_t, then get a pointer to the structure of
* optional attributes. If this is NULL, then we have a vattr_t.
*/
xoap = xva_getxoptattr(xvap);
if (xoap != NULL && (mask & ATTR_XVATTR)) {
if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
if (!dmu_objset_projectquota_enabled(os) ||
(!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(ENOTSUP));
}
projid = xoap->xoa_projid;
if (unlikely(projid == ZFS_INVALID_PROJID)) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EINVAL));
}
if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
projid = ZFS_INVALID_PROJID;
else
need_policy = TRUE;
}
if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
(xoap->xoa_projinherit !=
((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
(!dmu_objset_projectquota_enabled(os) ||
(!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(ENOTSUP));
}
}
zilog = zfsvfs->z_log;
/*
* Make sure that if we have ephemeral uid/gid or xvattr specified
* that file system is at proper version level
*/
if (zfsvfs->z_use_fuids == B_FALSE &&
(((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
(mask & ATTR_XVATTR))) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EINVAL));
}
if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EISDIR));
}
if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EINVAL));
}
tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
xva_init(tmpxvattr);
bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
/*
* Immutable files can only alter immutable bit and atime
*/
if ((zp->z_pflags & ZFS_IMMUTABLE) &&
((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
err = SET_ERROR(EPERM);
goto out3;
}
if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
err = SET_ERROR(EPERM);
goto out3;
}
/*
* Verify timestamps doesn't overflow 32 bits.
* ZFS can handle large timestamps, but 32bit syscalls can't
* handle times greater than 2039. This check should be removed
* once large timestamps are fully supported.
*/
if (mask & (ATTR_ATIME | ATTR_MTIME)) {
if (((mask & ATTR_ATIME) &&
TIMESPEC_OVERFLOW(&vap->va_atime)) ||
((mask & ATTR_MTIME) &&
TIMESPEC_OVERFLOW(&vap->va_mtime))) {
err = SET_ERROR(EOVERFLOW);
goto out3;
}
}
top:
attrzp = NULL;
aclp = NULL;
/* Can this be moved to before the top label? */
if (zfs_is_readonly(zfsvfs)) {
err = SET_ERROR(EROFS);
goto out3;
}
/*
* First validate permissions
*/
if (mask & ATTR_SIZE) {
err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr,
mnt_ns);
if (err)
goto out3;
/*
* XXX - Note, we are not providing any open
* mode flags here (like FNDELAY), so we may
* block if there are locks present... this
* should be addressed in openat().
*/
/* XXX - would it be OK to generate a log record here? */
err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
if (err)
goto out3;
}
if (mask & (ATTR_ATIME|ATTR_MTIME) ||
((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
XVA_ISSET_REQ(xvap, XAT_READONLY) ||
XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
skipaclchk, cr, mnt_ns);
}
if (mask & (ATTR_UID|ATTR_GID)) {
int idmask = (mask & (ATTR_UID|ATTR_GID));
int take_owner;
int take_group;
uid_t uid;
gid_t gid;
/*
* NOTE: even if a new mode is being set,
* we may clear S_ISUID/S_ISGID bits.
*/
if (!(mask & ATTR_MODE))
vap->va_mode = zp->z_mode;
/*
* Take ownership or chgrp to group we are a member of
*/
uid = zfs_uid_into_mnt((struct user_namespace *)mnt_ns,
vap->va_uid);
gid = zfs_gid_into_mnt((struct user_namespace *)mnt_ns,
vap->va_gid);
take_owner = (mask & ATTR_UID) && (uid == crgetuid(cr));
take_group = (mask & ATTR_GID) &&
zfs_groupmember(zfsvfs, gid, cr);
/*
* If both ATTR_UID and ATTR_GID are set then take_owner and
* take_group must both be set in order to allow taking
* ownership.
*
* Otherwise, send the check through secpolicy_vnode_setattr()
*
*/
if (((idmask == (ATTR_UID|ATTR_GID)) &&
take_owner && take_group) ||
((idmask == ATTR_UID) && take_owner) ||
((idmask == ATTR_GID) && take_group)) {
if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
skipaclchk, cr, mnt_ns) == 0) {
/*
* Remove setuid/setgid for non-privileged users
*/
(void) secpolicy_setid_clear(vap, cr);
trim_mask = (mask & (ATTR_UID|ATTR_GID));
} else {
need_policy = TRUE;
}
} else {
need_policy = TRUE;
}
}
mutex_enter(&zp->z_lock);
oldva.va_mode = zp->z_mode;
zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
if (mask & ATTR_XVATTR) {
/*
* Update xvattr mask to include only those attributes
* that are actually changing.
*
* the bits will be restored prior to actually setting
* the attributes so the caller thinks they were set.
*/
if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
if (xoap->xoa_appendonly !=
((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_APPENDONLY);
XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
}
}
if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
if (xoap->xoa_projinherit !=
((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
}
}
if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
if (xoap->xoa_nounlink !=
((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_NOUNLINK);
XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
}
}
if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
if (xoap->xoa_immutable !=
((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
}
}
if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
if (xoap->xoa_nodump !=
((zp->z_pflags & ZFS_NODUMP) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_NODUMP);
XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
}
}
if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
if (xoap->xoa_av_modified !=
((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
}
}
if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
if ((!S_ISREG(ip->i_mode) &&
xoap->xoa_av_quarantined) ||
xoap->xoa_av_quarantined !=
((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
}
}
if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
mutex_exit(&zp->z_lock);
err = SET_ERROR(EPERM);
goto out3;
}
if (need_policy == FALSE &&
(XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
need_policy = TRUE;
}
}
mutex_exit(&zp->z_lock);
if (mask & ATTR_MODE) {
if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr,
mnt_ns) == 0) {
err = secpolicy_setid_setsticky_clear(ip, vap,
&oldva, cr, mnt_ns);
if (err)
goto out3;
trim_mask |= ATTR_MODE;
} else {
need_policy = TRUE;
}
}
if (need_policy) {
/*
* If trim_mask is set then take ownership
* has been granted or write_acl is present and user
* has the ability to modify mode. In that case remove
* UID|GID and or MODE from mask so that
* secpolicy_vnode_setattr() doesn't revoke it.
*/
if (trim_mask) {
saved_mask = vap->va_mask;
vap->va_mask &= ~trim_mask;
}
err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
(int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
if (err)
goto out3;
if (trim_mask)
vap->va_mask |= saved_mask;
}
/*
* secpolicy_vnode_setattr, or take ownership may have
* changed va_mask
*/
mask = vap->va_mask;
if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
handle_eadir = B_TRUE;
err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
&xattr_obj, sizeof (xattr_obj));
if (err == 0 && xattr_obj) {
err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
if (err)
goto out2;
}
if (mask & ATTR_UID) {
new_kuid = zfs_fuid_create(zfsvfs,
(uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
new_kuid)) {
if (attrzp)
zrele(attrzp);
err = SET_ERROR(EDQUOT);
goto out2;
}
}
if (mask & ATTR_GID) {
new_kgid = zfs_fuid_create(zfsvfs,
(uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
new_kgid)) {
if (attrzp)
zrele(attrzp);
err = SET_ERROR(EDQUOT);
goto out2;
}
}
if (projid != ZFS_INVALID_PROJID &&
zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
if (attrzp)
zrele(attrzp);
err = EDQUOT;
goto out2;
}
}
tx = dmu_tx_create(os);
if (mask & ATTR_MODE) {
uint64_t pmode = zp->z_mode;
uint64_t acl_obj;
new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
!(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
err = EPERM;
goto out;
}
if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
goto out;
mutex_enter(&zp->z_lock);
if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
/*
* Are we upgrading ACL from old V0 format
* to V1 format?
*/
if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
zfs_znode_acl_version(zp) ==
ZFS_ACL_VERSION_INITIAL) {
dmu_tx_hold_free(tx, acl_obj, 0,
DMU_OBJECT_END);
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, aclp->z_acl_bytes);
} else {
dmu_tx_hold_write(tx, acl_obj, 0,
aclp->z_acl_bytes);
}
} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, aclp->z_acl_bytes);
}
mutex_exit(&zp->z_lock);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
} else {
if (((mask & ATTR_XVATTR) &&
XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
(projid != ZFS_INVALID_PROJID &&
!(zp->z_pflags & ZFS_PROJID)))
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
else
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
}
if (attrzp) {
dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
}
fuid_dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
zfs_sa_upgrade_txholds(tx, zp);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err)
goto out;
count = 0;
/*
* Set each attribute requested.
* We group settings according to the locks they need to acquire.
*
* Note: you cannot set ctime directly, although it will be
* updated as a side-effect of calling this function.
*/
if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
/*
* For the existed object that is upgraded from old system,
* its on-disk layout has no slot for the project ID attribute.
* But quota accounting logic needs to access related slots by
* offset directly. So we need to adjust old objects' layout
* to make the project ID to some unified and fixed offset.
*/
if (attrzp)
err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
if (err == 0)
err = sa_add_projid(zp->z_sa_hdl, tx, projid);
if (unlikely(err == EEXIST))
err = 0;
else if (err != 0)
goto out;
else
projid = ZFS_INVALID_PROJID;
}
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
mutex_enter(&zp->z_acl_lock);
mutex_enter(&zp->z_lock);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
&zp->z_pflags, sizeof (zp->z_pflags));
if (attrzp) {
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
mutex_enter(&attrzp->z_acl_lock);
mutex_enter(&attrzp->z_lock);
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
sizeof (attrzp->z_pflags));
if (projid != ZFS_INVALID_PROJID) {
attrzp->z_projid = projid;
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
sizeof (attrzp->z_projid));
}
}
if (mask & (ATTR_UID|ATTR_GID)) {
if (mask & ATTR_UID) {
ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
new_uid = zfs_uid_read(ZTOI(zp));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
&new_uid, sizeof (new_uid));
if (attrzp) {
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_UID(zfsvfs), NULL, &new_uid,
sizeof (new_uid));
ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
}
}
if (mask & ATTR_GID) {
ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
new_gid = zfs_gid_read(ZTOI(zp));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
NULL, &new_gid, sizeof (new_gid));
if (attrzp) {
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_GID(zfsvfs), NULL, &new_gid,
sizeof (new_gid));
ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
}
}
if (!(mask & ATTR_MODE)) {
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
NULL, &new_mode, sizeof (new_mode));
new_mode = zp->z_mode;
}
err = zfs_acl_chown_setattr(zp);
ASSERT(err == 0);
if (attrzp) {
err = zfs_acl_chown_setattr(attrzp);
ASSERT(err == 0);
}
}
if (mask & ATTR_MODE) {
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
&new_mode, sizeof (new_mode));
zp->z_mode = ZTOI(zp)->i_mode = new_mode;
ASSERT3P(aclp, !=, NULL);
err = zfs_aclset_common(zp, aclp, cr, tx);
ASSERT0(err);
if (zp->z_acl_cached)
zfs_acl_free(zp->z_acl_cached);
zp->z_acl_cached = aclp;
aclp = NULL;
}
if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
zp->z_atime_dirty = B_FALSE;
ZFS_TIME_ENCODE(&ip->i_atime, atime);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
&atime, sizeof (atime));
}
if (mask & (ATTR_MTIME | ATTR_SIZE)) {
ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
ZTOI(zp)->i_mtime = zpl_inode_timestamp_truncate(
vap->va_mtime, ZTOI(zp));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
mtime, sizeof (mtime));
}
if (mask & (ATTR_CTIME | ATTR_SIZE)) {
ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
ZTOI(zp)->i_ctime = zpl_inode_timestamp_truncate(vap->va_ctime,
ZTOI(zp));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
ctime, sizeof (ctime));
}
if (projid != ZFS_INVALID_PROJID) {
zp->z_projid = projid;
SA_ADD_BULK_ATTR(bulk, count,
SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
sizeof (zp->z_projid));
}
if (attrzp && mask) {
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
sizeof (ctime));
}
/*
* Do this after setting timestamps to prevent timestamp
* update from toggling bit
*/
if (xoap && (mask & ATTR_XVATTR)) {
/*
* restore trimmed off masks
* so that return masks can be set for caller.
*/
if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
XVA_SET_REQ(xvap, XAT_APPENDONLY);
}
if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
XVA_SET_REQ(xvap, XAT_NOUNLINK);
}
if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
XVA_SET_REQ(xvap, XAT_IMMUTABLE);
}
if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
XVA_SET_REQ(xvap, XAT_NODUMP);
}
if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
}
if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
}
if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
XVA_SET_REQ(xvap, XAT_PROJINHERIT);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
ASSERT(S_ISREG(ip->i_mode));
zfs_xvattr_set(zp, xvap, tx);
}
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
if (mask != 0)
zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
mutex_exit(&zp->z_lock);
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
mutex_exit(&zp->z_acl_lock);
if (attrzp) {
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
mutex_exit(&attrzp->z_acl_lock);
mutex_exit(&attrzp->z_lock);
}
out:
if (err == 0 && xattr_count > 0) {
err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
xattr_count, tx);
ASSERT(err2 == 0);
}
if (aclp)
zfs_acl_free(aclp);
if (fuidp) {
zfs_fuid_info_free(fuidp);
fuidp = NULL;
}
if (err) {
dmu_tx_abort(tx);
if (attrzp)
zrele(attrzp);
if (err == ERESTART)
goto top;
} else {
if (count > 0)
err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
dmu_tx_commit(tx);
if (attrzp) {
if (err2 == 0 && handle_eadir)
err2 = zfs_setattr_dir(attrzp);
zrele(attrzp);
}
zfs_znode_update_vfs(zp);
}
out2:
if (os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
out3:
kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
kmem_free(tmpxvattr, sizeof (xvattr_t));
zfs_exit(zfsvfs, FTAG);
return (err);
}
typedef struct zfs_zlock {
krwlock_t *zl_rwlock; /* lock we acquired */
znode_t *zl_znode; /* znode we held */
struct zfs_zlock *zl_next; /* next in list */
} zfs_zlock_t;
/*
* Drop locks and release vnodes that were held by zfs_rename_lock().
*/
static void
zfs_rename_unlock(zfs_zlock_t **zlpp)
{
zfs_zlock_t *zl;
while ((zl = *zlpp) != NULL) {
if (zl->zl_znode != NULL)
zfs_zrele_async(zl->zl_znode);
rw_exit(zl->zl_rwlock);
*zlpp = zl->zl_next;
kmem_free(zl, sizeof (*zl));
}
}
/*
* Search back through the directory tree, using the ".." entries.
* Lock each directory in the chain to prevent concurrent renames.
* Fail any attempt to move a directory into one of its own descendants.
* XXX - z_parent_lock can overlap with map or grow locks
*/
static int
zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
{
zfs_zlock_t *zl;
znode_t *zp = tdzp;
uint64_t rootid = ZTOZSB(zp)->z_root;
uint64_t oidp = zp->z_id;
krwlock_t *rwlp = &szp->z_parent_lock;
krw_t rw = RW_WRITER;
/*
* First pass write-locks szp and compares to zp->z_id.
* Later passes read-lock zp and compare to zp->z_parent.
*/
do {
if (!rw_tryenter(rwlp, rw)) {
/*
* Another thread is renaming in this path.
* Note that if we are a WRITER, we don't have any
* parent_locks held yet.
*/
if (rw == RW_READER && zp->z_id > szp->z_id) {
/*
* Drop our locks and restart
*/
zfs_rename_unlock(&zl);
*zlpp = NULL;
zp = tdzp;
oidp = zp->z_id;
rwlp = &szp->z_parent_lock;
rw = RW_WRITER;
continue;
} else {
/*
* Wait for other thread to drop its locks
*/
rw_enter(rwlp, rw);
}
}
zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
zl->zl_rwlock = rwlp;
zl->zl_znode = NULL;
zl->zl_next = *zlpp;
*zlpp = zl;
if (oidp == szp->z_id) /* We're a descendant of szp */
return (SET_ERROR(EINVAL));
if (oidp == rootid) /* We've hit the top */
return (0);
if (rw == RW_READER) { /* i.e. not the first pass */
int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
if (error)
return (error);
zl->zl_znode = zp;
}
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
&oidp, sizeof (oidp));
rwlp = &zp->z_parent_lock;
rw = RW_READER;
} while (zp->z_id != sdzp->z_id);
return (0);
}
/*
* Move an entry from the provided source directory to the target
* directory. Change the entry name as indicated.
*
* IN: sdzp - Source directory containing the "old entry".
* snm - Old entry name.
* tdzp - Target directory to contain the "new entry".
* tnm - New entry name.
* cr - credentials of caller.
* flags - case flags
* mnt_ns - user namespace of the mount
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* sdzp,tdzp - ctime|mtime updated
*/
int
zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
cred_t *cr, int flags, zuserns_t *mnt_ns)
{
znode_t *szp, *tzp;
zfsvfs_t *zfsvfs = ZTOZSB(sdzp);
zilog_t *zilog;
zfs_dirlock_t *sdl, *tdl;
dmu_tx_t *tx;
zfs_zlock_t *zl;
int cmp, serr, terr;
int error = 0;
int zflg = 0;
boolean_t waited = B_FALSE;
if (snm == NULL || tnm == NULL)
return (SET_ERROR(EINVAL));
if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0)
return (error);
zilog = zfsvfs->z_log;
if ((error = zfs_verify_zp(tdzp)) != 0) {
zfs_exit(zfsvfs, FTAG);
return (error);
}
/*
* We check i_sb because snapshots and the ctldir must have different
* super blocks.
*/
if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
zfsctl_is_node(ZTOI(tdzp))) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EXDEV));
}
if (zfsvfs->z_utf8 && u8_validate(tnm,
strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EILSEQ));
}
if (flags & FIGNORECASE)
zflg |= ZCILOOK;
top:
szp = NULL;
tzp = NULL;
zl = NULL;
/*
* This is to prevent the creation of links into attribute space
* by renaming a linked file into/outof an attribute directory.
* See the comment in zfs_link() for why this is considered bad.
*/
if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EINVAL));
}
/*
* Lock source and target directory entries. To prevent deadlock,
* a lock ordering must be defined. We lock the directory with
* the smallest object id first, or if it's a tie, the one with
* the lexically first name.
*/
if (sdzp->z_id < tdzp->z_id) {
cmp = -1;
} else if (sdzp->z_id > tdzp->z_id) {
cmp = 1;
} else {
/*
* First compare the two name arguments without
* considering any case folding.
*/
int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
ASSERT(error == 0 || !zfsvfs->z_utf8);
if (cmp == 0) {
/*
* POSIX: "If the old argument and the new argument
* both refer to links to the same existing file,
* the rename() function shall return successfully
* and perform no other action."
*/
zfs_exit(zfsvfs, FTAG);
return (0);
}
/*
* If the file system is case-folding, then we may
* have some more checking to do. A case-folding file
* system is either supporting mixed case sensitivity
* access or is completely case-insensitive. Note
* that the file system is always case preserving.
*
* In mixed sensitivity mode case sensitive behavior
* is the default. FIGNORECASE must be used to
* explicitly request case insensitive behavior.
*
* If the source and target names provided differ only
* by case (e.g., a request to rename 'tim' to 'Tim'),
* we will treat this as a special case in the
* case-insensitive mode: as long as the source name
* is an exact match, we will allow this to proceed as
* a name-change request.
*/
if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
(zfsvfs->z_case == ZFS_CASE_MIXED &&
flags & FIGNORECASE)) &&
u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
&error) == 0) {
/*
* case preserving rename request, require exact
* name matches
*/
zflg |= ZCIEXACT;
zflg &= ~ZCILOOK;
}
}
/*
* If the source and destination directories are the same, we should
* grab the z_name_lock of that directory only once.
*/
if (sdzp == tdzp) {
zflg |= ZHAVELOCK;
rw_enter(&sdzp->z_name_lock, RW_READER);
}
if (cmp < 0) {
serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
ZEXISTS | zflg, NULL, NULL);
terr = zfs_dirent_lock(&tdl,
tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
} else {
terr = zfs_dirent_lock(&tdl,
tdzp, tnm, &tzp, zflg, NULL, NULL);
serr = zfs_dirent_lock(&sdl,
sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
NULL, NULL);
}
if (serr) {
/*
* Source entry invalid or not there.
*/
if (!terr) {
zfs_dirent_unlock(tdl);
if (tzp)
zrele(tzp);
}
if (sdzp == tdzp)
rw_exit(&sdzp->z_name_lock);
if (strcmp(snm, "..") == 0)
serr = EINVAL;
zfs_exit(zfsvfs, FTAG);
return (serr);
}
if (terr) {
zfs_dirent_unlock(sdl);
zrele(szp);
if (sdzp == tdzp)
rw_exit(&sdzp->z_name_lock);
if (strcmp(tnm, "..") == 0)
terr = EINVAL;
zfs_exit(zfsvfs, FTAG);
return (terr);
}
/*
* If we are using project inheritance, means if the directory has
* ZFS_PROJINHERIT set, then its descendant directories will inherit
* not only the project ID, but also the ZFS_PROJINHERIT flag. Under
* such case, we only allow renames into our tree when the project
* IDs are the same.
*/
if (tdzp->z_pflags & ZFS_PROJINHERIT &&
tdzp->z_projid != szp->z_projid) {
error = SET_ERROR(EXDEV);
goto out;
}
/*
* Must have write access at the source to remove the old entry
* and write access at the target to create the new entry.
* Note that if target and source are the same, this can be
* done in a single check.
*/
if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr, mnt_ns)))
goto out;
if (S_ISDIR(ZTOI(szp)->i_mode)) {
/*
* Check to make sure rename is valid.
* Can't do a move like this: /usr/a/b to /usr/a/b/c/d
*/
if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
goto out;
}
/*
* Does target exist?
*/
if (tzp) {
/*
* Source and target must be the same type.
*/
if (S_ISDIR(ZTOI(szp)->i_mode)) {
if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
error = SET_ERROR(ENOTDIR);
goto out;
}
} else {
if (S_ISDIR(ZTOI(tzp)->i_mode)) {
error = SET_ERROR(EISDIR);
goto out;
}
}
/*
* POSIX dictates that when the source and target
* entries refer to the same file object, rename
* must do nothing and exit without error.
*/
if (szp->z_id == tzp->z_id) {
error = 0;
goto out;
}
}
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
if (sdzp != tdzp) {
dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, tdzp);
}
if (tzp) {
dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, tzp);
}
zfs_sa_upgrade_txholds(tx, szp);
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
if (error) {
if (zl != NULL)
zfs_rename_unlock(&zl);
zfs_dirent_unlock(sdl);
zfs_dirent_unlock(tdl);
if (sdzp == tdzp)
rw_exit(&sdzp->z_name_lock);
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
zrele(szp);
if (tzp)
zrele(tzp);
goto top;
}
dmu_tx_abort(tx);
zrele(szp);
if (tzp)
zrele(tzp);
zfs_exit(zfsvfs, FTAG);
return (error);
}
if (tzp) /* Attempt to remove the existing target */
error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
if (error == 0) {
error = zfs_link_create(tdl, szp, tx, ZRENAMING);
if (error == 0) {
szp->z_pflags |= ZFS_AV_MODIFIED;
if (tdzp->z_pflags & ZFS_PROJINHERIT)
szp->z_pflags |= ZFS_PROJINHERIT;
error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
(void *)&szp->z_pflags, sizeof (uint64_t), tx);
ASSERT0(error);
error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
if (error == 0) {
zfs_log_rename(zilog, tx, TX_RENAME |
(flags & FIGNORECASE ? TX_CI : 0), sdzp,
sdl->dl_name, tdzp, tdl->dl_name, szp);
} else {
/*
* At this point, we have successfully created
* the target name, but have failed to remove
* the source name. Since the create was done
* with the ZRENAMING flag, there are
* complications; for one, the link count is
* wrong. The easiest way to deal with this
* is to remove the newly created target, and
* return the original error. This must
* succeed; fortunately, it is very unlikely to
* fail, since we just created it.
*/
VERIFY3U(zfs_link_destroy(tdl, szp, tx,
ZRENAMING, NULL), ==, 0);
}
} else {
/*
* If we had removed the existing target, subsequent
* call to zfs_link_create() to add back the same entry
* but, the new dnode (szp) should not fail.
*/
ASSERT(tzp == NULL);
}
}
dmu_tx_commit(tx);
out:
if (zl != NULL)
zfs_rename_unlock(&zl);
zfs_dirent_unlock(sdl);
zfs_dirent_unlock(tdl);
zfs_znode_update_vfs(sdzp);
if (sdzp == tdzp)
rw_exit(&sdzp->z_name_lock);
if (sdzp != tdzp)
zfs_znode_update_vfs(tdzp);
zfs_znode_update_vfs(szp);
zrele(szp);
if (tzp) {
zfs_znode_update_vfs(tzp);
zrele(tzp);
}
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
zfs_exit(zfsvfs, FTAG);
return (error);
}
/*
* Insert the indicated symbolic reference entry into the directory.
*
* IN: dzp - Directory to contain new symbolic link.
* name - Name of directory entry in dip.
* vap - Attributes of new entry.
* link - Name for new symlink entry.
* cr - credentials of caller.
* flags - case flags
* mnt_ns - user namespace of the mount
*
* OUT: zpp - Znode for new symbolic link.
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* dip - ctime|mtime updated
*/
int
zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
znode_t **zpp, cred_t *cr, int flags, zuserns_t *mnt_ns)
{
znode_t *zp;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
zfsvfs_t *zfsvfs = ZTOZSB(dzp);
zilog_t *zilog;
uint64_t len = strlen(link);
int error;
int zflg = ZNEW;
zfs_acl_ids_t acl_ids;
boolean_t fuid_dirtied;
uint64_t txtype = TX_SYMLINK;
boolean_t waited = B_FALSE;
ASSERT(S_ISLNK(vap->va_mode));
if (name == NULL)
return (SET_ERROR(EINVAL));
if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
return (error);
zilog = zfsvfs->z_log;
if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EILSEQ));
}
if (flags & FIGNORECASE)
zflg |= ZCILOOK;
if (len > MAXPATHLEN) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(ENAMETOOLONG));
}
if ((error = zfs_acl_ids_create(dzp, 0,
vap, cr, NULL, &acl_ids, mnt_ns)) != 0) {
zfs_exit(zfsvfs, FTAG);
return (error);
}
top:
*zpp = NULL;
/*
* Attempt to lock directory; fail if entry already exists.
*/
error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
if (error) {
zfs_acl_ids_free(&acl_ids);
zfs_exit(zfsvfs, FTAG);
return (error);
}
if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
zfs_acl_ids_free(&acl_ids);
zfs_dirent_unlock(dl);
zfs_exit(zfsvfs, FTAG);
return (error);
}
if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
zfs_acl_ids_free(&acl_ids);
zfs_dirent_unlock(dl);
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EDQUOT));
}
tx = dmu_tx_create(zfsvfs->z_os);
fuid_dirtied = zfsvfs->z_fuid_dirty;
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE + len);
dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
acl_ids.z_aclp->z_acl_bytes);
}
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
zfs_acl_ids_free(&acl_ids);
dmu_tx_abort(tx);
zfs_exit(zfsvfs, FTAG);
return (error);
}
/*
* Create a new object for the symlink.
* for version 4 ZPL datasets the symlink will be an SA attribute
*/
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
mutex_enter(&zp->z_lock);
if (zp->z_is_sa)
error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
link, len, tx);
else
zfs_sa_symlink(zp, link, len, tx);
mutex_exit(&zp->z_lock);
zp->z_size = len;
(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
&zp->z_size, sizeof (zp->z_size), tx);
/*
* Insert the new object into the directory.
*/
error = zfs_link_create(dl, zp, tx, ZNEW);
if (error != 0) {
zfs_znode_delete(zp, tx);
remove_inode_hash(ZTOI(zp));
} else {
if (flags & FIGNORECASE)
txtype |= TX_CI;
zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
zfs_znode_update_vfs(dzp);
zfs_znode_update_vfs(zp);
}
zfs_acl_ids_free(&acl_ids);
dmu_tx_commit(tx);
zfs_dirent_unlock(dl);
if (error == 0) {
*zpp = zp;
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
} else {
zrele(zp);
}
zfs_exit(zfsvfs, FTAG);
return (error);
}
/*
* Return, in the buffer contained in the provided uio structure,
* the symbolic path referred to by ip.
*
* IN: ip - inode of symbolic link
* uio - structure to contain the link path.
* cr - credentials of caller.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* ip - atime updated
*/
int
zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
{
(void) cr;
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
int error;
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
return (error);
mutex_enter(&zp->z_lock);
if (zp->z_is_sa)
error = sa_lookup_uio(zp->z_sa_hdl,
SA_ZPL_SYMLINK(zfsvfs), uio);
else
error = zfs_sa_readlink(zp, uio);
mutex_exit(&zp->z_lock);
zfs_exit(zfsvfs, FTAG);
return (error);
}
/*
* Insert a new entry into directory tdzp referencing szp.
*
* IN: tdzp - Directory to contain new entry.
* szp - znode of new entry.
* name - name of new entry.
* cr - credentials of caller.
* flags - case flags.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* tdzp - ctime|mtime updated
* szp - ctime updated
*/
int
zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
int flags)
{
struct inode *sip = ZTOI(szp);
znode_t *tzp;
zfsvfs_t *zfsvfs = ZTOZSB(tdzp);
zilog_t *zilog;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
int error;
int zf = ZNEW;
uint64_t parent;
uid_t owner;
boolean_t waited = B_FALSE;
boolean_t is_tmpfile = 0;
uint64_t txg;
#ifdef HAVE_TMPFILE
is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
#endif
ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
if (name == NULL)
return (SET_ERROR(EINVAL));
if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0)
return (error);
zilog = zfsvfs->z_log;
/*
* POSIX dictates that we return EPERM here.
* Better choices include ENOTSUP or EISDIR.
*/
if (S_ISDIR(sip->i_mode)) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EPERM));
}
if ((error = zfs_verify_zp(szp)) != 0) {
zfs_exit(zfsvfs, FTAG);
return (error);
}
/*
* If we are using project inheritance, means if the directory has
* ZFS_PROJINHERIT set, then its descendant directories will inherit
* not only the project ID, but also the ZFS_PROJINHERIT flag. Under
* such case, we only allow hard link creation in our tree when the
* project IDs are the same.
*/
if (tdzp->z_pflags & ZFS_PROJINHERIT &&
tdzp->z_projid != szp->z_projid) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EXDEV));
}
/*
* We check i_sb because snapshots and the ctldir must have different
* super blocks.
*/
if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EXDEV));
}
/* Prevent links to .zfs/shares files */
if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
&parent, sizeof (uint64_t))) != 0) {
zfs_exit(zfsvfs, FTAG);
return (error);
}
if (parent == zfsvfs->z_shares_dir) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EPERM));
}
if (zfsvfs->z_utf8 && u8_validate(name,
strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EILSEQ));
}
if (flags & FIGNORECASE)
zf |= ZCILOOK;
/*
* We do not support links between attributes and non-attributes
* because of the potential security risk of creating links
* into "normal" file space in order to circumvent restrictions
* imposed in attribute space.
*/
if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EINVAL));
}
owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
cr, ZFS_OWNER);
if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EPERM));
}
if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr, NULL))) {
zfs_exit(zfsvfs, FTAG);
return (error);
}
top:
/*
* Attempt to lock directory; fail if entry already exists.
*/
error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
if (error) {
zfs_exit(zfsvfs, FTAG);
return (error);
}
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
if (is_tmpfile)
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
zfs_sa_upgrade_txholds(tx, szp);
zfs_sa_upgrade_txholds(tx, tdzp);
error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
dmu_tx_abort(tx);
zfs_exit(zfsvfs, FTAG);
return (error);
}
/* unmark z_unlinked so zfs_link_create will not reject */
if (is_tmpfile)
szp->z_unlinked = B_FALSE;
error = zfs_link_create(dl, szp, tx, 0);
if (error == 0) {
uint64_t txtype = TX_LINK;
/*
* tmpfile is created to be in z_unlinkedobj, so remove it.
* Also, we don't log in ZIL, because all previous file
* operation on the tmpfile are ignored by ZIL. Instead we
* always wait for txg to sync to make sure all previous
* operation are sync safe.
*/
if (is_tmpfile) {
VERIFY(zap_remove_int(zfsvfs->z_os,
zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
} else {
if (flags & FIGNORECASE)
txtype |= TX_CI;
zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
}
} else if (is_tmpfile) {
/* restore z_unlinked since when linking failed */
szp->z_unlinked = B_TRUE;
}
txg = dmu_tx_get_txg(tx);
dmu_tx_commit(tx);
zfs_dirent_unlock(dl);
if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED)
txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
zfs_znode_update_vfs(tdzp);
zfs_znode_update_vfs(szp);
zfs_exit(zfsvfs, FTAG);
return (error);
}
static void
zfs_putpage_sync_commit_cb(void *arg)
{
struct page *pp = arg;
ClearPageError(pp);
end_page_writeback(pp);
}
static void
zfs_putpage_async_commit_cb(void *arg)
{
struct page *pp = arg;
znode_t *zp = ITOZ(pp->mapping->host);
ClearPageError(pp);
end_page_writeback(pp);
atomic_dec_32(&zp->z_async_writes_cnt);
}
/*
* Push a page out to disk, once the page is on stable storage the
* registered commit callback will be run as notification of completion.
*
* IN: ip - page mapped for inode.
* pp - page to push (page is locked)
* wbc - writeback control data
* for_sync - does the caller intend to wait synchronously for the
* page writeback to complete?
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* ip - ctime|mtime updated
*/
int
zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc,
boolean_t for_sync)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
loff_t offset;
loff_t pgoff;
unsigned int pglen;
dmu_tx_t *tx;
caddr_t va;
int err = 0;
uint64_t mtime[2], ctime[2];
sa_bulk_attr_t bulk[3];
int cnt = 0;
struct address_space *mapping;
if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
return (err);
ASSERT(PageLocked(pp));
pgoff = page_offset(pp); /* Page byte-offset in file */
offset = i_size_read(ip); /* File length in bytes */
pglen = MIN(PAGE_SIZE, /* Page length in bytes */
P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
/* Page is beyond end of file */
if (pgoff >= offset) {
unlock_page(pp);
zfs_exit(zfsvfs, FTAG);
return (0);
}
/* Truncate page length to end of file */
if (pgoff + pglen > offset)
pglen = offset - pgoff;
#if 0
/*
* FIXME: Allow mmap writes past its quota. The correct fix
* is to register a page_mkwrite() handler to count the page
* against its quota when it is about to be dirtied.
*/
if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
KUID_TO_SUID(ip->i_uid)) ||
zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
KGID_TO_SGID(ip->i_gid)) ||
(zp->z_projid != ZFS_DEFAULT_PROJID &&
zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
zp->z_projid))) {
err = EDQUOT;
}
#endif
/*
* The ordering here is critical and must adhere to the following
* rules in order to avoid deadlocking in either zfs_read() or
* zfs_free_range() due to a lock inversion.
*
* 1) The page must be unlocked prior to acquiring the range lock.
* This is critical because zfs_read() calls find_lock_page()
* which may block on the page lock while holding the range lock.
*
* 2) Before setting or clearing write back on a page the range lock
* must be held in order to prevent a lock inversion with the
* zfs_free_range() function.
*
* This presents a problem because upon entering this function the
* page lock is already held. To safely acquire the range lock the
* page lock must be dropped. This creates a window where another
* process could truncate, invalidate, dirty, or write out the page.
*
* Therefore, after successfully reacquiring the range and page locks
* the current page state is checked. In the common case everything
* will be as is expected and it can be written out. However, if
* the page state has changed it must be handled accordingly.
*/
mapping = pp->mapping;
redirty_page_for_writepage(wbc, pp);
unlock_page(pp);
zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
pgoff, pglen, RL_WRITER);
lock_page(pp);
/* Page mapping changed or it was no longer dirty, we're done */
if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
unlock_page(pp);
zfs_rangelock_exit(lr);
zfs_exit(zfsvfs, FTAG);
return (0);
}
/* Another process started write block if required */
if (PageWriteback(pp)) {
unlock_page(pp);
zfs_rangelock_exit(lr);
if (wbc->sync_mode != WB_SYNC_NONE) {
/*
* Speed up any non-sync page writebacks since
* they may take several seconds to complete.
* Refer to the comment in zpl_fsync() (when
* HAVE_FSYNC_RANGE is defined) for details.
*/
if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
zil_commit(zfsvfs->z_log, zp->z_id);
}
if (PageWriteback(pp))
#ifdef HAVE_PAGEMAP_FOLIO_WAIT_BIT
folio_wait_bit(page_folio(pp), PG_writeback);
#else
wait_on_page_bit(pp, PG_writeback);
#endif
}
zfs_exit(zfsvfs, FTAG);
return (0);
}
/* Clear the dirty flag the required locks are held */
if (!clear_page_dirty_for_io(pp)) {
unlock_page(pp);
zfs_rangelock_exit(lr);
zfs_exit(zfsvfs, FTAG);
return (0);
}
/*
* Counterpart for redirty_page_for_writepage() above. This page
* was in fact not skipped and should not be counted as if it were.
*/
wbc->pages_skipped--;
if (!for_sync)
atomic_inc_32(&zp->z_async_writes_cnt);
set_page_writeback(pp);
unlock_page(pp);
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
err = dmu_tx_assign(tx, TXG_NOWAIT);
if (err != 0) {
if (err == ERESTART)
dmu_tx_wait(tx);
dmu_tx_abort(tx);
#ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
filemap_dirty_folio(page_mapping(pp), page_folio(pp));
#else
__set_page_dirty_nobuffers(pp);
#endif
ClearPageError(pp);
end_page_writeback(pp);
if (!for_sync)
atomic_dec_32(&zp->z_async_writes_cnt);
zfs_rangelock_exit(lr);
zfs_exit(zfsvfs, FTAG);
return (err);
}
va = kmap(pp);
ASSERT3U(pglen, <=, PAGE_SIZE);
dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
kunmap(pp);
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
&zp->z_pflags, 8);
/* Preserve the mtime and ctime provided by the inode */
ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
zp->z_atime_dirty = B_FALSE;
zp->z_seq++;
err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
for_sync ? zfs_putpage_sync_commit_cb :
zfs_putpage_async_commit_cb, pp);
dmu_tx_commit(tx);
zfs_rangelock_exit(lr);
if (wbc->sync_mode != WB_SYNC_NONE) {
/*
* Note that this is rarely called under writepages(), because
* writepages() normally handles the entire commit for
* performance reasons.
*/
zil_commit(zfsvfs->z_log, zp->z_id);
} else if (!for_sync && atomic_load_32(&zp->z_sync_writes_cnt) > 0) {
/*
* If the caller does not intend to wait synchronously
* for this page writeback to complete and there are active
* synchronous calls on this file, do a commit so that
* the latter don't accidentally end up waiting for
* our writeback to complete. Refer to the comment in
* zpl_fsync() (when HAVE_FSYNC_RANGE is defined) for details.
*/
zil_commit(zfsvfs->z_log, zp->z_id);
}
dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, pglen);
zfs_exit(zfsvfs, FTAG);
return (err);
}
/*
* Update the system attributes when the inode has been dirtied. For the
* moment we only update the mode, atime, mtime, and ctime.
*/
int
zfs_dirty_inode(struct inode *ip, int flags)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
dmu_tx_t *tx;
uint64_t mode, atime[2], mtime[2], ctime[2];
sa_bulk_attr_t bulk[4];
int error = 0;
int cnt = 0;
if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
return (0);
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
return (error);
#ifdef I_DIRTY_TIME
/*
* This is the lazytime semantic introduced in Linux 4.0
* This flag will only be called from update_time when lazytime is set.
* (Note, I_DIRTY_SYNC will also set if not lazytime)
* Fortunately mtime and ctime are managed within ZFS itself, so we
* only need to dirty atime.
*/
if (flags == I_DIRTY_TIME) {
zp->z_atime_dirty = B_TRUE;
goto out;
}
#endif
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
goto out;
}
mutex_enter(&zp->z_lock);
zp->z_atime_dirty = B_FALSE;
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
/* Preserve the mode, mtime and ctime provided by the inode */
ZFS_TIME_ENCODE(&ip->i_atime, atime);
ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
mode = ip->i_mode;
zp->z_mode = mode;
error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
mutex_exit(&zp->z_lock);
dmu_tx_commit(tx);
out:
zfs_exit(zfsvfs, FTAG);
return (error);
}
void
zfs_inactive(struct inode *ip)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
uint64_t atime[2];
int error;
int need_unlock = 0;
/* Only read lock if we haven't already write locked, e.g. rollback */
if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
need_unlock = 1;
rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
}
if (zp->z_sa_hdl == NULL) {
if (need_unlock)
rw_exit(&zfsvfs->z_teardown_inactive_lock);
return;
}
if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
} else {
ZFS_TIME_ENCODE(&ip->i_atime, atime);
mutex_enter(&zp->z_lock);
(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
(void *)&atime, sizeof (atime), tx);
zp->z_atime_dirty = B_FALSE;
mutex_exit(&zp->z_lock);
dmu_tx_commit(tx);
}
}
zfs_zinactive(zp);
if (need_unlock)
rw_exit(&zfsvfs->z_teardown_inactive_lock);
}
/*
* Fill pages with data from the disk.
*/
static int
zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
objset_t *os;
struct page *cur_pp;
u_offset_t io_off, total;
size_t io_len;
loff_t i_size;
unsigned page_idx;
int err;
os = zfsvfs->z_os;
io_len = nr_pages << PAGE_SHIFT;
i_size = i_size_read(ip);
io_off = page_offset(pl[0]);
if (io_off + io_len > i_size)
io_len = i_size - io_off;
/*
* Iterate over list of pages and read each page individually.
*/
page_idx = 0;
for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
caddr_t va;
cur_pp = pl[page_idx++];
va = kmap(cur_pp);
err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
DMU_READ_PREFETCH);
kunmap(cur_pp);
if (err) {
/* convert checksum errors into IO errors */
if (err == ECKSUM)
err = SET_ERROR(EIO);
return (err);
}
}
return (0);
}
/*
* Uses zfs_fillpage to read data from the file and fill the pages.
*
* IN: ip - inode of file to get data from.
* pl - list of pages to read
* nr_pages - number of pages to read
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* vp - atime updated
*/
int
zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
int err;
if (pl == NULL)
return (0);
if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
return (err);
err = zfs_fillpage(ip, pl, nr_pages);
dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nr_pages*PAGESIZE);
zfs_exit(zfsvfs, FTAG);
return (err);
}
/*
* Check ZFS specific permissions to memory map a section of a file.
*
* IN: ip - inode of the file to mmap
* off - file offset
* addrp - start address in memory region
* len - length of memory region
* vm_flags- address flags
*
* RETURN: 0 if success
* error code if failure
*/
int
zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
unsigned long vm_flags)
{
(void) addrp;
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
int error;
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
return (error);
if ((vm_flags & VM_WRITE) && (zp->z_pflags &
(ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EPERM));
}
if ((vm_flags & (VM_READ | VM_EXEC)) &&
(zp->z_pflags & ZFS_AV_QUARANTINED)) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EACCES));
}
if (off < 0 || len > MAXOFFSET_T - off) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(ENXIO));
}
zfs_exit(zfsvfs, FTAG);
return (0);
}
/*
* Free or allocate space in a file. Currently, this function only
* supports the `F_FREESP' command. However, this command is somewhat
* misnamed, as its functionality includes the ability to allocate as
* well as free space.
*
* IN: zp - znode of file to free data in.
* cmd - action to take (only F_FREESP supported).
* bfp - section of file to free/alloc.
* flag - current file open mode flags.
* offset - current file offset.
* cr - credentials of caller.
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* zp - ctime|mtime updated
*/
int
zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
offset_t offset, cred_t *cr)
{
(void) offset;
zfsvfs_t *zfsvfs = ZTOZSB(zp);
uint64_t off, len;
int error;
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
return (error);
if (cmd != F_FREESP) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EINVAL));
}
/*
* Callers might not be able to detect properly that we are read-only,
* so check it explicitly here.
*/
if (zfs_is_readonly(zfsvfs)) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EROFS));
}
if (bfp->l_len < 0) {
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(EINVAL));
}
/*
* Permissions aren't checked on Solaris because on this OS
* zfs_space() can only be called with an opened file handle.
* On Linux we can get here through truncate_range() which
* operates directly on inodes, so we need to check access rights.
*/
if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr, NULL))) {
zfs_exit(zfsvfs, FTAG);
return (error);
}
off = bfp->l_start;
len = bfp->l_len; /* 0 means from off to end of file */
error = zfs_freesp(zp, off, len, flag, TRUE);
zfs_exit(zfsvfs, FTAG);
return (error);
}
int
zfs_fid(struct inode *ip, fid_t *fidp)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
uint32_t gen;
uint64_t gen64;
uint64_t object = zp->z_id;
zfid_short_t *zfid;
int size, i, error;
if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
return (error);
if (fidp->fid_len < SHORT_FID_LEN) {
fidp->fid_len = SHORT_FID_LEN;
zfs_exit(zfsvfs, FTAG);
return (SET_ERROR(ENOSPC));
}
if ((error = zfs_verify_zp(zp)) != 0) {
zfs_exit(zfsvfs, FTAG);
return (error);
}
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
&gen64, sizeof (uint64_t))) != 0) {
zfs_exit(zfsvfs, FTAG);
return (error);
}
gen = (uint32_t)gen64;
size = SHORT_FID_LEN;
zfid = (zfid_short_t *)fidp;
zfid->zf_len = size;
for (i = 0; i < sizeof (zfid->zf_object); i++)
zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
/* Must have a non-zero generation number to distinguish from .zfs */
if (gen == 0)
gen = 1;
for (i = 0; i < sizeof (zfid->zf_gen); i++)
zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
zfs_exit(zfsvfs, FTAG);
return (0);
}
#if defined(_KERNEL)
EXPORT_SYMBOL(zfs_open);
EXPORT_SYMBOL(zfs_close);
EXPORT_SYMBOL(zfs_lookup);
EXPORT_SYMBOL(zfs_create);
EXPORT_SYMBOL(zfs_tmpfile);
EXPORT_SYMBOL(zfs_remove);
EXPORT_SYMBOL(zfs_mkdir);
EXPORT_SYMBOL(zfs_rmdir);
EXPORT_SYMBOL(zfs_readdir);
EXPORT_SYMBOL(zfs_getattr_fast);
EXPORT_SYMBOL(zfs_setattr);
EXPORT_SYMBOL(zfs_rename);
EXPORT_SYMBOL(zfs_symlink);
EXPORT_SYMBOL(zfs_readlink);
EXPORT_SYMBOL(zfs_link);
EXPORT_SYMBOL(zfs_inactive);
EXPORT_SYMBOL(zfs_space);
EXPORT_SYMBOL(zfs_fid);
EXPORT_SYMBOL(zfs_getpage);
EXPORT_SYMBOL(zfs_putpage);
EXPORT_SYMBOL(zfs_dirty_inode);
EXPORT_SYMBOL(zfs_map);
/* CSTYLED */
module_param(zfs_delete_blocks, ulong, 0644);
MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
#endif