mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-15 04:30:33 +03:00
6839eed23e
Initial testing has shown the the right IO scheduler to use under Linux is noop. This strikes the ideal balance by allowing the zfs elevator to do all request ordering and prioritization. While allowing the Linux elevator to do the maximum front/back merging allowed by the physical device. This yields the largest possible requests for the device with the lowest total overhead. While 'noop' should be right for your system you can choose a different IO scheduler with the 'zfs_vdev_scheduler' option. You may set this value to any of the standard Linux schedulers: noop, cfq, deadline, anticipatory. In addition, if you choose 'none' zfs will not attempt to change the IO scheduler for the block device.
751 lines
18 KiB
C
751 lines
18 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* LLNL-CODE-403049.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/vdev_disk.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/sunldi.h>
|
|
|
|
char *zfs_vdev_scheduler = VDEV_SCHEDULER;
|
|
|
|
/*
|
|
* Virtual device vector for disks.
|
|
*/
|
|
typedef struct dio_request {
|
|
struct completion dr_comp; /* Completion for sync IO */
|
|
atomic_t dr_ref; /* References */
|
|
zio_t *dr_zio; /* Parent ZIO */
|
|
int dr_rw; /* Read/Write */
|
|
int dr_error; /* Bio error */
|
|
int dr_bio_count; /* Count of bio's */
|
|
struct bio *dr_bio[0]; /* Attached bio's */
|
|
} dio_request_t;
|
|
|
|
|
|
#ifdef HAVE_OPEN_BDEV_EXCLUSIVE
|
|
static fmode_t
|
|
vdev_bdev_mode(int smode)
|
|
{
|
|
fmode_t mode = 0;
|
|
|
|
ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
|
|
|
|
if (smode & FREAD)
|
|
mode |= FMODE_READ;
|
|
|
|
if (smode & FWRITE)
|
|
mode |= FMODE_WRITE;
|
|
|
|
return mode;
|
|
}
|
|
#else
|
|
static int
|
|
vdev_bdev_mode(int smode)
|
|
{
|
|
int mode = 0;
|
|
|
|
ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
|
|
|
|
if ((smode & FREAD) && !(smode & FWRITE))
|
|
mode = MS_RDONLY;
|
|
|
|
return mode;
|
|
}
|
|
#endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
|
|
|
|
static uint64_t
|
|
bdev_capacity(struct block_device *bdev)
|
|
{
|
|
struct hd_struct *part = bdev->bd_part;
|
|
|
|
/* The partition capacity referenced by the block device */
|
|
if (part)
|
|
return part->nr_sects;
|
|
|
|
/* Otherwise assume the full device capacity */
|
|
return get_capacity(bdev->bd_disk);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_error(zio_t *zio)
|
|
{
|
|
#ifdef ZFS_DEBUG
|
|
printk("ZFS: zio error=%d type=%d offset=%llu size=%llu "
|
|
"flags=%x delay=%llu\n", zio->io_error, zio->io_type,
|
|
(u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
|
|
zio->io_flags, (u_longlong_t)zio->io_delay);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Use the Linux 'noop' elevator for zfs managed block devices. This
|
|
* strikes the ideal balance by allowing the zfs elevator to do all
|
|
* request ordering and prioritization. While allowing the Linux
|
|
* elevator to do the maximum front/back merging allowed by the
|
|
* physical device. This yields the largest possible requests for
|
|
* the device with the lowest total overhead.
|
|
*
|
|
* Unfortunately we cannot directly call the elevator_switch() function
|
|
* because it is not exported from the block layer. This means we have
|
|
* to use the sysfs interface and a user space upcall. Pools will be
|
|
* automatically imported on module load so we must do this at device
|
|
* open time from the kernel.
|
|
*/
|
|
static int
|
|
vdev_elevator_switch(vdev_t *v, char *elevator, char *device)
|
|
{
|
|
char sh_path[] = "/bin/sh";
|
|
char sh_cmd[128];
|
|
char *argv[] = { sh_path, "-c", sh_cmd };
|
|
char *envp[] = { NULL };
|
|
int error;
|
|
|
|
if (!strncmp(elevator, "none", 4) && (strlen(elevator) == 4))
|
|
return (0);
|
|
|
|
sprintf(sh_cmd, "%s \"%s\" >/sys/block/%s/queue/scheduler",
|
|
"/bin/echo", elevator, device);
|
|
|
|
error = call_usermodehelper(sh_path, argv, envp, 1);
|
|
if (error)
|
|
printk("ZFS: Unable to set \"%s\" scheduler for %s (%s): %d\n",
|
|
elevator, v->vdev_path, device, error);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *ashift)
|
|
{
|
|
struct block_device *bdev;
|
|
vdev_disk_t *vd;
|
|
int mode, block_size;
|
|
|
|
/* Must have a pathname and it must be absolute. */
|
|
if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
|
|
v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
|
|
return EINVAL;
|
|
}
|
|
|
|
vd = kmem_zalloc(sizeof(vdev_disk_t), KM_SLEEP);
|
|
if (vd == NULL)
|
|
return ENOMEM;
|
|
|
|
/*
|
|
* Devices are always opened by the path provided at configuration
|
|
* time. This means that if the provided path is a udev by-id path
|
|
* then drives may be recabled without an issue. If the provided
|
|
* path is a udev by-path path then the physical location information
|
|
* will be preserved. This can be critical for more complicated
|
|
* configurations where drives are located in specific physical
|
|
* locations to maximize the systems tolerence to component failure.
|
|
* Alternately you can provide your own udev rule to flexibly map
|
|
* the drives as you see fit. It is not advised that you use the
|
|
* /dev/[hd]d devices which may be reorder due to probing order.
|
|
* Devices in the wrong locations will be detected by the higher
|
|
* level vdev validation.
|
|
*/
|
|
mode = spa_mode(v->vdev_spa);
|
|
bdev = vdev_bdev_open(v->vdev_path, vdev_bdev_mode(mode), vd);
|
|
if (IS_ERR(bdev)) {
|
|
kmem_free(vd, sizeof(vdev_disk_t));
|
|
return -PTR_ERR(bdev);
|
|
}
|
|
|
|
v->vdev_tsd = vd;
|
|
vd->vd_bdev = bdev;
|
|
block_size = vdev_bdev_block_size(bdev);
|
|
|
|
/* We think the wholedisk property should always be set when this
|
|
* function is called. ASSERT here so if any legitimate cases exist
|
|
* where it's not set, we'll find them during debugging. If we never
|
|
* hit the ASSERT, this and the following conditional statement can be
|
|
* removed. */
|
|
ASSERT3S(v->vdev_wholedisk, !=, -1ULL);
|
|
|
|
/* The wholedisk property was initialized to -1 in vdev_alloc() if it
|
|
* was unspecified. In that case, check if this is a whole device.
|
|
* When bdev->bd_contains == bdev we have a whole device and not simply
|
|
* a partition. */
|
|
if (v->vdev_wholedisk == -1ULL)
|
|
v->vdev_wholedisk = (bdev->bd_contains == bdev);
|
|
|
|
/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
|
|
v->vdev_nowritecache = B_FALSE;
|
|
|
|
/* Physical volume size in bytes */
|
|
*psize = bdev_capacity(bdev) * block_size;
|
|
|
|
/* Based on the minimum sector size set the block size */
|
|
*ashift = highbit(MAX(block_size, SPA_MINBLOCKSIZE)) - 1;
|
|
|
|
/* Try to set the io scheduler elevator algorithm */
|
|
(void) vdev_elevator_switch(v, zfs_vdev_scheduler,
|
|
bdev->bd_disk->disk_name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
vdev_disk_close(vdev_t *v)
|
|
{
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
|
|
if (vd == NULL)
|
|
return;
|
|
|
|
if (vd->vd_bdev != NULL)
|
|
vdev_bdev_close(vd->vd_bdev,
|
|
vdev_bdev_mode(spa_mode(v->vdev_spa)));
|
|
|
|
kmem_free(vd, sizeof(vdev_disk_t));
|
|
v->vdev_tsd = NULL;
|
|
}
|
|
|
|
static dio_request_t *
|
|
vdev_disk_dio_alloc(int bio_count)
|
|
{
|
|
dio_request_t *dr;
|
|
int i;
|
|
|
|
dr = kmem_zalloc(sizeof(dio_request_t) +
|
|
sizeof(struct bio *) * bio_count, KM_SLEEP);
|
|
if (dr) {
|
|
init_completion(&dr->dr_comp);
|
|
atomic_set(&dr->dr_ref, 0);
|
|
dr->dr_bio_count = bio_count;
|
|
dr->dr_error = 0;
|
|
|
|
for (i = 0; i < dr->dr_bio_count; i++)
|
|
dr->dr_bio[i] = NULL;
|
|
}
|
|
|
|
return dr;
|
|
}
|
|
|
|
static void
|
|
vdev_disk_dio_free(dio_request_t *dr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < dr->dr_bio_count; i++)
|
|
if (dr->dr_bio[i])
|
|
bio_put(dr->dr_bio[i]);
|
|
|
|
kmem_free(dr, sizeof(dio_request_t) +
|
|
sizeof(struct bio *) * dr->dr_bio_count);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_dio_is_sync(dio_request_t *dr)
|
|
{
|
|
#ifdef HAVE_BIO_RW_SYNC
|
|
/* BIO_RW_SYNC preferred interface from 2.6.12-2.6.29 */
|
|
return (dr->dr_rw & (1 << BIO_RW_SYNC));
|
|
#else
|
|
# ifdef HAVE_BIO_RW_SYNCIO
|
|
/* BIO_RW_SYNCIO preferred interface from 2.6.30-2.6.35 */
|
|
return (dr->dr_rw & (1 << BIO_RW_SYNCIO));
|
|
# else
|
|
# ifdef HAVE_REQ_SYNC
|
|
/* REQ_SYNC preferred interface from 2.6.36-2.6.xx */
|
|
return (dr->dr_rw & REQ_SYNC);
|
|
# else
|
|
# error "Unable to determine bio sync flag"
|
|
# endif /* HAVE_REQ_SYNC */
|
|
# endif /* HAVE_BIO_RW_SYNC */
|
|
#endif /* HAVE_BIO_RW_SYNCIO */
|
|
}
|
|
|
|
static void
|
|
vdev_disk_dio_get(dio_request_t *dr)
|
|
{
|
|
atomic_inc(&dr->dr_ref);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_dio_put(dio_request_t *dr)
|
|
{
|
|
int rc = atomic_dec_return(&dr->dr_ref);
|
|
|
|
/*
|
|
* Free the dio_request when the last reference is dropped and
|
|
* ensure zio_interpret is called only once with the correct zio
|
|
*/
|
|
if (rc == 0) {
|
|
zio_t *zio = dr->dr_zio;
|
|
int error = dr->dr_error;
|
|
|
|
vdev_disk_dio_free(dr);
|
|
|
|
if (zio) {
|
|
zio->io_delay = jiffies_to_msecs(
|
|
jiffies_64 - zio->io_delay);
|
|
zio->io_error = error;
|
|
ASSERT3S(zio->io_error, >=, 0);
|
|
if (zio->io_error)
|
|
vdev_disk_error(zio);
|
|
zio_interrupt(zio);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, size, error)
|
|
{
|
|
dio_request_t *dr = bio->bi_private;
|
|
int rc;
|
|
|
|
/* Fatal error but print some useful debugging before asserting */
|
|
if (dr == NULL)
|
|
PANIC("dr == NULL, bio->bi_private == NULL\n"
|
|
"bi_next: %p, bi_flags: %lx, bi_rw: %lu, bi_vcnt: %d\n"
|
|
"bi_idx: %d, bi_size: %d, bi_end_io: %p, bi_cnt: %d\n",
|
|
bio->bi_next, bio->bi_flags, bio->bi_rw, bio->bi_vcnt,
|
|
bio->bi_idx, bio->bi_size, bio->bi_end_io,
|
|
atomic_read(&bio->bi_cnt));
|
|
|
|
#ifndef HAVE_2ARGS_BIO_END_IO_T
|
|
if (bio->bi_size)
|
|
return 1;
|
|
#endif /* HAVE_2ARGS_BIO_END_IO_T */
|
|
|
|
if (error == 0 && !test_bit(BIO_UPTODATE, &bio->bi_flags))
|
|
error = -EIO;
|
|
|
|
if (dr->dr_error == 0)
|
|
dr->dr_error = -error;
|
|
|
|
/* Drop reference aquired by __vdev_disk_physio */
|
|
rc = vdev_disk_dio_put(dr);
|
|
|
|
/* Wake up synchronous waiter this is the last outstanding bio */
|
|
if ((rc == 1) && vdev_disk_dio_is_sync(dr))
|
|
complete(&dr->dr_comp);
|
|
|
|
BIO_END_IO_RETURN(0);
|
|
}
|
|
|
|
static inline unsigned long
|
|
bio_nr_pages(void *bio_ptr, unsigned int bio_size)
|
|
{
|
|
return ((((unsigned long)bio_ptr + bio_size + PAGE_SIZE - 1) >>
|
|
PAGE_SHIFT) - ((unsigned long)bio_ptr >> PAGE_SHIFT));
|
|
}
|
|
|
|
static unsigned int
|
|
bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
|
|
{
|
|
unsigned int offset, size, i;
|
|
struct page *page;
|
|
|
|
offset = offset_in_page(bio_ptr);
|
|
for (i = 0; i < bio->bi_max_vecs; i++) {
|
|
size = PAGE_SIZE - offset;
|
|
|
|
if (bio_size <= 0)
|
|
break;
|
|
|
|
if (size > bio_size)
|
|
size = bio_size;
|
|
|
|
if (kmem_virt(bio_ptr))
|
|
page = vmalloc_to_page(bio_ptr);
|
|
else
|
|
page = virt_to_page(bio_ptr);
|
|
|
|
if (bio_add_page(bio, page, size, offset) != size)
|
|
break;
|
|
|
|
bio_ptr += size;
|
|
bio_size -= size;
|
|
offset = 0;
|
|
}
|
|
|
|
return bio_size;
|
|
}
|
|
|
|
static int
|
|
__vdev_disk_physio(struct block_device *bdev, zio_t *zio, caddr_t kbuf_ptr,
|
|
size_t kbuf_size, uint64_t kbuf_offset, int flags)
|
|
{
|
|
dio_request_t *dr;
|
|
caddr_t bio_ptr;
|
|
uint64_t bio_offset;
|
|
int bio_size, bio_count = 16;
|
|
int i = 0, error = 0, block_size;
|
|
|
|
ASSERT3U(kbuf_offset + kbuf_size, <=, bdev->bd_inode->i_size);
|
|
|
|
retry:
|
|
dr = vdev_disk_dio_alloc(bio_count);
|
|
if (dr == NULL)
|
|
return ENOMEM;
|
|
|
|
if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
|
|
bio_set_flags_failfast(bdev, &flags);
|
|
|
|
dr->dr_zio = zio;
|
|
dr->dr_rw = flags;
|
|
block_size = vdev_bdev_block_size(bdev);
|
|
|
|
/*
|
|
* When the IO size exceeds the maximum bio size for the request
|
|
* queue we are forced to break the IO in multiple bio's and wait
|
|
* for them all to complete. Ideally, all pool users will set
|
|
* their volume block size to match the maximum request size and
|
|
* the common case will be one bio per vdev IO request.
|
|
*/
|
|
bio_ptr = kbuf_ptr;
|
|
bio_offset = kbuf_offset;
|
|
bio_size = kbuf_size;
|
|
for (i = 0; i <= dr->dr_bio_count; i++) {
|
|
|
|
/* Finished constructing bio's for given buffer */
|
|
if (bio_size <= 0)
|
|
break;
|
|
|
|
/*
|
|
* By default only 'bio_count' bio's per dio are allowed.
|
|
* However, if we find ourselves in a situation where more
|
|
* are needed we allocate a larger dio and warn the user.
|
|
*/
|
|
if (dr->dr_bio_count == i) {
|
|
vdev_disk_dio_free(dr);
|
|
bio_count *= 2;
|
|
printk("WARNING: Resized bio's/dio to %d\n",bio_count);
|
|
goto retry;
|
|
}
|
|
|
|
dr->dr_bio[i] = bio_alloc(GFP_NOIO,
|
|
bio_nr_pages(bio_ptr, bio_size));
|
|
if (dr->dr_bio[i] == NULL) {
|
|
vdev_disk_dio_free(dr);
|
|
return ENOMEM;
|
|
}
|
|
|
|
/* Matching put called by vdev_disk_physio_completion */
|
|
vdev_disk_dio_get(dr);
|
|
|
|
dr->dr_bio[i]->bi_bdev = bdev;
|
|
dr->dr_bio[i]->bi_sector = bio_offset / block_size;
|
|
dr->dr_bio[i]->bi_rw = dr->dr_rw;
|
|
dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
|
|
dr->dr_bio[i]->bi_private = dr;
|
|
|
|
/* Remaining size is returned to become the new size */
|
|
bio_size = bio_map(dr->dr_bio[i], bio_ptr, bio_size);
|
|
|
|
/* Advance in buffer and construct another bio if needed */
|
|
bio_ptr += dr->dr_bio[i]->bi_size;
|
|
bio_offset += dr->dr_bio[i]->bi_size;
|
|
}
|
|
|
|
/* Extra reference to protect dio_request during submit_bio */
|
|
vdev_disk_dio_get(dr);
|
|
if (zio)
|
|
zio->io_delay = jiffies_64;
|
|
|
|
/* Submit all bio's associated with this dio */
|
|
for (i = 0; i < dr->dr_bio_count; i++)
|
|
if (dr->dr_bio[i])
|
|
submit_bio(dr->dr_rw, dr->dr_bio[i]);
|
|
|
|
/*
|
|
* On synchronous blocking requests we wait for all bio the completion
|
|
* callbacks to run. We will be woken when the last callback runs
|
|
* for this dio. We are responsible for putting the last dio_request
|
|
* reference will in turn put back the last bio references. The
|
|
* only synchronous consumer is vdev_disk_read_rootlabel() all other
|
|
* IO originating from vdev_disk_io_start() is asynchronous.
|
|
*/
|
|
if (vdev_disk_dio_is_sync(dr)) {
|
|
wait_for_completion(&dr->dr_comp);
|
|
error = dr->dr_error;
|
|
ASSERT3S(atomic_read(&dr->dr_ref), ==, 1);
|
|
}
|
|
|
|
(void)vdev_disk_dio_put(dr);
|
|
|
|
return error;
|
|
}
|
|
|
|
int
|
|
vdev_disk_physio(struct block_device *bdev, caddr_t kbuf,
|
|
size_t size, uint64_t offset, int flags)
|
|
{
|
|
bio_set_flags_failfast(bdev, &flags);
|
|
return __vdev_disk_physio(bdev, NULL, kbuf, size, offset, flags);
|
|
}
|
|
|
|
/* 2.6.24 API change */
|
|
#ifdef HAVE_BIO_EMPTY_BARRIER
|
|
BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, size, rc)
|
|
{
|
|
zio_t *zio = bio->bi_private;
|
|
|
|
zio->io_delay = jiffies_to_msecs(jiffies_64 - zio->io_delay);
|
|
zio->io_error = -rc;
|
|
if (rc && (rc == -EOPNOTSUPP))
|
|
zio->io_vd->vdev_nowritecache = B_TRUE;
|
|
|
|
bio_put(bio);
|
|
ASSERT3S(zio->io_error, >=, 0);
|
|
if (zio->io_error)
|
|
vdev_disk_error(zio);
|
|
zio_interrupt(zio);
|
|
|
|
BIO_END_IO_RETURN(0);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
|
|
{
|
|
struct request_queue *q;
|
|
struct bio *bio;
|
|
|
|
q = bdev_get_queue(bdev);
|
|
if (!q)
|
|
return ENXIO;
|
|
|
|
bio = bio_alloc(GFP_KERNEL, 0);
|
|
if (!bio)
|
|
return ENOMEM;
|
|
|
|
bio->bi_end_io = vdev_disk_io_flush_completion;
|
|
bio->bi_private = zio;
|
|
bio->bi_bdev = bdev;
|
|
zio->io_delay = jiffies_64;
|
|
submit_bio(WRITE_BARRIER, bio);
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static int
|
|
vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
|
|
{
|
|
return ENOTSUP;
|
|
}
|
|
#endif /* HAVE_BIO_EMPTY_BARRIER */
|
|
|
|
static int
|
|
vdev_disk_io_start(zio_t *zio)
|
|
{
|
|
vdev_t *v = zio->io_vd;
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
int flags, error;
|
|
|
|
switch (zio->io_type) {
|
|
case ZIO_TYPE_IOCTL:
|
|
|
|
if (!vdev_readable(v)) {
|
|
zio->io_error = ENXIO;
|
|
return ZIO_PIPELINE_CONTINUE;
|
|
}
|
|
|
|
switch (zio->io_cmd) {
|
|
case DKIOCFLUSHWRITECACHE:
|
|
|
|
if (zfs_nocacheflush)
|
|
break;
|
|
|
|
if (v->vdev_nowritecache) {
|
|
zio->io_error = ENOTSUP;
|
|
break;
|
|
}
|
|
|
|
error = vdev_disk_io_flush(vd->vd_bdev, zio);
|
|
if (error == 0)
|
|
return ZIO_PIPELINE_STOP;
|
|
|
|
zio->io_error = error;
|
|
if (error == ENOTSUP)
|
|
v->vdev_nowritecache = B_TRUE;
|
|
|
|
break;
|
|
|
|
default:
|
|
zio->io_error = ENOTSUP;
|
|
}
|
|
|
|
return ZIO_PIPELINE_CONTINUE;
|
|
|
|
case ZIO_TYPE_WRITE:
|
|
flags = WRITE;
|
|
break;
|
|
|
|
case ZIO_TYPE_READ:
|
|
flags = READ;
|
|
break;
|
|
|
|
default:
|
|
zio->io_error = ENOTSUP;
|
|
return ZIO_PIPELINE_CONTINUE;
|
|
}
|
|
|
|
error = __vdev_disk_physio(vd->vd_bdev, zio, zio->io_data,
|
|
zio->io_size, zio->io_offset, flags);
|
|
if (error) {
|
|
zio->io_error = error;
|
|
return ZIO_PIPELINE_CONTINUE;
|
|
}
|
|
|
|
return ZIO_PIPELINE_STOP;
|
|
}
|
|
|
|
static void
|
|
vdev_disk_io_done(zio_t *zio)
|
|
{
|
|
/*
|
|
* If the device returned EIO, we revalidate the media. If it is
|
|
* determined the media has changed this triggers the asynchronous
|
|
* removal of the device from the configuration.
|
|
*/
|
|
if (zio->io_error == EIO) {
|
|
vdev_t *v = zio->io_vd;
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
|
|
if (check_disk_change(vd->vd_bdev)) {
|
|
vdev_bdev_invalidate(vd->vd_bdev);
|
|
v->vdev_remove_wanted = B_TRUE;
|
|
spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_disk_hold(vdev_t *vd)
|
|
{
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
|
|
|
|
/* We must have a pathname, and it must be absolute. */
|
|
if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
|
|
return;
|
|
|
|
/*
|
|
* Only prefetch path and devid info if the device has
|
|
* never been opened.
|
|
*/
|
|
if (vd->vdev_tsd != NULL)
|
|
return;
|
|
|
|
/* XXX: Implement me as a vnode lookup for the device */
|
|
vd->vdev_name_vp = NULL;
|
|
vd->vdev_devid_vp = NULL;
|
|
}
|
|
|
|
static void
|
|
vdev_disk_rele(vdev_t *vd)
|
|
{
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
|
|
|
|
/* XXX: Implement me as a vnode rele for the device */
|
|
}
|
|
|
|
vdev_ops_t vdev_disk_ops = {
|
|
vdev_disk_open,
|
|
vdev_disk_close,
|
|
vdev_default_asize,
|
|
vdev_disk_io_start,
|
|
vdev_disk_io_done,
|
|
NULL,
|
|
vdev_disk_hold,
|
|
vdev_disk_rele,
|
|
VDEV_TYPE_DISK, /* name of this vdev type */
|
|
B_TRUE /* leaf vdev */
|
|
};
|
|
|
|
/*
|
|
* Given the root disk device devid or pathname, read the label from
|
|
* the device, and construct a configuration nvlist.
|
|
*/
|
|
int
|
|
vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config)
|
|
{
|
|
struct block_device *bdev;
|
|
vdev_label_t *label;
|
|
uint64_t s, size;
|
|
int i;
|
|
|
|
bdev = vdev_bdev_open(devpath, vdev_bdev_mode(FREAD), NULL);
|
|
if (IS_ERR(bdev))
|
|
return -PTR_ERR(bdev);
|
|
|
|
s = bdev_capacity(bdev) * vdev_bdev_block_size(bdev);
|
|
if (s == 0) {
|
|
vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
|
|
return EIO;
|
|
}
|
|
|
|
size = P2ALIGN_TYPED(s, sizeof(vdev_label_t), uint64_t);
|
|
label = vmem_alloc(sizeof(vdev_label_t), KM_SLEEP);
|
|
|
|
for (i = 0; i < VDEV_LABELS; i++) {
|
|
uint64_t offset, state, txg = 0;
|
|
|
|
/* read vdev label */
|
|
offset = vdev_label_offset(size, i, 0);
|
|
if (vdev_disk_physio(bdev, (caddr_t)label,
|
|
VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, READ_SYNC) != 0)
|
|
continue;
|
|
|
|
if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
|
|
sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
|
|
*config = NULL;
|
|
continue;
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
|
|
&state) != 0 || state >= POOL_STATE_DESTROYED) {
|
|
nvlist_free(*config);
|
|
*config = NULL;
|
|
continue;
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
|
|
&txg) != 0 || txg == 0) {
|
|
nvlist_free(*config);
|
|
*config = NULL;
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
vmem_free(label, sizeof(vdev_label_t));
|
|
vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
|
|
|
|
return 0;
|
|
}
|
|
|
|
module_param(zfs_vdev_scheduler, charp, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_scheduler, "IO Scheduler (noop)");
|