mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-03 23:09:35 +03:00
0b04990a5d
A port of the Illumos Crypto Framework to a Linux kernel module (found in module/icp). This is needed to do the actual encryption work. We cannot use the Linux kernel's built in crypto api because it is only exported to GPL-licensed modules. Having the ICP also means the crypto code can run on any of the other kernels under OpenZFS. I ended up porting over most of the internals of the framework, which means that porting over other API calls (if we need them) should be fairly easy. Specifically, I have ported over the API functions related to encryption, digests, macs, and crypto templates. The ICP is able to use assembly-accelerated encryption on amd64 machines and AES-NI instructions on Intel chips that support it. There are place-holder directories for similar assembly optimizations for other architectures (although they have not been written). Signed-off-by: Tom Caputi <tcaputi@datto.com> Signed-off-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #4329
921 lines
24 KiB
C
921 lines
24 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <modes/modes.h>
|
|
#include <sys/crypto/common.h>
|
|
#include <sys/crypto/impl.h>
|
|
|
|
#if defined(__i386) || defined(__amd64)
|
|
#include <sys/byteorder.h>
|
|
#define UNALIGNED_POINTERS_PERMITTED
|
|
#endif
|
|
|
|
/*
|
|
* Encrypt multiple blocks of data in CCM mode. Decrypt for CCM mode
|
|
* is done in another function.
|
|
*/
|
|
int
|
|
ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
|
|
crypto_data_t *out, size_t block_size,
|
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
|
void (*copy_block)(uint8_t *, uint8_t *),
|
|
void (*xor_block)(uint8_t *, uint8_t *))
|
|
{
|
|
size_t remainder = length;
|
|
size_t need = 0;
|
|
uint8_t *datap = (uint8_t *)data;
|
|
uint8_t *blockp;
|
|
uint8_t *lastp;
|
|
void *iov_or_mp;
|
|
offset_t offset;
|
|
uint8_t *out_data_1;
|
|
uint8_t *out_data_2;
|
|
size_t out_data_1_len;
|
|
uint64_t counter;
|
|
uint8_t *mac_buf;
|
|
|
|
if (length + ctx->ccm_remainder_len < block_size) {
|
|
/* accumulate bytes here and return */
|
|
bcopy(datap,
|
|
(uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
|
|
length);
|
|
ctx->ccm_remainder_len += length;
|
|
ctx->ccm_copy_to = datap;
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
lastp = (uint8_t *)ctx->ccm_cb;
|
|
if (out != NULL)
|
|
crypto_init_ptrs(out, &iov_or_mp, &offset);
|
|
|
|
mac_buf = (uint8_t *)ctx->ccm_mac_buf;
|
|
|
|
do {
|
|
/* Unprocessed data from last call. */
|
|
if (ctx->ccm_remainder_len > 0) {
|
|
need = block_size - ctx->ccm_remainder_len;
|
|
|
|
if (need > remainder)
|
|
return (CRYPTO_DATA_LEN_RANGE);
|
|
|
|
bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
|
|
[ctx->ccm_remainder_len], need);
|
|
|
|
blockp = (uint8_t *)ctx->ccm_remainder;
|
|
} else {
|
|
blockp = datap;
|
|
}
|
|
|
|
/*
|
|
* do CBC MAC
|
|
*
|
|
* XOR the previous cipher block current clear block.
|
|
* mac_buf always contain previous cipher block.
|
|
*/
|
|
xor_block(blockp, mac_buf);
|
|
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
|
|
|
|
/* ccm_cb is the counter block */
|
|
encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb,
|
|
(uint8_t *)ctx->ccm_tmp);
|
|
|
|
lastp = (uint8_t *)ctx->ccm_tmp;
|
|
|
|
/*
|
|
* Increment counter. Counter bits are confined
|
|
* to the bottom 64 bits of the counter block.
|
|
*/
|
|
#ifdef _LITTLE_ENDIAN
|
|
counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
|
|
counter = htonll(counter + 1);
|
|
#else
|
|
counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
|
|
counter++;
|
|
#endif /* _LITTLE_ENDIAN */
|
|
counter &= ctx->ccm_counter_mask;
|
|
ctx->ccm_cb[1] =
|
|
(ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
|
|
|
|
/*
|
|
* XOR encrypted counter block with the current clear block.
|
|
*/
|
|
xor_block(blockp, lastp);
|
|
|
|
ctx->ccm_processed_data_len += block_size;
|
|
|
|
if (out == NULL) {
|
|
if (ctx->ccm_remainder_len > 0) {
|
|
bcopy(blockp, ctx->ccm_copy_to,
|
|
ctx->ccm_remainder_len);
|
|
bcopy(blockp + ctx->ccm_remainder_len, datap,
|
|
need);
|
|
}
|
|
} else {
|
|
crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
|
|
&out_data_1_len, &out_data_2, block_size);
|
|
|
|
/* copy block to where it belongs */
|
|
if (out_data_1_len == block_size) {
|
|
copy_block(lastp, out_data_1);
|
|
} else {
|
|
bcopy(lastp, out_data_1, out_data_1_len);
|
|
if (out_data_2 != NULL) {
|
|
bcopy(lastp + out_data_1_len,
|
|
out_data_2,
|
|
block_size - out_data_1_len);
|
|
}
|
|
}
|
|
/* update offset */
|
|
out->cd_offset += block_size;
|
|
}
|
|
|
|
/* Update pointer to next block of data to be processed. */
|
|
if (ctx->ccm_remainder_len != 0) {
|
|
datap += need;
|
|
ctx->ccm_remainder_len = 0;
|
|
} else {
|
|
datap += block_size;
|
|
}
|
|
|
|
remainder = (size_t)&data[length] - (size_t)datap;
|
|
|
|
/* Incomplete last block. */
|
|
if (remainder > 0 && remainder < block_size) {
|
|
bcopy(datap, ctx->ccm_remainder, remainder);
|
|
ctx->ccm_remainder_len = remainder;
|
|
ctx->ccm_copy_to = datap;
|
|
goto out;
|
|
}
|
|
ctx->ccm_copy_to = NULL;
|
|
|
|
} while (remainder > 0);
|
|
|
|
out:
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
void
|
|
calculate_ccm_mac(ccm_ctx_t *ctx, uint8_t *ccm_mac,
|
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
|
|
{
|
|
uint64_t counter;
|
|
uint8_t *counterp, *mac_buf;
|
|
int i;
|
|
|
|
mac_buf = (uint8_t *)ctx->ccm_mac_buf;
|
|
|
|
/* first counter block start with index 0 */
|
|
counter = 0;
|
|
ctx->ccm_cb[1] = (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
|
|
|
|
counterp = (uint8_t *)ctx->ccm_tmp;
|
|
encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
|
|
|
|
/* calculate XOR of MAC with first counter block */
|
|
for (i = 0; i < ctx->ccm_mac_len; i++) {
|
|
ccm_mac[i] = mac_buf[i] ^ counterp[i];
|
|
}
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
ccm_encrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
|
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
|
void (*xor_block)(uint8_t *, uint8_t *))
|
|
{
|
|
uint8_t *lastp, *mac_buf, *ccm_mac_p, *macp = NULL;
|
|
void *iov_or_mp;
|
|
offset_t offset;
|
|
uint8_t *out_data_1;
|
|
uint8_t *out_data_2;
|
|
size_t out_data_1_len;
|
|
int i;
|
|
|
|
if (out->cd_length < (ctx->ccm_remainder_len + ctx->ccm_mac_len)) {
|
|
return (CRYPTO_DATA_LEN_RANGE);
|
|
}
|
|
|
|
/*
|
|
* When we get here, the number of bytes of payload processed
|
|
* plus whatever data remains, if any,
|
|
* should be the same as the number of bytes that's being
|
|
* passed in the argument during init time.
|
|
*/
|
|
if ((ctx->ccm_processed_data_len + ctx->ccm_remainder_len)
|
|
!= (ctx->ccm_data_len)) {
|
|
return (CRYPTO_DATA_LEN_RANGE);
|
|
}
|
|
|
|
mac_buf = (uint8_t *)ctx->ccm_mac_buf;
|
|
|
|
if (ctx->ccm_remainder_len > 0) {
|
|
|
|
/* ccm_mac_input_buf is not used for encryption */
|
|
macp = (uint8_t *)ctx->ccm_mac_input_buf;
|
|
bzero(macp, block_size);
|
|
|
|
/* copy remainder to temporary buffer */
|
|
bcopy(ctx->ccm_remainder, macp, ctx->ccm_remainder_len);
|
|
|
|
/* calculate the CBC MAC */
|
|
xor_block(macp, mac_buf);
|
|
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
|
|
|
|
/* calculate the counter mode */
|
|
lastp = (uint8_t *)ctx->ccm_tmp;
|
|
encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, lastp);
|
|
|
|
/* XOR with counter block */
|
|
for (i = 0; i < ctx->ccm_remainder_len; i++) {
|
|
macp[i] ^= lastp[i];
|
|
}
|
|
ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
|
|
}
|
|
|
|
/* Calculate the CCM MAC */
|
|
ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
|
|
calculate_ccm_mac(ctx, ccm_mac_p, encrypt_block);
|
|
|
|
crypto_init_ptrs(out, &iov_or_mp, &offset);
|
|
crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
|
|
&out_data_1_len, &out_data_2,
|
|
ctx->ccm_remainder_len + ctx->ccm_mac_len);
|
|
|
|
if (ctx->ccm_remainder_len > 0) {
|
|
|
|
/* copy temporary block to where it belongs */
|
|
if (out_data_2 == NULL) {
|
|
/* everything will fit in out_data_1 */
|
|
bcopy(macp, out_data_1, ctx->ccm_remainder_len);
|
|
bcopy(ccm_mac_p, out_data_1 + ctx->ccm_remainder_len,
|
|
ctx->ccm_mac_len);
|
|
} else {
|
|
|
|
if (out_data_1_len < ctx->ccm_remainder_len) {
|
|
|
|
size_t data_2_len_used;
|
|
|
|
bcopy(macp, out_data_1, out_data_1_len);
|
|
|
|
data_2_len_used = ctx->ccm_remainder_len
|
|
- out_data_1_len;
|
|
|
|
bcopy((uint8_t *)macp + out_data_1_len,
|
|
out_data_2, data_2_len_used);
|
|
bcopy(ccm_mac_p, out_data_2 + data_2_len_used,
|
|
ctx->ccm_mac_len);
|
|
} else {
|
|
bcopy(macp, out_data_1, out_data_1_len);
|
|
if (out_data_1_len == ctx->ccm_remainder_len) {
|
|
/* mac will be in out_data_2 */
|
|
bcopy(ccm_mac_p, out_data_2,
|
|
ctx->ccm_mac_len);
|
|
} else {
|
|
size_t len_not_used = out_data_1_len -
|
|
ctx->ccm_remainder_len;
|
|
/*
|
|
* part of mac in will be in
|
|
* out_data_1, part of the mac will be
|
|
* in out_data_2
|
|
*/
|
|
bcopy(ccm_mac_p,
|
|
out_data_1 + ctx->ccm_remainder_len,
|
|
len_not_used);
|
|
bcopy(ccm_mac_p + len_not_used,
|
|
out_data_2,
|
|
ctx->ccm_mac_len - len_not_used);
|
|
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* copy block to where it belongs */
|
|
bcopy(ccm_mac_p, out_data_1, out_data_1_len);
|
|
if (out_data_2 != NULL) {
|
|
bcopy(ccm_mac_p + out_data_1_len, out_data_2,
|
|
block_size - out_data_1_len);
|
|
}
|
|
}
|
|
out->cd_offset += ctx->ccm_remainder_len + ctx->ccm_mac_len;
|
|
ctx->ccm_remainder_len = 0;
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* This will only deal with decrypting the last block of the input that
|
|
* might not be a multiple of block length.
|
|
*/
|
|
void
|
|
ccm_decrypt_incomplete_block(ccm_ctx_t *ctx,
|
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
|
|
{
|
|
uint8_t *datap, *outp, *counterp;
|
|
int i;
|
|
|
|
datap = (uint8_t *)ctx->ccm_remainder;
|
|
outp = &((ctx->ccm_pt_buf)[ctx->ccm_processed_data_len]);
|
|
|
|
counterp = (uint8_t *)ctx->ccm_tmp;
|
|
encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
|
|
|
|
/* XOR with counter block */
|
|
for (i = 0; i < ctx->ccm_remainder_len; i++) {
|
|
outp[i] = datap[i] ^ counterp[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This will decrypt the cipher text. However, the plaintext won't be
|
|
* returned to the caller. It will be returned when decrypt_final() is
|
|
* called if the MAC matches
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
|
|
crypto_data_t *out, size_t block_size,
|
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
|
void (*copy_block)(uint8_t *, uint8_t *),
|
|
void (*xor_block)(uint8_t *, uint8_t *))
|
|
{
|
|
size_t remainder = length;
|
|
size_t need = 0;
|
|
uint8_t *datap = (uint8_t *)data;
|
|
uint8_t *blockp;
|
|
uint8_t *cbp;
|
|
uint64_t counter;
|
|
size_t pt_len, total_decrypted_len, mac_len, pm_len, pd_len;
|
|
uint8_t *resultp;
|
|
|
|
|
|
pm_len = ctx->ccm_processed_mac_len;
|
|
|
|
if (pm_len > 0) {
|
|
uint8_t *tmp;
|
|
/*
|
|
* all ciphertext has been processed, just waiting for
|
|
* part of the value of the mac
|
|
*/
|
|
if ((pm_len + length) > ctx->ccm_mac_len) {
|
|
return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
|
|
}
|
|
tmp = (uint8_t *)ctx->ccm_mac_input_buf;
|
|
|
|
bcopy(datap, tmp + pm_len, length);
|
|
|
|
ctx->ccm_processed_mac_len += length;
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* If we decrypt the given data, what total amount of data would
|
|
* have been decrypted?
|
|
*/
|
|
pd_len = ctx->ccm_processed_data_len;
|
|
total_decrypted_len = pd_len + length + ctx->ccm_remainder_len;
|
|
|
|
if (total_decrypted_len >
|
|
(ctx->ccm_data_len + ctx->ccm_mac_len)) {
|
|
return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
|
|
}
|
|
|
|
pt_len = ctx->ccm_data_len;
|
|
|
|
if (total_decrypted_len > pt_len) {
|
|
/*
|
|
* part of the input will be the MAC, need to isolate that
|
|
* to be dealt with later. The left-over data in
|
|
* ccm_remainder_len from last time will not be part of the
|
|
* MAC. Otherwise, it would have already been taken out
|
|
* when this call is made last time.
|
|
*/
|
|
size_t pt_part = pt_len - pd_len - ctx->ccm_remainder_len;
|
|
|
|
mac_len = length - pt_part;
|
|
|
|
ctx->ccm_processed_mac_len = mac_len;
|
|
bcopy(data + pt_part, ctx->ccm_mac_input_buf, mac_len);
|
|
|
|
if (pt_part + ctx->ccm_remainder_len < block_size) {
|
|
/*
|
|
* since this is last of the ciphertext, will
|
|
* just decrypt with it here
|
|
*/
|
|
bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
|
|
[ctx->ccm_remainder_len], pt_part);
|
|
ctx->ccm_remainder_len += pt_part;
|
|
ccm_decrypt_incomplete_block(ctx, encrypt_block);
|
|
ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
|
|
ctx->ccm_remainder_len = 0;
|
|
return (CRYPTO_SUCCESS);
|
|
} else {
|
|
/* let rest of the code handle this */
|
|
length = pt_part;
|
|
}
|
|
} else if (length + ctx->ccm_remainder_len < block_size) {
|
|
/* accumulate bytes here and return */
|
|
bcopy(datap,
|
|
(uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
|
|
length);
|
|
ctx->ccm_remainder_len += length;
|
|
ctx->ccm_copy_to = datap;
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
do {
|
|
/* Unprocessed data from last call. */
|
|
if (ctx->ccm_remainder_len > 0) {
|
|
need = block_size - ctx->ccm_remainder_len;
|
|
|
|
if (need > remainder)
|
|
return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
|
|
|
|
bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
|
|
[ctx->ccm_remainder_len], need);
|
|
|
|
blockp = (uint8_t *)ctx->ccm_remainder;
|
|
} else {
|
|
blockp = datap;
|
|
}
|
|
|
|
/* Calculate the counter mode, ccm_cb is the counter block */
|
|
cbp = (uint8_t *)ctx->ccm_tmp;
|
|
encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, cbp);
|
|
|
|
/*
|
|
* Increment counter.
|
|
* Counter bits are confined to the bottom 64 bits
|
|
*/
|
|
#ifdef _LITTLE_ENDIAN
|
|
counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
|
|
counter = htonll(counter + 1);
|
|
#else
|
|
counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
|
|
counter++;
|
|
#endif /* _LITTLE_ENDIAN */
|
|
counter &= ctx->ccm_counter_mask;
|
|
ctx->ccm_cb[1] =
|
|
(ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
|
|
|
|
/* XOR with the ciphertext */
|
|
xor_block(blockp, cbp);
|
|
|
|
/* Copy the plaintext to the "holding buffer" */
|
|
resultp = (uint8_t *)ctx->ccm_pt_buf +
|
|
ctx->ccm_processed_data_len;
|
|
copy_block(cbp, resultp);
|
|
|
|
ctx->ccm_processed_data_len += block_size;
|
|
|
|
ctx->ccm_lastp = blockp;
|
|
|
|
/* Update pointer to next block of data to be processed. */
|
|
if (ctx->ccm_remainder_len != 0) {
|
|
datap += need;
|
|
ctx->ccm_remainder_len = 0;
|
|
} else {
|
|
datap += block_size;
|
|
}
|
|
|
|
remainder = (size_t)&data[length] - (size_t)datap;
|
|
|
|
/* Incomplete last block */
|
|
if (remainder > 0 && remainder < block_size) {
|
|
bcopy(datap, ctx->ccm_remainder, remainder);
|
|
ctx->ccm_remainder_len = remainder;
|
|
ctx->ccm_copy_to = datap;
|
|
if (ctx->ccm_processed_mac_len > 0) {
|
|
/*
|
|
* not expecting anymore ciphertext, just
|
|
* compute plaintext for the remaining input
|
|
*/
|
|
ccm_decrypt_incomplete_block(ctx,
|
|
encrypt_block);
|
|
ctx->ccm_processed_data_len += remainder;
|
|
ctx->ccm_remainder_len = 0;
|
|
}
|
|
goto out;
|
|
}
|
|
ctx->ccm_copy_to = NULL;
|
|
|
|
} while (remainder > 0);
|
|
|
|
out:
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
int
|
|
ccm_decrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
|
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
|
void (*copy_block)(uint8_t *, uint8_t *),
|
|
void (*xor_block)(uint8_t *, uint8_t *))
|
|
{
|
|
size_t mac_remain, pt_len;
|
|
uint8_t *pt, *mac_buf, *macp, *ccm_mac_p;
|
|
int rv;
|
|
|
|
pt_len = ctx->ccm_data_len;
|
|
|
|
/* Make sure output buffer can fit all of the plaintext */
|
|
if (out->cd_length < pt_len) {
|
|
return (CRYPTO_DATA_LEN_RANGE);
|
|
}
|
|
|
|
pt = ctx->ccm_pt_buf;
|
|
mac_remain = ctx->ccm_processed_data_len;
|
|
mac_buf = (uint8_t *)ctx->ccm_mac_buf;
|
|
|
|
macp = (uint8_t *)ctx->ccm_tmp;
|
|
|
|
while (mac_remain > 0) {
|
|
|
|
if (mac_remain < block_size) {
|
|
bzero(macp, block_size);
|
|
bcopy(pt, macp, mac_remain);
|
|
mac_remain = 0;
|
|
} else {
|
|
copy_block(pt, macp);
|
|
mac_remain -= block_size;
|
|
pt += block_size;
|
|
}
|
|
|
|
/* calculate the CBC MAC */
|
|
xor_block(macp, mac_buf);
|
|
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
|
|
}
|
|
|
|
/* Calculate the CCM MAC */
|
|
ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
|
|
calculate_ccm_mac((ccm_ctx_t *)ctx, ccm_mac_p, encrypt_block);
|
|
|
|
/* compare the input CCM MAC value with what we calculated */
|
|
if (bcmp(ctx->ccm_mac_input_buf, ccm_mac_p, ctx->ccm_mac_len)) {
|
|
/* They don't match */
|
|
return (CRYPTO_INVALID_MAC);
|
|
} else {
|
|
rv = crypto_put_output_data(ctx->ccm_pt_buf, out, pt_len);
|
|
if (rv != CRYPTO_SUCCESS)
|
|
return (rv);
|
|
out->cd_offset += pt_len;
|
|
}
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
int
|
|
ccm_validate_args(CK_AES_CCM_PARAMS *ccm_param, boolean_t is_encrypt_init)
|
|
{
|
|
size_t macSize, nonceSize;
|
|
uint8_t q;
|
|
uint64_t maxValue;
|
|
|
|
/*
|
|
* Check the length of the MAC. The only valid
|
|
* lengths for the MAC are: 4, 6, 8, 10, 12, 14, 16
|
|
*/
|
|
macSize = ccm_param->ulMACSize;
|
|
if ((macSize < 4) || (macSize > 16) || ((macSize % 2) != 0)) {
|
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
|
}
|
|
|
|
/* Check the nonce length. Valid values are 7, 8, 9, 10, 11, 12, 13 */
|
|
nonceSize = ccm_param->ulNonceSize;
|
|
if ((nonceSize < 7) || (nonceSize > 13)) {
|
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
|
}
|
|
|
|
/* q is the length of the field storing the length, in bytes */
|
|
q = (uint8_t)((15 - nonceSize) & 0xFF);
|
|
|
|
|
|
/*
|
|
* If it is decrypt, need to make sure size of ciphertext is at least
|
|
* bigger than MAC len
|
|
*/
|
|
if ((!is_encrypt_init) && (ccm_param->ulDataSize < macSize)) {
|
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
|
}
|
|
|
|
/*
|
|
* Check to make sure the length of the payload is within the
|
|
* range of values allowed by q
|
|
*/
|
|
if (q < 8) {
|
|
maxValue = (1ULL << (q * 8)) - 1;
|
|
} else {
|
|
maxValue = ULONG_MAX;
|
|
}
|
|
|
|
if (ccm_param->ulDataSize > maxValue) {
|
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
|
}
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* Format the first block used in CBC-MAC (B0) and the initial counter
|
|
* block based on formatting functions and counter generation functions
|
|
* specified in RFC 3610 and NIST publication 800-38C, appendix A
|
|
*
|
|
* b0 is the first block used in CBC-MAC
|
|
* cb0 is the first counter block
|
|
*
|
|
* It's assumed that the arguments b0 and cb0 are preallocated AES blocks
|
|
*
|
|
*/
|
|
static void
|
|
ccm_format_initial_blocks(uchar_t *nonce, ulong_t nonceSize,
|
|
ulong_t authDataSize, uint8_t *b0, ccm_ctx_t *aes_ctx)
|
|
{
|
|
uint64_t payloadSize;
|
|
uint8_t t, q, have_adata = 0;
|
|
size_t limit;
|
|
int i, j, k;
|
|
uint64_t mask = 0;
|
|
uint8_t *cb;
|
|
|
|
q = (uint8_t)((15 - nonceSize) & 0xFF);
|
|
t = (uint8_t)((aes_ctx->ccm_mac_len) & 0xFF);
|
|
|
|
/* Construct the first octet of b0 */
|
|
if (authDataSize > 0) {
|
|
have_adata = 1;
|
|
}
|
|
b0[0] = (have_adata << 6) | (((t - 2) / 2) << 3) | (q - 1);
|
|
|
|
/* copy the nonce value into b0 */
|
|
bcopy(nonce, &(b0[1]), nonceSize);
|
|
|
|
/* store the length of the payload into b0 */
|
|
bzero(&(b0[1+nonceSize]), q);
|
|
|
|
payloadSize = aes_ctx->ccm_data_len;
|
|
limit = 8 < q ? 8 : q;
|
|
|
|
for (i = 0, j = 0, k = 15; i < limit; i++, j += 8, k--) {
|
|
b0[k] = (uint8_t)((payloadSize >> j) & 0xFF);
|
|
}
|
|
|
|
/* format the counter block */
|
|
|
|
cb = (uint8_t *)aes_ctx->ccm_cb;
|
|
|
|
cb[0] = 0x07 & (q-1); /* first byte */
|
|
|
|
/* copy the nonce value into the counter block */
|
|
bcopy(nonce, &(cb[1]), nonceSize);
|
|
|
|
bzero(&(cb[1+nonceSize]), q);
|
|
|
|
/* Create the mask for the counter field based on the size of nonce */
|
|
q <<= 3;
|
|
while (q-- > 0) {
|
|
mask |= (1ULL << q);
|
|
}
|
|
|
|
#ifdef _LITTLE_ENDIAN
|
|
mask = htonll(mask);
|
|
#endif
|
|
aes_ctx->ccm_counter_mask = mask;
|
|
|
|
/*
|
|
* During calculation, we start using counter block 1, we will
|
|
* set it up right here.
|
|
* We can just set the last byte to have the value 1, because
|
|
* even with the biggest nonce of 13, the last byte of the
|
|
* counter block will be used for the counter value.
|
|
*/
|
|
cb[15] = 0x01;
|
|
}
|
|
|
|
/*
|
|
* Encode the length of the associated data as
|
|
* specified in RFC 3610 and NIST publication 800-38C, appendix A
|
|
*/
|
|
static void
|
|
encode_adata_len(ulong_t auth_data_len, uint8_t *encoded, size_t *encoded_len)
|
|
{
|
|
#ifdef UNALIGNED_POINTERS_PERMITTED
|
|
uint32_t *lencoded_ptr;
|
|
#ifdef _LP64
|
|
uint64_t *llencoded_ptr;
|
|
#endif
|
|
#endif /* UNALIGNED_POINTERS_PERMITTED */
|
|
|
|
if (auth_data_len < ((1ULL<<16) - (1ULL<<8))) {
|
|
/* 0 < a < (2^16-2^8) */
|
|
*encoded_len = 2;
|
|
encoded[0] = (auth_data_len & 0xff00) >> 8;
|
|
encoded[1] = auth_data_len & 0xff;
|
|
|
|
} else if ((auth_data_len >= ((1ULL<<16) - (1ULL<<8))) &&
|
|
(auth_data_len < (1ULL << 31))) {
|
|
/* (2^16-2^8) <= a < 2^32 */
|
|
*encoded_len = 6;
|
|
encoded[0] = 0xff;
|
|
encoded[1] = 0xfe;
|
|
#ifdef UNALIGNED_POINTERS_PERMITTED
|
|
lencoded_ptr = (uint32_t *)&encoded[2];
|
|
*lencoded_ptr = htonl(auth_data_len);
|
|
#else
|
|
encoded[2] = (auth_data_len & 0xff000000) >> 24;
|
|
encoded[3] = (auth_data_len & 0xff0000) >> 16;
|
|
encoded[4] = (auth_data_len & 0xff00) >> 8;
|
|
encoded[5] = auth_data_len & 0xff;
|
|
#endif /* UNALIGNED_POINTERS_PERMITTED */
|
|
|
|
#ifdef _LP64
|
|
} else {
|
|
/* 2^32 <= a < 2^64 */
|
|
*encoded_len = 10;
|
|
encoded[0] = 0xff;
|
|
encoded[1] = 0xff;
|
|
#ifdef UNALIGNED_POINTERS_PERMITTED
|
|
llencoded_ptr = (uint64_t *)&encoded[2];
|
|
*llencoded_ptr = htonl(auth_data_len);
|
|
#else
|
|
encoded[2] = (auth_data_len & 0xff00000000000000) >> 56;
|
|
encoded[3] = (auth_data_len & 0xff000000000000) >> 48;
|
|
encoded[4] = (auth_data_len & 0xff0000000000) >> 40;
|
|
encoded[5] = (auth_data_len & 0xff00000000) >> 32;
|
|
encoded[6] = (auth_data_len & 0xff000000) >> 24;
|
|
encoded[7] = (auth_data_len & 0xff0000) >> 16;
|
|
encoded[8] = (auth_data_len & 0xff00) >> 8;
|
|
encoded[9] = auth_data_len & 0xff;
|
|
#endif /* UNALIGNED_POINTERS_PERMITTED */
|
|
#endif /* _LP64 */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The following function should be call at encrypt or decrypt init time
|
|
* for AES CCM mode.
|
|
*/
|
|
int
|
|
ccm_init(ccm_ctx_t *ctx, unsigned char *nonce, size_t nonce_len,
|
|
unsigned char *auth_data, size_t auth_data_len, size_t block_size,
|
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
|
void (*xor_block)(uint8_t *, uint8_t *))
|
|
{
|
|
uint8_t *mac_buf, *datap, *ivp, *authp;
|
|
size_t remainder, processed;
|
|
uint8_t encoded_a[10]; /* max encoded auth data length is 10 octets */
|
|
size_t encoded_a_len = 0;
|
|
|
|
mac_buf = (uint8_t *)&(ctx->ccm_mac_buf);
|
|
|
|
/*
|
|
* Format the 1st block for CBC-MAC and construct the
|
|
* 1st counter block.
|
|
*
|
|
* aes_ctx->ccm_iv is used for storing the counter block
|
|
* mac_buf will store b0 at this time.
|
|
*/
|
|
ccm_format_initial_blocks(nonce, nonce_len,
|
|
auth_data_len, mac_buf, ctx);
|
|
|
|
/* The IV for CBC MAC for AES CCM mode is always zero */
|
|
ivp = (uint8_t *)ctx->ccm_tmp;
|
|
bzero(ivp, block_size);
|
|
|
|
xor_block(ivp, mac_buf);
|
|
|
|
/* encrypt the nonce */
|
|
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
|
|
|
|
/* take care of the associated data, if any */
|
|
if (auth_data_len == 0) {
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
encode_adata_len(auth_data_len, encoded_a, &encoded_a_len);
|
|
|
|
remainder = auth_data_len;
|
|
|
|
/* 1st block: it contains encoded associated data, and some data */
|
|
authp = (uint8_t *)ctx->ccm_tmp;
|
|
bzero(authp, block_size);
|
|
bcopy(encoded_a, authp, encoded_a_len);
|
|
processed = block_size - encoded_a_len;
|
|
if (processed > auth_data_len) {
|
|
/* in case auth_data is very small */
|
|
processed = auth_data_len;
|
|
}
|
|
bcopy(auth_data, authp+encoded_a_len, processed);
|
|
/* xor with previous buffer */
|
|
xor_block(authp, mac_buf);
|
|
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
|
|
remainder -= processed;
|
|
if (remainder == 0) {
|
|
/* a small amount of associated data, it's all done now */
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
do {
|
|
if (remainder < block_size) {
|
|
/*
|
|
* There's not a block full of data, pad rest of
|
|
* buffer with zero
|
|
*/
|
|
bzero(authp, block_size);
|
|
bcopy(&(auth_data[processed]), authp, remainder);
|
|
datap = (uint8_t *)authp;
|
|
remainder = 0;
|
|
} else {
|
|
datap = (uint8_t *)(&(auth_data[processed]));
|
|
processed += block_size;
|
|
remainder -= block_size;
|
|
}
|
|
|
|
xor_block(datap, mac_buf);
|
|
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
|
|
|
|
} while (remainder > 0);
|
|
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
int
|
|
ccm_init_ctx(ccm_ctx_t *ccm_ctx, char *param, int kmflag,
|
|
boolean_t is_encrypt_init, size_t block_size,
|
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
|
void (*xor_block)(uint8_t *, uint8_t *))
|
|
{
|
|
int rv;
|
|
CK_AES_CCM_PARAMS *ccm_param;
|
|
|
|
if (param != NULL) {
|
|
ccm_param = (CK_AES_CCM_PARAMS *)param;
|
|
|
|
if ((rv = ccm_validate_args(ccm_param,
|
|
is_encrypt_init)) != 0) {
|
|
return (rv);
|
|
}
|
|
|
|
ccm_ctx->ccm_mac_len = ccm_param->ulMACSize;
|
|
if (is_encrypt_init) {
|
|
ccm_ctx->ccm_data_len = ccm_param->ulDataSize;
|
|
} else {
|
|
ccm_ctx->ccm_data_len =
|
|
ccm_param->ulDataSize - ccm_ctx->ccm_mac_len;
|
|
ccm_ctx->ccm_processed_mac_len = 0;
|
|
}
|
|
ccm_ctx->ccm_processed_data_len = 0;
|
|
|
|
ccm_ctx->ccm_flags |= CCM_MODE;
|
|
} else {
|
|
rv = CRYPTO_MECHANISM_PARAM_INVALID;
|
|
goto out;
|
|
}
|
|
|
|
if (ccm_init(ccm_ctx, ccm_param->nonce, ccm_param->ulNonceSize,
|
|
ccm_param->authData, ccm_param->ulAuthDataSize, block_size,
|
|
encrypt_block, xor_block) != 0) {
|
|
rv = CRYPTO_MECHANISM_PARAM_INVALID;
|
|
goto out;
|
|
}
|
|
if (!is_encrypt_init) {
|
|
/* allocate buffer for storing decrypted plaintext */
|
|
ccm_ctx->ccm_pt_buf = vmem_alloc(ccm_ctx->ccm_data_len,
|
|
kmflag);
|
|
if (ccm_ctx->ccm_pt_buf == NULL) {
|
|
rv = CRYPTO_HOST_MEMORY;
|
|
}
|
|
}
|
|
out:
|
|
return (rv);
|
|
}
|
|
|
|
void *
|
|
ccm_alloc_ctx(int kmflag)
|
|
{
|
|
ccm_ctx_t *ccm_ctx;
|
|
|
|
if ((ccm_ctx = kmem_zalloc(sizeof (ccm_ctx_t), kmflag)) == NULL)
|
|
return (NULL);
|
|
|
|
ccm_ctx->ccm_flags = CCM_MODE;
|
|
return (ccm_ctx);
|
|
}
|