mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-18 02:20:59 +03:00
06a196020e
This commit tackles a number of issues in the way BIOs (`struct bio`) are constructed for submission to the Linux block layer. The kernel has a hard upper limit on the number of pages/segments that can be added to a BIO, as well as a separate limit for each device (related to its queue depth and other scheduling characteristics). ZFS counts the number of memory pages in the request ABD (`abd_nr_pages_off()`, and then uses that as the number of segments to put into the BIO, up to the hard upper limit. If it requires more than the limit, it will create multiple BIOs. Leaving aside the fact that page count method is wrong (see below), not limiting to the device segment max means that the device driver will need to split the BIO in half. This is alone is not necessarily a problem, but it interacts with another issue to cause a much larger problem. The kernel function to add a segment to a BIO (`bio_add_page()`) takes a `struct page` pointer, and offset+len within it. `struct page` can represent a run of contiguous memory pages (known as a "compound page"). In can be of arbitrary length. The ZFS functions that count ABD pages and load them into the BIO (`abd_nr_pages_off()`, `bio_map()` and `abd_bio_map_off()`) will never consider a page to be more than `PAGE_SIZE` (4K), even if the `struct page` is for multiple pages. In this case, it will load the same `struct page` into the BIO multiple times, with the offset adjusted each time. With a sufficiently large ABD, this can easily lead to the BIO being entirely filled much earlier than it could have been. This is also further contributes to the problem caused by the incorrect segment limit calculation, as its much easier to go past the device limit, and so require a split. Again, this is not a problem on its own. The logic for "never submit more than `PAGE_SIZE`" is actually a little more subtle. It will actually never submit a buffer that crosses a 4K page boundary. In practice, this is fine, as most ABDs are scattered, that is a list of complete 4K pages, and so are loaded in as such. Linear ABDs are typically allocated from slabs, and for small sizes they are frequently not aligned to page boundaries. For example, a 12K allocation can span four pages, eg: -- 4K -- -- 4K -- -- 4K -- -- 4K -- | | | | | :## ######## ######## ######: [1K, 4K, 4K, 3K] Such an allocation would be loaded into a BIO as you see: [1K, 4K, 4K, 3K] This tends not to be a problem in practice, because even if the BIO were filled and needed to be split, each half would still have either a start or end aligned to the logical block size of the device (assuming 4K at least). --- In ideal circumstances, these shortcomings don't cause any particular problems. Its when they start to interact with other ZFS features that things get interesting. Aggregation will create a "gang" ABD, which is simply a list of other ABDs. Iterating over a gang ABD is just iterating over each ABD within it in turn. Because the segments are simply loaded in order, we can end up with uneven segments either side of the "gap" between the two ABDs. For example, two 12K ABDs might be aggregated and then loaded as: [1K, 4K, 4K, 3K, 2K, 4K, 4K, 2K] Should a split occur, each individual BIO can end up either having an start or end offset that is not aligned to the logical block size, which some drivers (eg SCSI) will reject. However, this tends not to happen because the default aggregation limit usually keeps the BIO small enough to not require more than one split, and most pages are actually full 4K pages, so hitting an uneven gap is very rare anyway. If the pool is under particular memory pressure, then an IO can be broken down into a "gang block", a 512-byte block composed of a header and up to three block pointers. Each points to a fragment of the original write, or in turn, another gang block, breaking the original data up over and over until space can be found in the pool for each of them. Each gang header is a separate 512-byte memory allocation from a slab, that needs to be written down to disk. When the gang header is added to the BIO, its a single 512-byte segment. Pulling all this together, consider a large aggregated write of gang blocks. This results a BIO containing lots of 512-byte segments. Given our tendency to overfill the BIO, a split is likely, and most possible split points will yield a pair of BIOs that are misaligned. Drivers that care, like the SCSI driver, will reject them. --- This commit is a substantial refactor and rewrite of much of `vdev_disk` to sort all this out. `vdev_bio_max_segs()` now returns the ideal maximum size for the device, if available. There's also a tuneable `zfs_vdev_disk_max_segs` to override this, to assist with testing. We scan the ABD up front to count the number of pages within it, and to confirm that if we submitted all those pages to one or more BIOs, it could be split at any point with creating a misaligned BIO. If the pages in the BIO are not usable (as in any of the above situations), the ABD is linearised, and then checked again. This is the same technique used in `vdev_geom` on FreeBSD, adjusted for Linux's variable page size and allocator quirks. `vbio_t` is a cleanup and enhancement of the old `dio_request_t`. The idea is simply that it can hold all the state needed to create, submit and return multiple BIOs, including all the refcounts, the ABD copy if it was needed, and so on. Apart from what I hope is a clearer interface, the major difference is that because we know how many BIOs we'll need up front, we don't need the old overflow logic that would grow the BIO array, throw away all the old work and restart. We can get it right from the start. Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Rob Norris <rob.norris@klarasystems.com> Sponsored-by: Klara, Inc. Sponsored-by: Wasabi Technology, Inc. Closes #15533 Closes #15588
1653 lines
44 KiB
C
1653 lines
44 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* LLNL-CODE-403049.
|
|
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
|
|
* Copyright (c) 2023, 2024, Klara Inc.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/vdev_disk.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/vdev_trim.h>
|
|
#include <sys/abd.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/zio.h>
|
|
#include <linux/blkpg.h>
|
|
#include <linux/msdos_fs.h>
|
|
#include <linux/vfs_compat.h>
|
|
#ifdef HAVE_LINUX_BLK_CGROUP_HEADER
|
|
#include <linux/blk-cgroup.h>
|
|
#endif
|
|
|
|
/*
|
|
* Linux 6.8.x uses a bdev_handle as an instance/refcount for an underlying
|
|
* block_device. Since it carries the block_device inside, its convenient to
|
|
* just use the handle as a proxy. For pre-6.8, we just emulate this with
|
|
* a cast, since we don't need any of the other fields inside the handle.
|
|
*/
|
|
#ifdef HAVE_BDEV_OPEN_BY_PATH
|
|
typedef struct bdev_handle zfs_bdev_handle_t;
|
|
#define BDH_BDEV(bdh) ((bdh)->bdev)
|
|
#define BDH_IS_ERR(bdh) (IS_ERR(bdh))
|
|
#define BDH_PTR_ERR(bdh) (PTR_ERR(bdh))
|
|
#define BDH_ERR_PTR(err) (ERR_PTR(err))
|
|
#else
|
|
typedef void zfs_bdev_handle_t;
|
|
#define BDH_BDEV(bdh) ((struct block_device *)bdh)
|
|
#define BDH_IS_ERR(bdh) (IS_ERR(BDH_BDEV(bdh)))
|
|
#define BDH_PTR_ERR(bdh) (PTR_ERR(BDH_BDEV(bdh)))
|
|
#define BDH_ERR_PTR(err) (ERR_PTR(err))
|
|
#endif
|
|
|
|
typedef struct vdev_disk {
|
|
zfs_bdev_handle_t *vd_bdh;
|
|
krwlock_t vd_lock;
|
|
} vdev_disk_t;
|
|
|
|
/*
|
|
* Maximum number of segments to add to a bio (min 4). If this is higher than
|
|
* the maximum allowed by the device queue or the kernel itself, it will be
|
|
* clamped. Setting it to zero will cause the kernel's ideal size to be used.
|
|
*/
|
|
uint_t zfs_vdev_disk_max_segs = 0;
|
|
|
|
/*
|
|
* Unique identifier for the exclusive vdev holder.
|
|
*/
|
|
static void *zfs_vdev_holder = VDEV_HOLDER;
|
|
|
|
/*
|
|
* Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
|
|
* device is missing. The missing path may be transient since the links
|
|
* can be briefly removed and recreated in response to udev events.
|
|
*/
|
|
static uint_t zfs_vdev_open_timeout_ms = 1000;
|
|
|
|
/*
|
|
* Size of the "reserved" partition, in blocks.
|
|
*/
|
|
#define EFI_MIN_RESV_SIZE (16 * 1024)
|
|
|
|
/*
|
|
* BIO request failfast mask.
|
|
*/
|
|
|
|
static unsigned int zfs_vdev_failfast_mask = 1;
|
|
|
|
#ifdef HAVE_BLK_MODE_T
|
|
static blk_mode_t
|
|
#else
|
|
static fmode_t
|
|
#endif
|
|
vdev_bdev_mode(spa_mode_t spa_mode, boolean_t exclusive)
|
|
{
|
|
#ifdef HAVE_BLK_MODE_T
|
|
blk_mode_t mode = 0;
|
|
|
|
if (spa_mode & SPA_MODE_READ)
|
|
mode |= BLK_OPEN_READ;
|
|
|
|
if (spa_mode & SPA_MODE_WRITE)
|
|
mode |= BLK_OPEN_WRITE;
|
|
|
|
if (exclusive)
|
|
mode |= BLK_OPEN_EXCL;
|
|
#else
|
|
fmode_t mode = 0;
|
|
|
|
if (spa_mode & SPA_MODE_READ)
|
|
mode |= FMODE_READ;
|
|
|
|
if (spa_mode & SPA_MODE_WRITE)
|
|
mode |= FMODE_WRITE;
|
|
|
|
if (exclusive)
|
|
mode |= FMODE_EXCL;
|
|
#endif
|
|
|
|
return (mode);
|
|
}
|
|
|
|
/*
|
|
* Returns the usable capacity (in bytes) for the partition or disk.
|
|
*/
|
|
static uint64_t
|
|
bdev_capacity(struct block_device *bdev)
|
|
{
|
|
return (i_size_read(bdev->bd_inode));
|
|
}
|
|
|
|
#if !defined(HAVE_BDEV_WHOLE)
|
|
static inline struct block_device *
|
|
bdev_whole(struct block_device *bdev)
|
|
{
|
|
return (bdev->bd_contains);
|
|
}
|
|
#endif
|
|
|
|
#if defined(HAVE_BDEVNAME)
|
|
#define vdev_bdevname(bdev, name) bdevname(bdev, name)
|
|
#else
|
|
static inline void
|
|
vdev_bdevname(struct block_device *bdev, char *name)
|
|
{
|
|
snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Returns the maximum expansion capacity of the block device (in bytes).
|
|
*
|
|
* It is possible to expand a vdev when it has been created as a wholedisk
|
|
* and the containing block device has increased in capacity. Or when the
|
|
* partition containing the pool has been manually increased in size.
|
|
*
|
|
* This function is only responsible for calculating the potential expansion
|
|
* size so it can be reported by 'zpool list'. The efi_use_whole_disk() is
|
|
* responsible for verifying the expected partition layout in the wholedisk
|
|
* case, and updating the partition table if appropriate. Once the partition
|
|
* size has been increased the additional capacity will be visible using
|
|
* bdev_capacity().
|
|
*
|
|
* The returned maximum expansion capacity is always expected to be larger, or
|
|
* at the very least equal, to its usable capacity to prevent overestimating
|
|
* the pool expandsize.
|
|
*/
|
|
static uint64_t
|
|
bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
|
|
{
|
|
uint64_t psize;
|
|
int64_t available;
|
|
|
|
if (wholedisk && bdev != bdev_whole(bdev)) {
|
|
/*
|
|
* When reporting maximum expansion capacity for a wholedisk
|
|
* deduct any capacity which is expected to be lost due to
|
|
* alignment restrictions. Over reporting this value isn't
|
|
* harmful and would only result in slightly less capacity
|
|
* than expected post expansion.
|
|
* The estimated available space may be slightly smaller than
|
|
* bdev_capacity() for devices where the number of sectors is
|
|
* not a multiple of the alignment size and the partition layout
|
|
* is keeping less than PARTITION_END_ALIGNMENT bytes after the
|
|
* "reserved" EFI partition: in such cases return the device
|
|
* usable capacity.
|
|
*/
|
|
available = i_size_read(bdev_whole(bdev)->bd_inode) -
|
|
((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
|
|
PARTITION_END_ALIGNMENT) << SECTOR_BITS);
|
|
psize = MAX(available, bdev_capacity(bdev));
|
|
} else {
|
|
psize = bdev_capacity(bdev);
|
|
}
|
|
|
|
return (psize);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_error(zio_t *zio)
|
|
{
|
|
/*
|
|
* This function can be called in interrupt context, for instance while
|
|
* handling IRQs coming from a misbehaving disk device; use printk()
|
|
* which is safe from any context.
|
|
*/
|
|
printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
|
|
"offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
|
|
zio->io_vd->vdev_path, zio->io_error, zio->io_type,
|
|
(u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
|
|
zio->io_flags);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_kobj_evt_post(vdev_t *v)
|
|
{
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
if (vd && vd->vd_bdh) {
|
|
spl_signal_kobj_evt(BDH_BDEV(vd->vd_bdh));
|
|
} else {
|
|
vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
|
|
v->vdev_path);
|
|
}
|
|
}
|
|
|
|
static zfs_bdev_handle_t *
|
|
vdev_blkdev_get_by_path(const char *path, spa_mode_t mode, void *holder)
|
|
{
|
|
#if defined(HAVE_BDEV_OPEN_BY_PATH)
|
|
return (bdev_open_by_path(path,
|
|
vdev_bdev_mode(mode, B_TRUE), holder, NULL));
|
|
#elif defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
|
|
return (blkdev_get_by_path(path,
|
|
vdev_bdev_mode(mode, B_TRUE), holder, NULL));
|
|
#else
|
|
return (blkdev_get_by_path(path,
|
|
vdev_bdev_mode(mode, B_TRUE), holder));
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
vdev_blkdev_put(zfs_bdev_handle_t *bdh, spa_mode_t mode, void *holder)
|
|
{
|
|
#if defined(HAVE_BDEV_RELEASE)
|
|
return (bdev_release(bdh));
|
|
#elif defined(HAVE_BLKDEV_PUT_HOLDER)
|
|
return (blkdev_put(BDH_BDEV(bdh), holder));
|
|
#else
|
|
return (blkdev_put(BDH_BDEV(bdh),
|
|
vdev_bdev_mode(mode, B_TRUE)));
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
|
|
uint64_t *logical_ashift, uint64_t *physical_ashift)
|
|
{
|
|
zfs_bdev_handle_t *bdh;
|
|
#ifdef HAVE_BLK_MODE_T
|
|
blk_mode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa), B_FALSE);
|
|
#else
|
|
fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa), B_FALSE);
|
|
#endif
|
|
hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
|
|
vdev_disk_t *vd;
|
|
|
|
/* Must have a pathname and it must be absolute. */
|
|
if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
|
|
v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
|
|
vdev_dbgmsg(v, "invalid vdev_path");
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Reopen the device if it is currently open. When expanding a
|
|
* partition force re-scanning the partition table if userland
|
|
* did not take care of this already. We need to do this while closed
|
|
* in order to get an accurate updated block device size. Then
|
|
* since udev may need to recreate the device links increase the
|
|
* open retry timeout before reporting the device as unavailable.
|
|
*/
|
|
vd = v->vdev_tsd;
|
|
if (vd) {
|
|
char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
|
|
boolean_t reread_part = B_FALSE;
|
|
|
|
rw_enter(&vd->vd_lock, RW_WRITER);
|
|
bdh = vd->vd_bdh;
|
|
vd->vd_bdh = NULL;
|
|
|
|
if (bdh) {
|
|
struct block_device *bdev = BDH_BDEV(bdh);
|
|
if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
|
|
vdev_bdevname(bdev_whole(bdev), disk_name + 5);
|
|
/*
|
|
* If userland has BLKPG_RESIZE_PARTITION,
|
|
* then it should have updated the partition
|
|
* table already. We can detect this by
|
|
* comparing our current physical size
|
|
* with that of the device. If they are
|
|
* the same, then we must not have
|
|
* BLKPG_RESIZE_PARTITION or it failed to
|
|
* update the partition table online. We
|
|
* fallback to rescanning the partition
|
|
* table from the kernel below. However,
|
|
* if the capacity already reflects the
|
|
* updated partition, then we skip
|
|
* rescanning the partition table here.
|
|
*/
|
|
if (v->vdev_psize == bdev_capacity(bdev))
|
|
reread_part = B_TRUE;
|
|
}
|
|
|
|
vdev_blkdev_put(bdh, mode, zfs_vdev_holder);
|
|
}
|
|
|
|
if (reread_part) {
|
|
bdh = vdev_blkdev_get_by_path(disk_name, mode,
|
|
zfs_vdev_holder);
|
|
if (!BDH_IS_ERR(bdh)) {
|
|
int error =
|
|
vdev_bdev_reread_part(BDH_BDEV(bdh));
|
|
vdev_blkdev_put(bdh, mode, zfs_vdev_holder);
|
|
if (error == 0) {
|
|
timeout = MSEC2NSEC(
|
|
zfs_vdev_open_timeout_ms * 2);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
|
|
|
|
rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
|
|
rw_enter(&vd->vd_lock, RW_WRITER);
|
|
}
|
|
|
|
/*
|
|
* Devices are always opened by the path provided at configuration
|
|
* time. This means that if the provided path is a udev by-id path
|
|
* then drives may be re-cabled without an issue. If the provided
|
|
* path is a udev by-path path, then the physical location information
|
|
* will be preserved. This can be critical for more complicated
|
|
* configurations where drives are located in specific physical
|
|
* locations to maximize the systems tolerance to component failure.
|
|
*
|
|
* Alternatively, you can provide your own udev rule to flexibly map
|
|
* the drives as you see fit. It is not advised that you use the
|
|
* /dev/[hd]d devices which may be reordered due to probing order.
|
|
* Devices in the wrong locations will be detected by the higher
|
|
* level vdev validation.
|
|
*
|
|
* The specified paths may be briefly removed and recreated in
|
|
* response to udev events. This should be exceptionally unlikely
|
|
* because the zpool command makes every effort to verify these paths
|
|
* have already settled prior to reaching this point. Therefore,
|
|
* a ENOENT failure at this point is highly likely to be transient
|
|
* and it is reasonable to sleep and retry before giving up. In
|
|
* practice delays have been observed to be on the order of 100ms.
|
|
*
|
|
* When ERESTARTSYS is returned it indicates the block device is
|
|
* a zvol which could not be opened due to the deadlock detection
|
|
* logic in zvol_open(). Extend the timeout and retry the open
|
|
* subsequent attempts are expected to eventually succeed.
|
|
*/
|
|
hrtime_t start = gethrtime();
|
|
bdh = BDH_ERR_PTR(-ENXIO);
|
|
while (BDH_IS_ERR(bdh) && ((gethrtime() - start) < timeout)) {
|
|
bdh = vdev_blkdev_get_by_path(v->vdev_path, mode,
|
|
zfs_vdev_holder);
|
|
if (unlikely(BDH_PTR_ERR(bdh) == -ENOENT)) {
|
|
/*
|
|
* There is no point of waiting since device is removed
|
|
* explicitly
|
|
*/
|
|
if (v->vdev_removed)
|
|
break;
|
|
|
|
schedule_timeout(MSEC_TO_TICK(10));
|
|
} else if (unlikely(BDH_PTR_ERR(bdh) == -ERESTARTSYS)) {
|
|
timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
|
|
continue;
|
|
} else if (BDH_IS_ERR(bdh)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (BDH_IS_ERR(bdh)) {
|
|
int error = -BDH_PTR_ERR(bdh);
|
|
vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
|
|
(u_longlong_t)(gethrtime() - start),
|
|
(u_longlong_t)timeout);
|
|
vd->vd_bdh = NULL;
|
|
v->vdev_tsd = vd;
|
|
rw_exit(&vd->vd_lock);
|
|
return (SET_ERROR(error));
|
|
} else {
|
|
vd->vd_bdh = bdh;
|
|
v->vdev_tsd = vd;
|
|
rw_exit(&vd->vd_lock);
|
|
}
|
|
|
|
struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
|
|
|
|
/* Determine the physical block size */
|
|
int physical_block_size = bdev_physical_block_size(bdev);
|
|
|
|
/* Determine the logical block size */
|
|
int logical_block_size = bdev_logical_block_size(bdev);
|
|
|
|
/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
|
|
v->vdev_nowritecache = B_FALSE;
|
|
|
|
/* Set when device reports it supports TRIM. */
|
|
v->vdev_has_trim = bdev_discard_supported(bdev);
|
|
|
|
/* Set when device reports it supports secure TRIM. */
|
|
v->vdev_has_securetrim = bdev_secure_discard_supported(bdev);
|
|
|
|
/* Inform the ZIO pipeline that we are non-rotational */
|
|
v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(bdev));
|
|
|
|
/* Physical volume size in bytes for the partition */
|
|
*psize = bdev_capacity(bdev);
|
|
|
|
/* Physical volume size in bytes including possible expansion space */
|
|
*max_psize = bdev_max_capacity(bdev, v->vdev_wholedisk);
|
|
|
|
/* Based on the minimum sector size set the block size */
|
|
*physical_ashift = highbit64(MAX(physical_block_size,
|
|
SPA_MINBLOCKSIZE)) - 1;
|
|
|
|
*logical_ashift = highbit64(MAX(logical_block_size,
|
|
SPA_MINBLOCKSIZE)) - 1;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_close(vdev_t *v)
|
|
{
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
|
|
if (v->vdev_reopening || vd == NULL)
|
|
return;
|
|
|
|
if (vd->vd_bdh != NULL) {
|
|
vdev_blkdev_put(vd->vd_bdh, spa_mode(v->vdev_spa),
|
|
zfs_vdev_holder);
|
|
}
|
|
|
|
rw_destroy(&vd->vd_lock);
|
|
kmem_free(vd, sizeof (vdev_disk_t));
|
|
v->vdev_tsd = NULL;
|
|
}
|
|
|
|
static inline void
|
|
vdev_submit_bio_impl(struct bio *bio)
|
|
{
|
|
#ifdef HAVE_1ARG_SUBMIT_BIO
|
|
(void) submit_bio(bio);
|
|
#else
|
|
(void) submit_bio(bio_data_dir(bio), bio);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
|
|
* replace it with preempt_schedule under the following condition:
|
|
*/
|
|
#if defined(CONFIG_ARM64) && \
|
|
defined(CONFIG_PREEMPTION) && \
|
|
defined(CONFIG_BLK_CGROUP)
|
|
#define preempt_schedule_notrace(x) preempt_schedule(x)
|
|
#endif
|
|
|
|
/*
|
|
* As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
|
|
* as an argument removing the need to set it with bio_set_dev(). This
|
|
* removes the need for all of the following compatibility code.
|
|
*/
|
|
#if !defined(HAVE_BIO_ALLOC_4ARG)
|
|
|
|
#ifdef HAVE_BIO_SET_DEV
|
|
#if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
|
|
/*
|
|
* The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
|
|
* blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
|
|
* As a side effect the function was converted to GPL-only. Define our
|
|
* own version when needed which uses rcu_read_lock_sched().
|
|
*
|
|
* The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
|
|
* part, moving blkg_tryget into the private one. Define our own version.
|
|
*/
|
|
#if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
|
|
static inline bool
|
|
vdev_blkg_tryget(struct blkcg_gq *blkg)
|
|
{
|
|
struct percpu_ref *ref = &blkg->refcnt;
|
|
unsigned long __percpu *count;
|
|
bool rc;
|
|
|
|
rcu_read_lock_sched();
|
|
|
|
if (__ref_is_percpu(ref, &count)) {
|
|
this_cpu_inc(*count);
|
|
rc = true;
|
|
} else {
|
|
#ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
|
|
rc = atomic_long_inc_not_zero(&ref->data->count);
|
|
#else
|
|
rc = atomic_long_inc_not_zero(&ref->count);
|
|
#endif
|
|
}
|
|
|
|
rcu_read_unlock_sched();
|
|
|
|
return (rc);
|
|
}
|
|
#else
|
|
#define vdev_blkg_tryget(bg) blkg_tryget(bg)
|
|
#endif
|
|
#ifdef HAVE_BIO_SET_DEV_MACRO
|
|
/*
|
|
* The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
|
|
* GPL-only bio_associate_blkg() symbol thus inadvertently converting
|
|
* the entire macro. Provide a minimal version which always assigns the
|
|
* request queue's root_blkg to the bio.
|
|
*/
|
|
static inline void
|
|
vdev_bio_associate_blkg(struct bio *bio)
|
|
{
|
|
#if defined(HAVE_BIO_BDEV_DISK)
|
|
struct request_queue *q = bio->bi_bdev->bd_disk->queue;
|
|
#else
|
|
struct request_queue *q = bio->bi_disk->queue;
|
|
#endif
|
|
|
|
ASSERT3P(q, !=, NULL);
|
|
ASSERT3P(bio->bi_blkg, ==, NULL);
|
|
|
|
if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
|
|
bio->bi_blkg = q->root_blkg;
|
|
}
|
|
|
|
#define bio_associate_blkg vdev_bio_associate_blkg
|
|
#else
|
|
static inline void
|
|
vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
|
|
{
|
|
#if defined(HAVE_BIO_BDEV_DISK)
|
|
struct request_queue *q = bdev->bd_disk->queue;
|
|
#else
|
|
struct request_queue *q = bio->bi_disk->queue;
|
|
#endif
|
|
bio_clear_flag(bio, BIO_REMAPPED);
|
|
if (bio->bi_bdev != bdev)
|
|
bio_clear_flag(bio, BIO_THROTTLED);
|
|
bio->bi_bdev = bdev;
|
|
|
|
ASSERT3P(q, !=, NULL);
|
|
ASSERT3P(bio->bi_blkg, ==, NULL);
|
|
|
|
if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
|
|
bio->bi_blkg = q->root_blkg;
|
|
}
|
|
#define bio_set_dev vdev_bio_set_dev
|
|
#endif
|
|
#endif
|
|
#else
|
|
/*
|
|
* Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
|
|
*/
|
|
static inline void
|
|
bio_set_dev(struct bio *bio, struct block_device *bdev)
|
|
{
|
|
bio->bi_bdev = bdev;
|
|
}
|
|
#endif /* HAVE_BIO_SET_DEV */
|
|
#endif /* !HAVE_BIO_ALLOC_4ARG */
|
|
|
|
static inline void
|
|
vdev_submit_bio(struct bio *bio)
|
|
{
|
|
struct bio_list *bio_list = current->bio_list;
|
|
current->bio_list = NULL;
|
|
vdev_submit_bio_impl(bio);
|
|
current->bio_list = bio_list;
|
|
}
|
|
|
|
static inline struct bio *
|
|
vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
|
|
unsigned short nr_vecs)
|
|
{
|
|
struct bio *bio;
|
|
|
|
#ifdef HAVE_BIO_ALLOC_4ARG
|
|
bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
|
|
#else
|
|
bio = bio_alloc(gfp_mask, nr_vecs);
|
|
if (likely(bio != NULL))
|
|
bio_set_dev(bio, bdev);
|
|
#endif
|
|
|
|
return (bio);
|
|
}
|
|
|
|
static inline uint_t
|
|
vdev_bio_max_segs(struct block_device *bdev)
|
|
{
|
|
/*
|
|
* Smallest of the device max segs and the tuneable max segs. Minimum
|
|
* 4, so there's room to finish split pages if they come up.
|
|
*/
|
|
const uint_t dev_max_segs = queue_max_segments(bdev_get_queue(bdev));
|
|
const uint_t tune_max_segs = (zfs_vdev_disk_max_segs > 0) ?
|
|
MAX(4, zfs_vdev_disk_max_segs) : dev_max_segs;
|
|
const uint_t max_segs = MIN(tune_max_segs, dev_max_segs);
|
|
|
|
#ifdef HAVE_BIO_MAX_SEGS
|
|
return (bio_max_segs(max_segs));
|
|
#else
|
|
return (MIN(max_segs, BIO_MAX_PAGES));
|
|
#endif
|
|
}
|
|
|
|
static inline uint_t
|
|
vdev_bio_max_bytes(struct block_device *bdev)
|
|
{
|
|
return (queue_max_sectors(bdev_get_queue(bdev)) << 9);
|
|
}
|
|
|
|
|
|
/*
|
|
* Virtual block IO object (VBIO)
|
|
*
|
|
* Linux block IO (BIO) objects have a limit on how many data segments (pages)
|
|
* they can hold. Depending on how they're allocated and structured, a large
|
|
* ZIO can require more than one BIO to be submitted to the kernel, which then
|
|
* all have to complete before we can return the completed ZIO back to ZFS.
|
|
*
|
|
* A VBIO is a wrapper around multiple BIOs, carrying everything needed to
|
|
* translate a ZIO down into the kernel block layer and back again.
|
|
*
|
|
* Note that these are only used for data ZIOs (read/write). Meta-operations
|
|
* (flush/trim) don't need multiple BIOs and so can just make the call
|
|
* directly.
|
|
*/
|
|
typedef struct {
|
|
zio_t *vbio_zio; /* parent zio */
|
|
|
|
struct block_device *vbio_bdev; /* blockdev to submit bios to */
|
|
|
|
abd_t *vbio_abd; /* abd carrying borrowed linear buf */
|
|
|
|
atomic_t vbio_ref; /* bio refcount */
|
|
int vbio_error; /* error from failed bio */
|
|
|
|
uint_t vbio_max_segs; /* max segs per bio */
|
|
|
|
uint_t vbio_max_bytes; /* max bytes per bio */
|
|
uint_t vbio_lbs_mask; /* logical block size mask */
|
|
|
|
uint64_t vbio_offset; /* start offset of next bio */
|
|
|
|
struct bio *vbio_bio; /* pointer to the current bio */
|
|
struct bio *vbio_bios; /* list of all bios */
|
|
} vbio_t;
|
|
|
|
static vbio_t *
|
|
vbio_alloc(zio_t *zio, struct block_device *bdev)
|
|
{
|
|
vbio_t *vbio = kmem_zalloc(sizeof (vbio_t), KM_SLEEP);
|
|
|
|
vbio->vbio_zio = zio;
|
|
vbio->vbio_bdev = bdev;
|
|
atomic_set(&vbio->vbio_ref, 0);
|
|
vbio->vbio_max_segs = vdev_bio_max_segs(bdev);
|
|
vbio->vbio_max_bytes = vdev_bio_max_bytes(bdev);
|
|
vbio->vbio_lbs_mask = ~(bdev_logical_block_size(bdev)-1);
|
|
vbio->vbio_offset = zio->io_offset;
|
|
|
|
return (vbio);
|
|
}
|
|
|
|
static int
|
|
vbio_add_page(vbio_t *vbio, struct page *page, uint_t size, uint_t offset)
|
|
{
|
|
struct bio *bio;
|
|
uint_t ssize;
|
|
|
|
while (size > 0) {
|
|
bio = vbio->vbio_bio;
|
|
if (bio == NULL) {
|
|
/* New BIO, allocate and set up */
|
|
bio = vdev_bio_alloc(vbio->vbio_bdev, GFP_NOIO,
|
|
vbio->vbio_max_segs);
|
|
if (unlikely(bio == NULL))
|
|
return (SET_ERROR(ENOMEM));
|
|
BIO_BI_SECTOR(bio) = vbio->vbio_offset >> 9;
|
|
|
|
bio->bi_next = vbio->vbio_bios;
|
|
vbio->vbio_bios = vbio->vbio_bio = bio;
|
|
}
|
|
|
|
/*
|
|
* Only load as much of the current page data as will fit in
|
|
* the space left in the BIO, respecting lbs alignment. Older
|
|
* kernels will error if we try to overfill the BIO, while
|
|
* newer ones will accept it and split the BIO. This ensures
|
|
* everything works on older kernels, and avoids an additional
|
|
* overhead on the new.
|
|
*/
|
|
ssize = MIN(size, (vbio->vbio_max_bytes - BIO_BI_SIZE(bio)) &
|
|
vbio->vbio_lbs_mask);
|
|
if (ssize > 0 &&
|
|
bio_add_page(bio, page, ssize, offset) == ssize) {
|
|
/* Accepted, adjust and load any remaining. */
|
|
size -= ssize;
|
|
offset += ssize;
|
|
continue;
|
|
}
|
|
|
|
/* No room, set up for a new BIO and loop */
|
|
vbio->vbio_offset += BIO_BI_SIZE(bio);
|
|
|
|
/* Signal new BIO allocation wanted */
|
|
vbio->vbio_bio = NULL;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
BIO_END_IO_PROTO(vdev_disk_io_rw_completion, bio, error);
|
|
static void vbio_put(vbio_t *vbio);
|
|
|
|
static void
|
|
vbio_submit(vbio_t *vbio, int flags)
|
|
{
|
|
ASSERT(vbio->vbio_bios);
|
|
struct bio *bio = vbio->vbio_bios;
|
|
vbio->vbio_bio = vbio->vbio_bios = NULL;
|
|
|
|
/*
|
|
* We take a reference for each BIO as we submit it, plus one to
|
|
* protect us from BIOs completing before we're done submitting them
|
|
* all, causing vbio_put() to free vbio out from under us and/or the
|
|
* zio to be returned before all its IO has completed.
|
|
*/
|
|
atomic_set(&vbio->vbio_ref, 1);
|
|
|
|
/*
|
|
* If we're submitting more than one BIO, inform the block layer so
|
|
* it can batch them if it wants.
|
|
*/
|
|
struct blk_plug plug;
|
|
boolean_t do_plug = (bio->bi_next != NULL);
|
|
if (do_plug)
|
|
blk_start_plug(&plug);
|
|
|
|
/* Submit all the BIOs */
|
|
while (bio != NULL) {
|
|
atomic_inc(&vbio->vbio_ref);
|
|
|
|
struct bio *next = bio->bi_next;
|
|
bio->bi_next = NULL;
|
|
|
|
bio->bi_end_io = vdev_disk_io_rw_completion;
|
|
bio->bi_private = vbio;
|
|
bio_set_op_attrs(bio,
|
|
vbio->vbio_zio->io_type == ZIO_TYPE_WRITE ?
|
|
WRITE : READ, flags);
|
|
|
|
vdev_submit_bio(bio);
|
|
|
|
bio = next;
|
|
}
|
|
|
|
/* Finish the batch */
|
|
if (do_plug)
|
|
blk_finish_plug(&plug);
|
|
|
|
/* Release the extra reference */
|
|
vbio_put(vbio);
|
|
}
|
|
|
|
static void
|
|
vbio_return_abd(vbio_t *vbio)
|
|
{
|
|
zio_t *zio = vbio->vbio_zio;
|
|
if (vbio->vbio_abd == NULL)
|
|
return;
|
|
|
|
/*
|
|
* If we copied the ABD before issuing it, clean up and return the copy
|
|
* to the ADB, with changes if appropriate.
|
|
*/
|
|
void *buf = abd_to_buf(vbio->vbio_abd);
|
|
abd_free(vbio->vbio_abd);
|
|
vbio->vbio_abd = NULL;
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ)
|
|
abd_return_buf_copy(zio->io_abd, buf, zio->io_size);
|
|
else
|
|
abd_return_buf(zio->io_abd, buf, zio->io_size);
|
|
}
|
|
|
|
static void
|
|
vbio_free(vbio_t *vbio)
|
|
{
|
|
VERIFY0(atomic_read(&vbio->vbio_ref));
|
|
|
|
vbio_return_abd(vbio);
|
|
|
|
kmem_free(vbio, sizeof (vbio_t));
|
|
}
|
|
|
|
static void
|
|
vbio_put(vbio_t *vbio)
|
|
{
|
|
if (atomic_dec_return(&vbio->vbio_ref) > 0)
|
|
return;
|
|
|
|
/*
|
|
* This was the last reference, so the entire IO is completed. Clean
|
|
* up and submit it for processing.
|
|
*/
|
|
|
|
/*
|
|
* Get any data buf back to the original ABD, if necessary. We do this
|
|
* now so we can get the ZIO into the pipeline as quickly as possible,
|
|
* and then do the remaining cleanup after.
|
|
*/
|
|
vbio_return_abd(vbio);
|
|
|
|
zio_t *zio = vbio->vbio_zio;
|
|
|
|
/*
|
|
* Set the overall error. If multiple BIOs returned an error, only the
|
|
* first will be taken; the others are dropped (see
|
|
* vdev_disk_io_rw_completion()). Its pretty much impossible for
|
|
* multiple IOs to the same device to fail with different errors, so
|
|
* there's no real risk.
|
|
*/
|
|
zio->io_error = vbio->vbio_error;
|
|
if (zio->io_error)
|
|
vdev_disk_error(zio);
|
|
|
|
/* All done, submit for processing */
|
|
zio_delay_interrupt(zio);
|
|
|
|
/* Finish cleanup */
|
|
vbio_free(vbio);
|
|
}
|
|
|
|
BIO_END_IO_PROTO(vdev_disk_io_rw_completion, bio, error)
|
|
{
|
|
vbio_t *vbio = bio->bi_private;
|
|
|
|
if (vbio->vbio_error == 0) {
|
|
#ifdef HAVE_1ARG_BIO_END_IO_T
|
|
vbio->vbio_error = BIO_END_IO_ERROR(bio);
|
|
#else
|
|
if (error)
|
|
vbio->vbio_error = -(error);
|
|
else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
|
|
vbio->vbio_error = EIO;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Destroy the BIO. This is safe to do; the vbio owns its data and the
|
|
* kernel won't touch it again after the completion function runs.
|
|
*/
|
|
bio_put(bio);
|
|
|
|
/* Drop this BIOs reference acquired by vbio_submit() */
|
|
vbio_put(vbio);
|
|
}
|
|
|
|
/*
|
|
* Iterator callback to count ABD pages and check their size & alignment.
|
|
*
|
|
* On Linux, each BIO segment can take a page pointer, and an offset+length of
|
|
* the data within that page. A page can be arbitrarily large ("compound"
|
|
* pages) but we still have to ensure the data portion is correctly sized and
|
|
* aligned to the logical block size, to ensure that if the kernel wants to
|
|
* split the BIO, the two halves will still be properly aligned.
|
|
*/
|
|
typedef struct {
|
|
uint_t bmask;
|
|
uint_t npages;
|
|
uint_t end;
|
|
} vdev_disk_check_pages_t;
|
|
|
|
static int
|
|
vdev_disk_check_pages_cb(struct page *page, size_t off, size_t len, void *priv)
|
|
{
|
|
vdev_disk_check_pages_t *s = priv;
|
|
|
|
/*
|
|
* If we didn't finish on a block size boundary last time, then there
|
|
* would be a gap if we tried to use this ABD as-is, so abort.
|
|
*/
|
|
if (s->end != 0)
|
|
return (1);
|
|
|
|
/*
|
|
* Note if we're taking less than a full block, so we can check it
|
|
* above on the next call.
|
|
*/
|
|
s->end = len & s->bmask;
|
|
|
|
/* All blocks after the first must start on a block size boundary. */
|
|
if (s->npages != 0 && (off & s->bmask) != 0)
|
|
return (1);
|
|
|
|
s->npages++;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check if we can submit the pages in this ABD to the kernel as-is. Returns
|
|
* the number of pages, or 0 if it can't be submitted like this.
|
|
*/
|
|
static boolean_t
|
|
vdev_disk_check_pages(abd_t *abd, uint64_t size, struct block_device *bdev)
|
|
{
|
|
vdev_disk_check_pages_t s = {
|
|
.bmask = bdev_logical_block_size(bdev)-1,
|
|
.npages = 0,
|
|
.end = 0,
|
|
};
|
|
|
|
if (abd_iterate_page_func(abd, 0, size, vdev_disk_check_pages_cb, &s))
|
|
return (B_FALSE);
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/* Iterator callback to submit ABD pages to the vbio. */
|
|
static int
|
|
vdev_disk_fill_vbio_cb(struct page *page, size_t off, size_t len, void *priv)
|
|
{
|
|
vbio_t *vbio = priv;
|
|
return (vbio_add_page(vbio, page, len, off));
|
|
}
|
|
|
|
static int
|
|
vdev_disk_io_rw(zio_t *zio)
|
|
{
|
|
vdev_t *v = zio->io_vd;
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
|
|
int flags = 0;
|
|
|
|
/*
|
|
* Accessing outside the block device is never allowed.
|
|
*/
|
|
if (zio->io_offset + zio->io_size > bdev->bd_inode->i_size) {
|
|
vdev_dbgmsg(zio->io_vd,
|
|
"Illegal access %llu size %llu, device size %llu",
|
|
(u_longlong_t)zio->io_offset,
|
|
(u_longlong_t)zio->io_size,
|
|
(u_longlong_t)i_size_read(bdev->bd_inode));
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
|
|
if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
|
|
v->vdev_failfast == B_TRUE) {
|
|
bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
|
|
zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
|
|
}
|
|
|
|
/*
|
|
* Check alignment of the incoming ABD. If any part of it would require
|
|
* submitting a page that is not aligned to the logical block size,
|
|
* then we take a copy into a linear buffer and submit that instead.
|
|
* This should be impossible on a 512b LBS, and fairly rare on 4K,
|
|
* usually requiring abnormally-small data blocks (eg gang blocks)
|
|
* mixed into the same ABD as larger ones (eg aggregated).
|
|
*/
|
|
abd_t *abd = zio->io_abd;
|
|
if (!vdev_disk_check_pages(abd, zio->io_size, bdev)) {
|
|
void *buf;
|
|
if (zio->io_type == ZIO_TYPE_READ)
|
|
buf = abd_borrow_buf(zio->io_abd, zio->io_size);
|
|
else
|
|
buf = abd_borrow_buf_copy(zio->io_abd, zio->io_size);
|
|
|
|
/*
|
|
* Wrap the copy in an abd_t, so we can use the same iterators
|
|
* to count and fill the vbio later.
|
|
*/
|
|
abd = abd_get_from_buf(buf, zio->io_size);
|
|
|
|
/*
|
|
* False here would mean the borrowed copy has an invalid
|
|
* alignment too, which would mean we've somehow been passed a
|
|
* linear ABD with an interior page that has a non-zero offset
|
|
* or a size not a multiple of PAGE_SIZE. This is not possible.
|
|
* It would mean either zio_buf_alloc() or its underlying
|
|
* allocators have done something extremely strange, or our
|
|
* math in vdev_disk_check_pages() is wrong. In either case,
|
|
* something in seriously wrong and its not safe to continue.
|
|
*/
|
|
VERIFY(vdev_disk_check_pages(abd, zio->io_size, bdev));
|
|
}
|
|
|
|
/* Allocate vbio, with a pointer to the borrowed ABD if necessary */
|
|
int error = 0;
|
|
vbio_t *vbio = vbio_alloc(zio, bdev);
|
|
if (abd != zio->io_abd)
|
|
vbio->vbio_abd = abd;
|
|
|
|
/* Fill it with pages */
|
|
error = abd_iterate_page_func(abd, 0, zio->io_size,
|
|
vdev_disk_fill_vbio_cb, vbio);
|
|
if (error != 0) {
|
|
vbio_free(vbio);
|
|
return (error);
|
|
}
|
|
|
|
vbio_submit(vbio, flags);
|
|
return (0);
|
|
}
|
|
|
|
/* ========== */
|
|
|
|
/*
|
|
* This is the classic, battle-tested BIO submission code. Until we're totally
|
|
* sure that the new code is safe and correct in all cases, this will remain
|
|
* available and can be enabled by setting zfs_vdev_disk_classic=1 at module
|
|
* load time.
|
|
*
|
|
* These functions have been renamed to vdev_classic_* to make it clear what
|
|
* they belong to, but their implementations are unchanged.
|
|
*/
|
|
|
|
/*
|
|
* Virtual device vector for disks.
|
|
*/
|
|
typedef struct dio_request {
|
|
zio_t *dr_zio; /* Parent ZIO */
|
|
atomic_t dr_ref; /* References */
|
|
int dr_error; /* Bio error */
|
|
int dr_bio_count; /* Count of bio's */
|
|
struct bio *dr_bio[]; /* Attached bio's */
|
|
} dio_request_t;
|
|
|
|
static dio_request_t *
|
|
vdev_classic_dio_alloc(int bio_count)
|
|
{
|
|
dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
|
|
sizeof (struct bio *) * bio_count, KM_SLEEP);
|
|
atomic_set(&dr->dr_ref, 0);
|
|
dr->dr_bio_count = bio_count;
|
|
dr->dr_error = 0;
|
|
|
|
for (int i = 0; i < dr->dr_bio_count; i++)
|
|
dr->dr_bio[i] = NULL;
|
|
|
|
return (dr);
|
|
}
|
|
|
|
static void
|
|
vdev_classic_dio_free(dio_request_t *dr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < dr->dr_bio_count; i++)
|
|
if (dr->dr_bio[i])
|
|
bio_put(dr->dr_bio[i]);
|
|
|
|
kmem_free(dr, sizeof (dio_request_t) +
|
|
sizeof (struct bio *) * dr->dr_bio_count);
|
|
}
|
|
|
|
static void
|
|
vdev_classic_dio_get(dio_request_t *dr)
|
|
{
|
|
atomic_inc(&dr->dr_ref);
|
|
}
|
|
|
|
static void
|
|
vdev_classic_dio_put(dio_request_t *dr)
|
|
{
|
|
int rc = atomic_dec_return(&dr->dr_ref);
|
|
|
|
/*
|
|
* Free the dio_request when the last reference is dropped and
|
|
* ensure zio_interpret is called only once with the correct zio
|
|
*/
|
|
if (rc == 0) {
|
|
zio_t *zio = dr->dr_zio;
|
|
int error = dr->dr_error;
|
|
|
|
vdev_classic_dio_free(dr);
|
|
|
|
if (zio) {
|
|
zio->io_error = error;
|
|
ASSERT3S(zio->io_error, >=, 0);
|
|
if (zio->io_error)
|
|
vdev_disk_error(zio);
|
|
|
|
zio_delay_interrupt(zio);
|
|
}
|
|
}
|
|
}
|
|
|
|
BIO_END_IO_PROTO(vdev_classic_physio_completion, bio, error)
|
|
{
|
|
dio_request_t *dr = bio->bi_private;
|
|
|
|
if (dr->dr_error == 0) {
|
|
#ifdef HAVE_1ARG_BIO_END_IO_T
|
|
dr->dr_error = BIO_END_IO_ERROR(bio);
|
|
#else
|
|
if (error)
|
|
dr->dr_error = -(error);
|
|
else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
|
|
dr->dr_error = EIO;
|
|
#endif
|
|
}
|
|
|
|
/* Drop reference acquired by vdev_classic_physio */
|
|
vdev_classic_dio_put(dr);
|
|
}
|
|
|
|
static inline unsigned int
|
|
vdev_classic_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
|
|
{
|
|
unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
|
|
bio_size, abd_offset);
|
|
|
|
#ifdef HAVE_BIO_MAX_SEGS
|
|
return (bio_max_segs(nr_segs));
|
|
#else
|
|
return (MIN(nr_segs, BIO_MAX_PAGES));
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
vdev_classic_physio(zio_t *zio)
|
|
{
|
|
vdev_t *v = zio->io_vd;
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
|
|
size_t io_size = zio->io_size;
|
|
uint64_t io_offset = zio->io_offset;
|
|
int rw = zio->io_type == ZIO_TYPE_READ ? READ : WRITE;
|
|
int flags = 0;
|
|
|
|
dio_request_t *dr;
|
|
uint64_t abd_offset;
|
|
uint64_t bio_offset;
|
|
int bio_size;
|
|
int bio_count = 16;
|
|
int error = 0;
|
|
struct blk_plug plug;
|
|
unsigned short nr_vecs;
|
|
|
|
/*
|
|
* Accessing outside the block device is never allowed.
|
|
*/
|
|
if (io_offset + io_size > bdev->bd_inode->i_size) {
|
|
vdev_dbgmsg(zio->io_vd,
|
|
"Illegal access %llu size %llu, device size %llu",
|
|
(u_longlong_t)io_offset,
|
|
(u_longlong_t)io_size,
|
|
(u_longlong_t)i_size_read(bdev->bd_inode));
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
|
|
retry:
|
|
dr = vdev_classic_dio_alloc(bio_count);
|
|
|
|
if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
|
|
zio->io_vd->vdev_failfast == B_TRUE) {
|
|
bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
|
|
zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
|
|
}
|
|
|
|
dr->dr_zio = zio;
|
|
|
|
/*
|
|
* Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
|
|
* is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
|
|
* can cover at least 128KB and at most 1MB. When the required number
|
|
* of iovec's exceeds this, we are forced to break the IO in multiple
|
|
* bio's and wait for them all to complete. This is likely if the
|
|
* recordsize property is increased beyond 1MB. The default
|
|
* bio_count=16 should typically accommodate the maximum-size zio of
|
|
* 16MB.
|
|
*/
|
|
|
|
abd_offset = 0;
|
|
bio_offset = io_offset;
|
|
bio_size = io_size;
|
|
for (int i = 0; i <= dr->dr_bio_count; i++) {
|
|
|
|
/* Finished constructing bio's for given buffer */
|
|
if (bio_size <= 0)
|
|
break;
|
|
|
|
/*
|
|
* If additional bio's are required, we have to retry, but
|
|
* this should be rare - see the comment above.
|
|
*/
|
|
if (dr->dr_bio_count == i) {
|
|
vdev_classic_dio_free(dr);
|
|
bio_count *= 2;
|
|
goto retry;
|
|
}
|
|
|
|
nr_vecs = vdev_classic_bio_max_segs(zio, bio_size, abd_offset);
|
|
dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
|
|
if (unlikely(dr->dr_bio[i] == NULL)) {
|
|
vdev_classic_dio_free(dr);
|
|
return (SET_ERROR(ENOMEM));
|
|
}
|
|
|
|
/* Matching put called by vdev_classic_physio_completion */
|
|
vdev_classic_dio_get(dr);
|
|
|
|
BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
|
|
dr->dr_bio[i]->bi_end_io = vdev_classic_physio_completion;
|
|
dr->dr_bio[i]->bi_private = dr;
|
|
bio_set_op_attrs(dr->dr_bio[i], rw, flags);
|
|
|
|
/* Remaining size is returned to become the new size */
|
|
bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
|
|
bio_size, abd_offset);
|
|
|
|
/* Advance in buffer and construct another bio if needed */
|
|
abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
|
|
bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
|
|
}
|
|
|
|
/* Extra reference to protect dio_request during vdev_submit_bio */
|
|
vdev_classic_dio_get(dr);
|
|
|
|
if (dr->dr_bio_count > 1)
|
|
blk_start_plug(&plug);
|
|
|
|
/* Submit all bio's associated with this dio */
|
|
for (int i = 0; i < dr->dr_bio_count; i++) {
|
|
if (dr->dr_bio[i])
|
|
vdev_submit_bio(dr->dr_bio[i]);
|
|
}
|
|
|
|
if (dr->dr_bio_count > 1)
|
|
blk_finish_plug(&plug);
|
|
|
|
vdev_classic_dio_put(dr);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/* ========== */
|
|
|
|
BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
|
|
{
|
|
zio_t *zio = bio->bi_private;
|
|
#ifdef HAVE_1ARG_BIO_END_IO_T
|
|
zio->io_error = BIO_END_IO_ERROR(bio);
|
|
#else
|
|
zio->io_error = -error;
|
|
#endif
|
|
|
|
if (zio->io_error && (zio->io_error == EOPNOTSUPP))
|
|
zio->io_vd->vdev_nowritecache = B_TRUE;
|
|
|
|
bio_put(bio);
|
|
ASSERT3S(zio->io_error, >=, 0);
|
|
if (zio->io_error)
|
|
vdev_disk_error(zio);
|
|
zio_interrupt(zio);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
|
|
{
|
|
struct request_queue *q;
|
|
struct bio *bio;
|
|
|
|
q = bdev_get_queue(bdev);
|
|
if (!q)
|
|
return (SET_ERROR(ENXIO));
|
|
|
|
bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
|
|
if (unlikely(bio == NULL))
|
|
return (SET_ERROR(ENOMEM));
|
|
|
|
bio->bi_end_io = vdev_disk_io_flush_completion;
|
|
bio->bi_private = zio;
|
|
bio_set_flush(bio);
|
|
vdev_submit_bio(bio);
|
|
invalidate_bdev(bdev);
|
|
|
|
return (0);
|
|
}
|
|
|
|
#if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE) || \
|
|
defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC)
|
|
BIO_END_IO_PROTO(vdev_disk_discard_end_io, bio, error)
|
|
{
|
|
zio_t *zio = bio->bi_private;
|
|
#ifdef HAVE_1ARG_BIO_END_IO_T
|
|
zio->io_error = BIO_END_IO_ERROR(bio);
|
|
#else
|
|
zio->io_error = -error;
|
|
#endif
|
|
bio_put(bio);
|
|
if (zio->io_error)
|
|
vdev_disk_error(zio);
|
|
zio_interrupt(zio);
|
|
}
|
|
|
|
static int
|
|
vdev_issue_discard_trim(zio_t *zio, unsigned long flags)
|
|
{
|
|
int ret;
|
|
struct bio *bio = NULL;
|
|
|
|
#if defined(BLKDEV_DISCARD_SECURE)
|
|
ret = - __blkdev_issue_discard(
|
|
BDH_BDEV(((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh),
|
|
zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, flags, &bio);
|
|
#else
|
|
(void) flags;
|
|
ret = - __blkdev_issue_discard(
|
|
BDH_BDEV(((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh),
|
|
zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, &bio);
|
|
#endif
|
|
if (!ret && bio) {
|
|
bio->bi_private = zio;
|
|
bio->bi_end_io = vdev_disk_discard_end_io;
|
|
vdev_submit_bio(bio);
|
|
}
|
|
return (ret);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
vdev_disk_io_trim(zio_t *zio)
|
|
{
|
|
unsigned long trim_flags = 0;
|
|
if (zio->io_trim_flags & ZIO_TRIM_SECURE) {
|
|
#if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
|
|
return (-blkdev_issue_secure_erase(
|
|
BDH_BDEV(((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh),
|
|
zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
|
|
#elif defined(BLKDEV_DISCARD_SECURE)
|
|
trim_flags |= BLKDEV_DISCARD_SECURE;
|
|
#endif
|
|
}
|
|
#if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE) || \
|
|
defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC)
|
|
return (vdev_issue_discard_trim(zio, trim_flags));
|
|
#elif defined(HAVE_BLKDEV_ISSUE_DISCARD)
|
|
return (-blkdev_issue_discard(
|
|
BDH_BDEV(((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh),
|
|
zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, trim_flags));
|
|
#else
|
|
#error "Unsupported kernel"
|
|
#endif
|
|
}
|
|
|
|
int (*vdev_disk_io_rw_fn)(zio_t *zio) = NULL;
|
|
|
|
static void
|
|
vdev_disk_io_start(zio_t *zio)
|
|
{
|
|
vdev_t *v = zio->io_vd;
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
int error;
|
|
|
|
/*
|
|
* If the vdev is closed, it's likely in the REMOVED or FAULTED state.
|
|
* Nothing to be done here but return failure.
|
|
*/
|
|
if (vd == NULL) {
|
|
zio->io_error = ENXIO;
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
|
|
rw_enter(&vd->vd_lock, RW_READER);
|
|
|
|
/*
|
|
* If the vdev is closed, it's likely due to a failed reopen and is
|
|
* in the UNAVAIL state. Nothing to be done here but return failure.
|
|
*/
|
|
if (vd->vd_bdh == NULL) {
|
|
rw_exit(&vd->vd_lock);
|
|
zio->io_error = ENXIO;
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
|
|
switch (zio->io_type) {
|
|
case ZIO_TYPE_IOCTL:
|
|
|
|
if (!vdev_readable(v)) {
|
|
rw_exit(&vd->vd_lock);
|
|
zio->io_error = SET_ERROR(ENXIO);
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
|
|
switch (zio->io_cmd) {
|
|
case DKIOCFLUSHWRITECACHE:
|
|
|
|
if (zfs_nocacheflush)
|
|
break;
|
|
|
|
if (v->vdev_nowritecache) {
|
|
zio->io_error = SET_ERROR(ENOTSUP);
|
|
break;
|
|
}
|
|
|
|
error = vdev_disk_io_flush(BDH_BDEV(vd->vd_bdh), zio);
|
|
if (error == 0) {
|
|
rw_exit(&vd->vd_lock);
|
|
return;
|
|
}
|
|
|
|
zio->io_error = error;
|
|
|
|
break;
|
|
|
|
default:
|
|
zio->io_error = SET_ERROR(ENOTSUP);
|
|
}
|
|
|
|
rw_exit(&vd->vd_lock);
|
|
zio_execute(zio);
|
|
return;
|
|
|
|
case ZIO_TYPE_TRIM:
|
|
zio->io_error = vdev_disk_io_trim(zio);
|
|
rw_exit(&vd->vd_lock);
|
|
#if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
|
|
if (zio->io_trim_flags & ZIO_TRIM_SECURE)
|
|
zio_interrupt(zio);
|
|
#elif defined(HAVE_BLKDEV_ISSUE_DISCARD)
|
|
zio_interrupt(zio);
|
|
#endif
|
|
return;
|
|
|
|
case ZIO_TYPE_READ:
|
|
case ZIO_TYPE_WRITE:
|
|
zio->io_target_timestamp = zio_handle_io_delay(zio);
|
|
error = vdev_disk_io_rw_fn(zio);
|
|
rw_exit(&vd->vd_lock);
|
|
if (error) {
|
|
zio->io_error = error;
|
|
zio_interrupt(zio);
|
|
}
|
|
return;
|
|
|
|
default:
|
|
/*
|
|
* Getting here means our parent vdev has made a very strange
|
|
* request of us, and shouldn't happen. Assert here to force a
|
|
* crash in dev builds, but in production return the IO
|
|
* unhandled. The pool will likely suspend anyway but that's
|
|
* nicer than crashing the kernel.
|
|
*/
|
|
ASSERT3S(zio->io_type, ==, -1);
|
|
|
|
rw_exit(&vd->vd_lock);
|
|
zio->io_error = SET_ERROR(ENOTSUP);
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
|
|
__builtin_unreachable();
|
|
}
|
|
|
|
static void
|
|
vdev_disk_io_done(zio_t *zio)
|
|
{
|
|
/*
|
|
* If the device returned EIO, we revalidate the media. If it is
|
|
* determined the media has changed this triggers the asynchronous
|
|
* removal of the device from the configuration.
|
|
*/
|
|
if (zio->io_error == EIO) {
|
|
vdev_t *v = zio->io_vd;
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
|
|
if (!zfs_check_disk_status(BDH_BDEV(vd->vd_bdh))) {
|
|
invalidate_bdev(BDH_BDEV(vd->vd_bdh));
|
|
v->vdev_remove_wanted = B_TRUE;
|
|
spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_disk_hold(vdev_t *vd)
|
|
{
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
|
|
|
|
/* We must have a pathname, and it must be absolute. */
|
|
if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
|
|
return;
|
|
|
|
/*
|
|
* Only prefetch path and devid info if the device has
|
|
* never been opened.
|
|
*/
|
|
if (vd->vdev_tsd != NULL)
|
|
return;
|
|
|
|
}
|
|
|
|
static void
|
|
vdev_disk_rele(vdev_t *vd)
|
|
{
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
|
|
|
|
/* XXX: Implement me as a vnode rele for the device */
|
|
}
|
|
|
|
/*
|
|
* At first use vdev use, set the submission function from the default value if
|
|
* it hasn't been set already.
|
|
*/
|
|
static int
|
|
vdev_disk_init(spa_t *spa, nvlist_t *nv, void **tsd)
|
|
{
|
|
(void) spa;
|
|
(void) nv;
|
|
(void) tsd;
|
|
|
|
if (vdev_disk_io_rw_fn == NULL)
|
|
/* XXX make configurable */
|
|
vdev_disk_io_rw_fn = 0 ? vdev_classic_physio : vdev_disk_io_rw;
|
|
|
|
return (0);
|
|
}
|
|
|
|
vdev_ops_t vdev_disk_ops = {
|
|
.vdev_op_init = vdev_disk_init,
|
|
.vdev_op_fini = NULL,
|
|
.vdev_op_open = vdev_disk_open,
|
|
.vdev_op_close = vdev_disk_close,
|
|
.vdev_op_asize = vdev_default_asize,
|
|
.vdev_op_min_asize = vdev_default_min_asize,
|
|
.vdev_op_min_alloc = NULL,
|
|
.vdev_op_io_start = vdev_disk_io_start,
|
|
.vdev_op_io_done = vdev_disk_io_done,
|
|
.vdev_op_state_change = NULL,
|
|
.vdev_op_need_resilver = NULL,
|
|
.vdev_op_hold = vdev_disk_hold,
|
|
.vdev_op_rele = vdev_disk_rele,
|
|
.vdev_op_remap = NULL,
|
|
.vdev_op_xlate = vdev_default_xlate,
|
|
.vdev_op_rebuild_asize = NULL,
|
|
.vdev_op_metaslab_init = NULL,
|
|
.vdev_op_config_generate = NULL,
|
|
.vdev_op_nparity = NULL,
|
|
.vdev_op_ndisks = NULL,
|
|
.vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
|
|
.vdev_op_leaf = B_TRUE, /* leaf vdev */
|
|
.vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
|
|
};
|
|
|
|
/*
|
|
* The zfs_vdev_scheduler module option has been deprecated. Setting this
|
|
* value no longer has any effect. It has not yet been entirely removed
|
|
* to allow the module to be loaded if this option is specified in the
|
|
* /etc/modprobe.d/zfs.conf file. The following warning will be logged.
|
|
*/
|
|
static int
|
|
param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
|
|
{
|
|
int error = param_set_charp(val, kp);
|
|
if (error == 0) {
|
|
printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
|
|
"is not supported.\n");
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static const char *zfs_vdev_scheduler = "unused";
|
|
module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
|
|
param_get_charp, &zfs_vdev_scheduler, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
|
|
|
|
int
|
|
param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
|
|
{
|
|
uint_t val;
|
|
int error;
|
|
|
|
error = kstrtouint(buf, 0, &val);
|
|
if (error < 0)
|
|
return (SET_ERROR(error));
|
|
|
|
if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
|
|
return (SET_ERROR(-EINVAL));
|
|
|
|
error = param_set_uint(buf, kp);
|
|
if (error < 0)
|
|
return (SET_ERROR(error));
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
|
|
{
|
|
uint_t val;
|
|
int error;
|
|
|
|
error = kstrtouint(buf, 0, &val);
|
|
if (error < 0)
|
|
return (SET_ERROR(error));
|
|
|
|
if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
|
|
return (SET_ERROR(-EINVAL));
|
|
|
|
error = param_set_uint(buf, kp);
|
|
if (error < 0)
|
|
return (SET_ERROR(error));
|
|
|
|
return (0);
|
|
}
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
|
|
"Timeout before determining that a device is missing");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
|
|
"Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev_disk, zfs_vdev_disk_, max_segs, UINT, ZMOD_RW,
|
|
"Maximum number of data segments to add to an IO request (min 4)");
|