mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-26 03:09:34 +03:00
ca5777793e
This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
1743 lines
52 KiB
C
1743 lines
52 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
|
|
* Copyright (c) 2017, Intel Corporation.
|
|
*/
|
|
|
|
/*
|
|
* Virtual Device Labels
|
|
* ---------------------
|
|
*
|
|
* The vdev label serves several distinct purposes:
|
|
*
|
|
* 1. Uniquely identify this device as part of a ZFS pool and confirm its
|
|
* identity within the pool.
|
|
*
|
|
* 2. Verify that all the devices given in a configuration are present
|
|
* within the pool.
|
|
*
|
|
* 3. Determine the uberblock for the pool.
|
|
*
|
|
* 4. In case of an import operation, determine the configuration of the
|
|
* toplevel vdev of which it is a part.
|
|
*
|
|
* 5. If an import operation cannot find all the devices in the pool,
|
|
* provide enough information to the administrator to determine which
|
|
* devices are missing.
|
|
*
|
|
* It is important to note that while the kernel is responsible for writing the
|
|
* label, it only consumes the information in the first three cases. The
|
|
* latter information is only consumed in userland when determining the
|
|
* configuration to import a pool.
|
|
*
|
|
*
|
|
* Label Organization
|
|
* ------------------
|
|
*
|
|
* Before describing the contents of the label, it's important to understand how
|
|
* the labels are written and updated with respect to the uberblock.
|
|
*
|
|
* When the pool configuration is altered, either because it was newly created
|
|
* or a device was added, we want to update all the labels such that we can deal
|
|
* with fatal failure at any point. To this end, each disk has two labels which
|
|
* are updated before and after the uberblock is synced. Assuming we have
|
|
* labels and an uberblock with the following transaction groups:
|
|
*
|
|
* L1 UB L2
|
|
* +------+ +------+ +------+
|
|
* | | | | | |
|
|
* | t10 | | t10 | | t10 |
|
|
* | | | | | |
|
|
* +------+ +------+ +------+
|
|
*
|
|
* In this stable state, the labels and the uberblock were all updated within
|
|
* the same transaction group (10). Each label is mirrored and checksummed, so
|
|
* that we can detect when we fail partway through writing the label.
|
|
*
|
|
* In order to identify which labels are valid, the labels are written in the
|
|
* following manner:
|
|
*
|
|
* 1. For each vdev, update 'L1' to the new label
|
|
* 2. Update the uberblock
|
|
* 3. For each vdev, update 'L2' to the new label
|
|
*
|
|
* Given arbitrary failure, we can determine the correct label to use based on
|
|
* the transaction group. If we fail after updating L1 but before updating the
|
|
* UB, we will notice that L1's transaction group is greater than the uberblock,
|
|
* so L2 must be valid. If we fail after writing the uberblock but before
|
|
* writing L2, we will notice that L2's transaction group is less than L1, and
|
|
* therefore L1 is valid.
|
|
*
|
|
* Another added complexity is that not every label is updated when the config
|
|
* is synced. If we add a single device, we do not want to have to re-write
|
|
* every label for every device in the pool. This means that both L1 and L2 may
|
|
* be older than the pool uberblock, because the necessary information is stored
|
|
* on another vdev.
|
|
*
|
|
*
|
|
* On-disk Format
|
|
* --------------
|
|
*
|
|
* The vdev label consists of two distinct parts, and is wrapped within the
|
|
* vdev_label_t structure. The label includes 8k of padding to permit legacy
|
|
* VTOC disk labels, but is otherwise ignored.
|
|
*
|
|
* The first half of the label is a packed nvlist which contains pool wide
|
|
* properties, per-vdev properties, and configuration information. It is
|
|
* described in more detail below.
|
|
*
|
|
* The latter half of the label consists of a redundant array of uberblocks.
|
|
* These uberblocks are updated whenever a transaction group is committed,
|
|
* or when the configuration is updated. When a pool is loaded, we scan each
|
|
* vdev for the 'best' uberblock.
|
|
*
|
|
*
|
|
* Configuration Information
|
|
* -------------------------
|
|
*
|
|
* The nvlist describing the pool and vdev contains the following elements:
|
|
*
|
|
* version ZFS on-disk version
|
|
* name Pool name
|
|
* state Pool state
|
|
* txg Transaction group in which this label was written
|
|
* pool_guid Unique identifier for this pool
|
|
* vdev_tree An nvlist describing vdev tree.
|
|
* features_for_read
|
|
* An nvlist of the features necessary for reading the MOS.
|
|
*
|
|
* Each leaf device label also contains the following:
|
|
*
|
|
* top_guid Unique ID for top-level vdev in which this is contained
|
|
* guid Unique ID for the leaf vdev
|
|
*
|
|
* The 'vs' configuration follows the format described in 'spa_config.c'.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/vdev.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/uberblock_impl.h>
|
|
#include <sys/metaslab.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/dsl_scan.h>
|
|
#include <sys/abd.h>
|
|
#include <sys/fs/zfs.h>
|
|
|
|
/*
|
|
* Basic routines to read and write from a vdev label.
|
|
* Used throughout the rest of this file.
|
|
*/
|
|
uint64_t
|
|
vdev_label_offset(uint64_t psize, int l, uint64_t offset)
|
|
{
|
|
ASSERT(offset < sizeof (vdev_label_t));
|
|
ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
|
|
|
|
return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
|
|
0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
|
|
}
|
|
|
|
/*
|
|
* Returns back the vdev label associated with the passed in offset.
|
|
*/
|
|
int
|
|
vdev_label_number(uint64_t psize, uint64_t offset)
|
|
{
|
|
int l;
|
|
|
|
if (offset >= psize - VDEV_LABEL_END_SIZE) {
|
|
offset -= psize - VDEV_LABEL_END_SIZE;
|
|
offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
|
|
}
|
|
l = offset / sizeof (vdev_label_t);
|
|
return (l < VDEV_LABELS ? l : -1);
|
|
}
|
|
|
|
static void
|
|
vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
|
|
uint64_t size, zio_done_func_t *done, void *private, int flags)
|
|
{
|
|
ASSERT(
|
|
spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
|
|
spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
|
|
ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
|
|
|
|
zio_nowait(zio_read_phys(zio, vd,
|
|
vdev_label_offset(vd->vdev_psize, l, offset),
|
|
size, buf, ZIO_CHECKSUM_LABEL, done, private,
|
|
ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
|
|
}
|
|
|
|
void
|
|
vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
|
|
uint64_t size, zio_done_func_t *done, void *private, int flags)
|
|
{
|
|
ASSERT(
|
|
spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
|
|
spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
|
|
ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
|
|
|
|
zio_nowait(zio_write_phys(zio, vd,
|
|
vdev_label_offset(vd->vdev_psize, l, offset),
|
|
size, buf, ZIO_CHECKSUM_LABEL, done, private,
|
|
ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
|
|
}
|
|
|
|
/*
|
|
* Generate the nvlist representing this vdev's stats
|
|
*/
|
|
void
|
|
vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
|
|
{
|
|
nvlist_t *nvx;
|
|
vdev_stat_t *vs;
|
|
vdev_stat_ex_t *vsx;
|
|
|
|
vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
|
|
vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
|
|
|
|
vdev_get_stats_ex(vd, vs, vsx);
|
|
fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
|
|
(uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
|
|
|
|
/*
|
|
* Add extended stats into a special extended stats nvlist. This keeps
|
|
* all the extended stats nicely grouped together. The extended stats
|
|
* nvlist is then added to the main nvlist.
|
|
*/
|
|
nvx = fnvlist_alloc();
|
|
|
|
/* ZIOs in flight to disk */
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
|
|
vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
|
|
vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
|
|
vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
|
|
vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
|
|
vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
|
|
vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
|
|
|
|
/* ZIOs pending */
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
|
|
vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
|
|
vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
|
|
vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
|
|
vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
|
|
vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
|
|
vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
|
|
|
|
/* Histograms */
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
|
|
vsx->vsx_total_histo[ZIO_TYPE_READ],
|
|
ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
|
|
vsx->vsx_total_histo[ZIO_TYPE_WRITE],
|
|
ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
|
|
vsx->vsx_disk_histo[ZIO_TYPE_READ],
|
|
ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
|
|
vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
|
|
ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
|
|
vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
|
|
ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
|
|
vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
|
|
ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
|
|
vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
|
|
ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
|
|
vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
|
|
ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
|
|
vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
|
|
ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
|
|
vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
|
|
ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
|
|
|
|
/* Request sizes */
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
|
|
vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
|
|
ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
|
|
vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
|
|
ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
|
|
vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
|
|
ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
|
|
vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
|
|
ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
|
|
vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
|
|
ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
|
|
vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
|
|
ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
|
|
vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
|
|
ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
|
|
vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
|
|
ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
|
|
vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
|
|
ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
|
|
vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
|
|
ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
|
|
vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
|
|
ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
|
|
vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
|
|
ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
|
|
|
|
/* IO delays */
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
|
|
|
|
/* Add extended stats nvlist to main nvlist */
|
|
fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
|
|
|
|
fnvlist_free(nvx);
|
|
kmem_free(vs, sizeof (*vs));
|
|
kmem_free(vsx, sizeof (*vsx));
|
|
}
|
|
|
|
static void
|
|
root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
if (vd != spa->spa_root_vdev)
|
|
return;
|
|
|
|
/* provide either current or previous scan information */
|
|
pool_scan_stat_t ps;
|
|
if (spa_scan_get_stats(spa, &ps) == 0) {
|
|
fnvlist_add_uint64_array(nvl,
|
|
ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
|
|
sizeof (pool_scan_stat_t) / sizeof (uint64_t));
|
|
}
|
|
|
|
pool_removal_stat_t prs;
|
|
if (spa_removal_get_stats(spa, &prs) == 0) {
|
|
fnvlist_add_uint64_array(nvl,
|
|
ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
|
|
sizeof (prs) / sizeof (uint64_t));
|
|
}
|
|
|
|
pool_checkpoint_stat_t pcs;
|
|
if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
|
|
fnvlist_add_uint64_array(nvl,
|
|
ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
|
|
sizeof (pcs) / sizeof (uint64_t));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generate the nvlist representing this vdev's config.
|
|
*/
|
|
nvlist_t *
|
|
vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
|
|
vdev_config_flag_t flags)
|
|
{
|
|
nvlist_t *nv = NULL;
|
|
vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
|
|
|
|
nv = fnvlist_alloc();
|
|
|
|
fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
|
|
if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
|
|
|
|
if (vd->vdev_path != NULL)
|
|
fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
|
|
|
|
if (vd->vdev_devid != NULL)
|
|
fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
|
|
|
|
if (vd->vdev_physpath != NULL)
|
|
fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
|
|
vd->vdev_physpath);
|
|
|
|
if (vd->vdev_enc_sysfs_path != NULL)
|
|
fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
|
|
vd->vdev_enc_sysfs_path);
|
|
|
|
if (vd->vdev_fru != NULL)
|
|
fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
|
|
|
|
if (vd->vdev_nparity != 0) {
|
|
ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
|
|
VDEV_TYPE_RAIDZ) == 0);
|
|
|
|
/*
|
|
* Make sure someone hasn't managed to sneak a fancy new vdev
|
|
* into a crufty old storage pool.
|
|
*/
|
|
ASSERT(vd->vdev_nparity == 1 ||
|
|
(vd->vdev_nparity <= 2 &&
|
|
spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
|
|
(vd->vdev_nparity <= 3 &&
|
|
spa_version(spa) >= SPA_VERSION_RAIDZ3));
|
|
|
|
/*
|
|
* Note that we'll add the nparity tag even on storage pools
|
|
* that only support a single parity device -- older software
|
|
* will just ignore it.
|
|
*/
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
|
|
}
|
|
|
|
if (vd->vdev_wholedisk != -1ULL)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
|
|
vd->vdev_wholedisk);
|
|
|
|
if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
|
|
|
|
if (vd->vdev_isspare)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
|
|
|
|
if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
|
|
vd == vd->vdev_top) {
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
|
|
vd->vdev_ms_array);
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
|
|
vd->vdev_ms_shift);
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
|
|
vd->vdev_asize);
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
|
|
if (vd->vdev_removing) {
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
|
|
vd->vdev_removing);
|
|
}
|
|
|
|
/* zpool command expects alloc class data */
|
|
if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
|
|
const char *bias = NULL;
|
|
|
|
switch (vd->vdev_alloc_bias) {
|
|
case VDEV_BIAS_LOG:
|
|
bias = VDEV_ALLOC_BIAS_LOG;
|
|
break;
|
|
case VDEV_BIAS_SPECIAL:
|
|
bias = VDEV_ALLOC_BIAS_SPECIAL;
|
|
break;
|
|
case VDEV_BIAS_DEDUP:
|
|
bias = VDEV_ALLOC_BIAS_DEDUP;
|
|
break;
|
|
default:
|
|
ASSERT3U(vd->vdev_alloc_bias, ==,
|
|
VDEV_BIAS_NONE);
|
|
}
|
|
fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
|
|
bias);
|
|
}
|
|
}
|
|
|
|
if (vd->vdev_dtl_sm != NULL) {
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
|
|
space_map_object(vd->vdev_dtl_sm));
|
|
}
|
|
|
|
if (vic->vic_mapping_object != 0) {
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
|
|
vic->vic_mapping_object);
|
|
}
|
|
|
|
if (vic->vic_births_object != 0) {
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
|
|
vic->vic_births_object);
|
|
}
|
|
|
|
if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
|
|
vic->vic_prev_indirect_vdev);
|
|
}
|
|
|
|
if (vd->vdev_crtxg)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
|
|
|
|
if (vd->vdev_expansion_time)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME,
|
|
vd->vdev_expansion_time);
|
|
|
|
if (flags & VDEV_CONFIG_MOS) {
|
|
if (vd->vdev_leaf_zap != 0) {
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
|
|
vd->vdev_leaf_zap);
|
|
}
|
|
|
|
if (vd->vdev_top_zap != 0) {
|
|
ASSERT(vd == vd->vdev_top);
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
|
|
vd->vdev_top_zap);
|
|
}
|
|
|
|
if (vd->vdev_resilver_deferred) {
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
ASSERT(spa->spa_resilver_deferred);
|
|
fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
|
|
}
|
|
}
|
|
|
|
if (getstats) {
|
|
vdev_config_generate_stats(vd, nv);
|
|
|
|
root_vdev_actions_getprogress(vd, nv);
|
|
|
|
/*
|
|
* Note: this can be called from open context
|
|
* (spa_get_stats()), so we need the rwlock to prevent
|
|
* the mapping from being changed by condensing.
|
|
*/
|
|
rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
|
|
if (vd->vdev_indirect_mapping != NULL) {
|
|
ASSERT(vd->vdev_indirect_births != NULL);
|
|
vdev_indirect_mapping_t *vim =
|
|
vd->vdev_indirect_mapping;
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
|
|
vdev_indirect_mapping_size(vim));
|
|
}
|
|
rw_exit(&vd->vdev_indirect_rwlock);
|
|
if (vd->vdev_mg != NULL &&
|
|
vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
|
|
/*
|
|
* Compute approximately how much memory would be used
|
|
* for the indirect mapping if this device were to
|
|
* be removed.
|
|
*
|
|
* Note: If the frag metric is invalid, then not
|
|
* enough metaslabs have been converted to have
|
|
* histograms.
|
|
*/
|
|
uint64_t seg_count = 0;
|
|
uint64_t to_alloc = vd->vdev_stat.vs_alloc;
|
|
|
|
/*
|
|
* There are the same number of allocated segments
|
|
* as free segments, so we will have at least one
|
|
* entry per free segment. However, small free
|
|
* segments (smaller than vdev_removal_max_span)
|
|
* will be combined with adjacent allocated segments
|
|
* as a single mapping.
|
|
*/
|
|
for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
|
|
if (1ULL << (i + 1) < vdev_removal_max_span) {
|
|
to_alloc +=
|
|
vd->vdev_mg->mg_histogram[i] <<
|
|
(i + 1);
|
|
} else {
|
|
seg_count +=
|
|
vd->vdev_mg->mg_histogram[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The maximum length of a mapping is
|
|
* zfs_remove_max_segment, so we need at least one entry
|
|
* per zfs_remove_max_segment of allocated data.
|
|
*/
|
|
seg_count += to_alloc / spa_remove_max_segment(spa);
|
|
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
|
|
seg_count *
|
|
sizeof (vdev_indirect_mapping_entry_phys_t));
|
|
}
|
|
}
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf) {
|
|
nvlist_t **child;
|
|
int c, idx;
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
|
|
KM_SLEEP);
|
|
|
|
for (c = 0, idx = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
|
|
/*
|
|
* If we're generating an nvlist of removing
|
|
* vdevs then skip over any device which is
|
|
* not being removed.
|
|
*/
|
|
if ((flags & VDEV_CONFIG_REMOVING) &&
|
|
!cvd->vdev_removing)
|
|
continue;
|
|
|
|
child[idx++] = vdev_config_generate(spa, cvd,
|
|
getstats, flags);
|
|
}
|
|
|
|
if (idx) {
|
|
fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
|
|
child, idx);
|
|
}
|
|
|
|
for (c = 0; c < idx; c++)
|
|
nvlist_free(child[c]);
|
|
|
|
kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
|
|
|
|
} else {
|
|
const char *aux = NULL;
|
|
|
|
if (vd->vdev_offline && !vd->vdev_tmpoffline)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
|
|
if (vd->vdev_resilver_txg != 0)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
|
|
vd->vdev_resilver_txg);
|
|
if (vd->vdev_faulted)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
|
|
if (vd->vdev_degraded)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
|
|
if (vd->vdev_removed)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
|
|
if (vd->vdev_unspare)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
|
|
if (vd->vdev_ishole)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
|
|
|
|
/* Set the reason why we're FAULTED/DEGRADED. */
|
|
switch (vd->vdev_stat.vs_aux) {
|
|
case VDEV_AUX_ERR_EXCEEDED:
|
|
aux = "err_exceeded";
|
|
break;
|
|
|
|
case VDEV_AUX_EXTERNAL:
|
|
aux = "external";
|
|
break;
|
|
}
|
|
|
|
if (aux != NULL && !vd->vdev_tmpoffline) {
|
|
fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
|
|
} else {
|
|
/*
|
|
* We're healthy - clear any previous AUX_STATE values.
|
|
*/
|
|
if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
|
|
nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
|
|
}
|
|
|
|
if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
|
|
vd->vdev_orig_guid);
|
|
}
|
|
}
|
|
|
|
return (nv);
|
|
}
|
|
|
|
/*
|
|
* Generate a view of the top-level vdevs. If we currently have holes
|
|
* in the namespace, then generate an array which contains a list of holey
|
|
* vdevs. Additionally, add the number of top-level children that currently
|
|
* exist.
|
|
*/
|
|
void
|
|
vdev_top_config_generate(spa_t *spa, nvlist_t *config)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
uint64_t *array;
|
|
uint_t c, idx;
|
|
|
|
array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
|
|
|
|
for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
|
|
if (tvd->vdev_ishole) {
|
|
array[idx++] = c;
|
|
}
|
|
}
|
|
|
|
if (idx) {
|
|
VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
|
|
array, idx) == 0);
|
|
}
|
|
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
|
|
rvd->vdev_children) == 0);
|
|
|
|
kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
|
|
}
|
|
|
|
/*
|
|
* Returns the configuration from the label of the given vdev. For vdevs
|
|
* which don't have a txg value stored on their label (i.e. spares/cache)
|
|
* or have not been completely initialized (txg = 0) just return
|
|
* the configuration from the first valid label we find. Otherwise,
|
|
* find the most up-to-date label that does not exceed the specified
|
|
* 'txg' value.
|
|
*/
|
|
nvlist_t *
|
|
vdev_label_read_config(vdev_t *vd, uint64_t txg)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
nvlist_t *config = NULL;
|
|
vdev_phys_t *vp;
|
|
abd_t *vp_abd;
|
|
zio_t *zio;
|
|
uint64_t best_txg = 0;
|
|
uint64_t label_txg = 0;
|
|
int error = 0;
|
|
int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
|
|
ZIO_FLAG_SPECULATIVE;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
|
|
|
if (!vdev_readable(vd))
|
|
return (NULL);
|
|
|
|
vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
|
|
vp = abd_to_buf(vp_abd);
|
|
|
|
retry:
|
|
for (int l = 0; l < VDEV_LABELS; l++) {
|
|
nvlist_t *label = NULL;
|
|
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
vdev_label_read(zio, vd, l, vp_abd,
|
|
offsetof(vdev_label_t, vl_vdev_phys),
|
|
sizeof (vdev_phys_t), NULL, NULL, flags);
|
|
|
|
if (zio_wait(zio) == 0 &&
|
|
nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
|
|
&label, 0) == 0) {
|
|
/*
|
|
* Auxiliary vdevs won't have txg values in their
|
|
* labels and newly added vdevs may not have been
|
|
* completely initialized so just return the
|
|
* configuration from the first valid label we
|
|
* encounter.
|
|
*/
|
|
error = nvlist_lookup_uint64(label,
|
|
ZPOOL_CONFIG_POOL_TXG, &label_txg);
|
|
if ((error || label_txg == 0) && !config) {
|
|
config = label;
|
|
break;
|
|
} else if (label_txg <= txg && label_txg > best_txg) {
|
|
best_txg = label_txg;
|
|
nvlist_free(config);
|
|
config = fnvlist_dup(label);
|
|
}
|
|
}
|
|
|
|
if (label != NULL) {
|
|
nvlist_free(label);
|
|
label = NULL;
|
|
}
|
|
}
|
|
|
|
if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
|
|
flags |= ZIO_FLAG_TRYHARD;
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* We found a valid label but it didn't pass txg restrictions.
|
|
*/
|
|
if (config == NULL && label_txg != 0) {
|
|
vdev_dbgmsg(vd, "label discarded as txg is too large "
|
|
"(%llu > %llu)", (u_longlong_t)label_txg,
|
|
(u_longlong_t)txg);
|
|
}
|
|
|
|
abd_free(vp_abd);
|
|
|
|
return (config);
|
|
}
|
|
|
|
/*
|
|
* Determine if a device is in use. The 'spare_guid' parameter will be filled
|
|
* in with the device guid if this spare is active elsewhere on the system.
|
|
*/
|
|
static boolean_t
|
|
vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
|
|
uint64_t *spare_guid, uint64_t *l2cache_guid)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
uint64_t state, pool_guid, device_guid, txg, spare_pool;
|
|
uint64_t vdtxg = 0;
|
|
nvlist_t *label;
|
|
|
|
if (spare_guid)
|
|
*spare_guid = 0ULL;
|
|
if (l2cache_guid)
|
|
*l2cache_guid = 0ULL;
|
|
|
|
/*
|
|
* Read the label, if any, and perform some basic sanity checks.
|
|
*/
|
|
if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
|
|
return (B_FALSE);
|
|
|
|
(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
|
|
&vdtxg);
|
|
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
|
|
&state) != 0 ||
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
|
|
&device_guid) != 0) {
|
|
nvlist_free(label);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
|
|
(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
|
|
&pool_guid) != 0 ||
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
|
|
&txg) != 0)) {
|
|
nvlist_free(label);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
nvlist_free(label);
|
|
|
|
/*
|
|
* Check to see if this device indeed belongs to the pool it claims to
|
|
* be a part of. The only way this is allowed is if the device is a hot
|
|
* spare (which we check for later on).
|
|
*/
|
|
if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
|
|
!spa_guid_exists(pool_guid, device_guid) &&
|
|
!spa_spare_exists(device_guid, NULL, NULL) &&
|
|
!spa_l2cache_exists(device_guid, NULL))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* If the transaction group is zero, then this an initialized (but
|
|
* unused) label. This is only an error if the create transaction
|
|
* on-disk is the same as the one we're using now, in which case the
|
|
* user has attempted to add the same vdev multiple times in the same
|
|
* transaction.
|
|
*/
|
|
if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
|
|
txg == 0 && vdtxg == crtxg)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* Check to see if this is a spare device. We do an explicit check for
|
|
* spa_has_spare() here because it may be on our pending list of spares
|
|
* to add. We also check if it is an l2cache device.
|
|
*/
|
|
if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
|
|
spa_has_spare(spa, device_guid)) {
|
|
if (spare_guid)
|
|
*spare_guid = device_guid;
|
|
|
|
switch (reason) {
|
|
case VDEV_LABEL_CREATE:
|
|
case VDEV_LABEL_L2CACHE:
|
|
return (B_TRUE);
|
|
|
|
case VDEV_LABEL_REPLACE:
|
|
return (!spa_has_spare(spa, device_guid) ||
|
|
spare_pool != 0ULL);
|
|
|
|
case VDEV_LABEL_SPARE:
|
|
return (spa_has_spare(spa, device_guid));
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check to see if this is an l2cache device.
|
|
*/
|
|
if (spa_l2cache_exists(device_guid, NULL))
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* We can't rely on a pool's state if it's been imported
|
|
* read-only. Instead we look to see if the pools is marked
|
|
* read-only in the namespace and set the state to active.
|
|
*/
|
|
if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
|
|
(spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
|
|
spa_mode(spa) == FREAD)
|
|
state = POOL_STATE_ACTIVE;
|
|
|
|
/*
|
|
* If the device is marked ACTIVE, then this device is in use by another
|
|
* pool on the system.
|
|
*/
|
|
return (state == POOL_STATE_ACTIVE);
|
|
}
|
|
|
|
/*
|
|
* Initialize a vdev label. We check to make sure each leaf device is not in
|
|
* use, and writable. We put down an initial label which we will later
|
|
* overwrite with a complete label. Note that it's important to do this
|
|
* sequentially, not in parallel, so that we catch cases of multiple use of the
|
|
* same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
|
|
* itself.
|
|
*/
|
|
int
|
|
vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
nvlist_t *label;
|
|
vdev_phys_t *vp;
|
|
abd_t *vp_abd;
|
|
abd_t *pad2;
|
|
uberblock_t *ub;
|
|
abd_t *ub_abd;
|
|
zio_t *zio;
|
|
char *buf;
|
|
size_t buflen;
|
|
int error;
|
|
uint64_t spare_guid = 0, l2cache_guid = 0;
|
|
int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
if ((error = vdev_label_init(vd->vdev_child[c],
|
|
crtxg, reason)) != 0)
|
|
return (error);
|
|
|
|
/* Track the creation time for this vdev */
|
|
vd->vdev_crtxg = crtxg;
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
|
|
return (0);
|
|
|
|
/*
|
|
* Dead vdevs cannot be initialized.
|
|
*/
|
|
if (vdev_is_dead(vd))
|
|
return (SET_ERROR(EIO));
|
|
|
|
/*
|
|
* Determine if the vdev is in use.
|
|
*/
|
|
if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
|
|
vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
|
|
return (SET_ERROR(EBUSY));
|
|
|
|
/*
|
|
* If this is a request to add or replace a spare or l2cache device
|
|
* that is in use elsewhere on the system, then we must update the
|
|
* guid (which was initialized to a random value) to reflect the
|
|
* actual GUID (which is shared between multiple pools).
|
|
*/
|
|
if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
|
|
spare_guid != 0ULL) {
|
|
uint64_t guid_delta = spare_guid - vd->vdev_guid;
|
|
|
|
vd->vdev_guid += guid_delta;
|
|
|
|
for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
|
|
pvd->vdev_guid_sum += guid_delta;
|
|
|
|
/*
|
|
* If this is a replacement, then we want to fallthrough to the
|
|
* rest of the code. If we're adding a spare, then it's already
|
|
* labeled appropriately and we can just return.
|
|
*/
|
|
if (reason == VDEV_LABEL_SPARE)
|
|
return (0);
|
|
ASSERT(reason == VDEV_LABEL_REPLACE ||
|
|
reason == VDEV_LABEL_SPLIT);
|
|
}
|
|
|
|
if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
|
|
l2cache_guid != 0ULL) {
|
|
uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
|
|
|
|
vd->vdev_guid += guid_delta;
|
|
|
|
for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
|
|
pvd->vdev_guid_sum += guid_delta;
|
|
|
|
/*
|
|
* If this is a replacement, then we want to fallthrough to the
|
|
* rest of the code. If we're adding an l2cache, then it's
|
|
* already labeled appropriately and we can just return.
|
|
*/
|
|
if (reason == VDEV_LABEL_L2CACHE)
|
|
return (0);
|
|
ASSERT(reason == VDEV_LABEL_REPLACE);
|
|
}
|
|
|
|
/*
|
|
* Initialize its label.
|
|
*/
|
|
vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
|
|
abd_zero(vp_abd, sizeof (vdev_phys_t));
|
|
vp = abd_to_buf(vp_abd);
|
|
|
|
/*
|
|
* Generate a label describing the pool and our top-level vdev.
|
|
* We mark it as being from txg 0 to indicate that it's not
|
|
* really part of an active pool just yet. The labels will
|
|
* be written again with a meaningful txg by spa_sync().
|
|
*/
|
|
if (reason == VDEV_LABEL_SPARE ||
|
|
(reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
|
|
/*
|
|
* For inactive hot spares, we generate a special label that
|
|
* identifies as a mutually shared hot spare. We write the
|
|
* label if we are adding a hot spare, or if we are removing an
|
|
* active hot spare (in which case we want to revert the
|
|
* labels).
|
|
*/
|
|
VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
|
|
spa_version(spa)) == 0);
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
|
|
POOL_STATE_SPARE) == 0);
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
|
|
vd->vdev_guid) == 0);
|
|
} else if (reason == VDEV_LABEL_L2CACHE ||
|
|
(reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
|
|
/*
|
|
* For level 2 ARC devices, add a special label.
|
|
*/
|
|
VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
|
|
spa_version(spa)) == 0);
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
|
|
POOL_STATE_L2CACHE) == 0);
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
|
|
vd->vdev_guid) == 0);
|
|
} else {
|
|
uint64_t txg = 0ULL;
|
|
|
|
if (reason == VDEV_LABEL_SPLIT)
|
|
txg = spa->spa_uberblock.ub_txg;
|
|
label = spa_config_generate(spa, vd, txg, B_FALSE);
|
|
|
|
/*
|
|
* Add our creation time. This allows us to detect multiple
|
|
* vdev uses as described above, and automatically expires if we
|
|
* fail.
|
|
*/
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
|
|
crtxg) == 0);
|
|
}
|
|
|
|
buf = vp->vp_nvlist;
|
|
buflen = sizeof (vp->vp_nvlist);
|
|
|
|
error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
|
|
if (error != 0) {
|
|
nvlist_free(label);
|
|
abd_free(vp_abd);
|
|
/* EFAULT means nvlist_pack ran out of room */
|
|
return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Initialize uberblock template.
|
|
*/
|
|
ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
|
|
abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
|
|
abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
|
|
ub = abd_to_buf(ub_abd);
|
|
ub->ub_txg = 0;
|
|
|
|
/* Initialize the 2nd padding area. */
|
|
pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
|
|
abd_zero(pad2, VDEV_PAD_SIZE);
|
|
|
|
/*
|
|
* Write everything in parallel.
|
|
*/
|
|
retry:
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (int l = 0; l < VDEV_LABELS; l++) {
|
|
|
|
vdev_label_write(zio, vd, l, vp_abd,
|
|
offsetof(vdev_label_t, vl_vdev_phys),
|
|
sizeof (vdev_phys_t), NULL, NULL, flags);
|
|
|
|
/*
|
|
* Skip the 1st padding area.
|
|
* Zero out the 2nd padding area where it might have
|
|
* left over data from previous filesystem format.
|
|
*/
|
|
vdev_label_write(zio, vd, l, pad2,
|
|
offsetof(vdev_label_t, vl_pad2),
|
|
VDEV_PAD_SIZE, NULL, NULL, flags);
|
|
|
|
vdev_label_write(zio, vd, l, ub_abd,
|
|
offsetof(vdev_label_t, vl_uberblock),
|
|
VDEV_UBERBLOCK_RING, NULL, NULL, flags);
|
|
}
|
|
|
|
error = zio_wait(zio);
|
|
|
|
if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
|
|
flags |= ZIO_FLAG_TRYHARD;
|
|
goto retry;
|
|
}
|
|
|
|
nvlist_free(label);
|
|
abd_free(pad2);
|
|
abd_free(ub_abd);
|
|
abd_free(vp_abd);
|
|
|
|
/*
|
|
* If this vdev hasn't been previously identified as a spare, then we
|
|
* mark it as such only if a) we are labeling it as a spare, or b) it
|
|
* exists as a spare elsewhere in the system. Do the same for
|
|
* level 2 ARC devices.
|
|
*/
|
|
if (error == 0 && !vd->vdev_isspare &&
|
|
(reason == VDEV_LABEL_SPARE ||
|
|
spa_spare_exists(vd->vdev_guid, NULL, NULL)))
|
|
spa_spare_add(vd);
|
|
|
|
if (error == 0 && !vd->vdev_isl2cache &&
|
|
(reason == VDEV_LABEL_L2CACHE ||
|
|
spa_l2cache_exists(vd->vdev_guid, NULL)))
|
|
spa_l2cache_add(vd);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* uberblock load/sync
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Consider the following situation: txg is safely synced to disk. We've
|
|
* written the first uberblock for txg + 1, and then we lose power. When we
|
|
* come back up, we fail to see the uberblock for txg + 1 because, say,
|
|
* it was on a mirrored device and the replica to which we wrote txg + 1
|
|
* is now offline. If we then make some changes and sync txg + 1, and then
|
|
* the missing replica comes back, then for a few seconds we'll have two
|
|
* conflicting uberblocks on disk with the same txg. The solution is simple:
|
|
* among uberblocks with equal txg, choose the one with the latest timestamp.
|
|
*/
|
|
static int
|
|
vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
|
|
{
|
|
int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
|
|
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
/*
|
|
* If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
|
|
* ZFS, e.g. zfsonlinux >= 0.7.
|
|
*
|
|
* If one ub has MMP and the other does not, they were written by
|
|
* different hosts, which matters for MMP. So we treat no MMP/no SEQ as
|
|
* a 0 value.
|
|
*
|
|
* Since timestamp and txg are the same if we get this far, either is
|
|
* acceptable for importing the pool.
|
|
*/
|
|
unsigned int seq1 = 0;
|
|
unsigned int seq2 = 0;
|
|
|
|
if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
|
|
seq1 = MMP_SEQ(ub1);
|
|
|
|
if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
|
|
seq2 = MMP_SEQ(ub2);
|
|
|
|
return (TREE_CMP(seq1, seq2));
|
|
}
|
|
|
|
struct ubl_cbdata {
|
|
uberblock_t *ubl_ubbest; /* Best uberblock */
|
|
vdev_t *ubl_vd; /* vdev associated with the above */
|
|
};
|
|
|
|
static void
|
|
vdev_uberblock_load_done(zio_t *zio)
|
|
{
|
|
vdev_t *vd = zio->io_vd;
|
|
spa_t *spa = zio->io_spa;
|
|
zio_t *rio = zio->io_private;
|
|
uberblock_t *ub = abd_to_buf(zio->io_abd);
|
|
struct ubl_cbdata *cbp = rio->io_private;
|
|
|
|
ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
|
|
|
|
if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
|
|
mutex_enter(&rio->io_lock);
|
|
if (ub->ub_txg <= spa->spa_load_max_txg &&
|
|
vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
|
|
/*
|
|
* Keep track of the vdev in which this uberblock
|
|
* was found. We will use this information later
|
|
* to obtain the config nvlist associated with
|
|
* this uberblock.
|
|
*/
|
|
*cbp->ubl_ubbest = *ub;
|
|
cbp->ubl_vd = vd;
|
|
}
|
|
mutex_exit(&rio->io_lock);
|
|
}
|
|
|
|
abd_free(zio->io_abd);
|
|
}
|
|
|
|
static void
|
|
vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
|
|
struct ubl_cbdata *cbp)
|
|
{
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
|
|
for (int l = 0; l < VDEV_LABELS; l++) {
|
|
for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
|
|
vdev_label_read(zio, vd, l,
|
|
abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
|
|
B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
|
|
VDEV_UBERBLOCK_SIZE(vd),
|
|
vdev_uberblock_load_done, zio, flags);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reads the 'best' uberblock from disk along with its associated
|
|
* configuration. First, we read the uberblock array of each label of each
|
|
* vdev, keeping track of the uberblock with the highest txg in each array.
|
|
* Then, we read the configuration from the same vdev as the best uberblock.
|
|
*/
|
|
void
|
|
vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
|
|
{
|
|
zio_t *zio;
|
|
spa_t *spa = rvd->vdev_spa;
|
|
struct ubl_cbdata cb;
|
|
int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
|
|
ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
|
|
|
|
ASSERT(ub);
|
|
ASSERT(config);
|
|
|
|
bzero(ub, sizeof (uberblock_t));
|
|
*config = NULL;
|
|
|
|
cb.ubl_ubbest = ub;
|
|
cb.ubl_vd = NULL;
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
zio = zio_root(spa, NULL, &cb, flags);
|
|
vdev_uberblock_load_impl(zio, rvd, flags, &cb);
|
|
(void) zio_wait(zio);
|
|
|
|
/*
|
|
* It's possible that the best uberblock was discovered on a label
|
|
* that has a configuration which was written in a future txg.
|
|
* Search all labels on this vdev to find the configuration that
|
|
* matches the txg for our uberblock.
|
|
*/
|
|
if (cb.ubl_vd != NULL) {
|
|
vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
|
|
"txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
|
|
|
|
*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
|
|
if (*config == NULL && spa->spa_extreme_rewind) {
|
|
vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
|
|
"Trying again without txg restrictions.");
|
|
*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
|
|
}
|
|
if (*config == NULL) {
|
|
vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
|
|
}
|
|
}
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
}
|
|
|
|
/*
|
|
* For use when a leaf vdev is expanded.
|
|
* The location of labels 2 and 3 changed, and at the new location the
|
|
* uberblock rings are either empty or contain garbage. The sync will write
|
|
* new configs there because the vdev is dirty, but expansion also needs the
|
|
* uberblock rings copied. Read them from label 0 which did not move.
|
|
*
|
|
* Since the point is to populate labels {2,3} with valid uberblocks,
|
|
* we zero uberblocks we fail to read or which are not valid.
|
|
*/
|
|
|
|
static void
|
|
vdev_copy_uberblocks(vdev_t *vd)
|
|
{
|
|
abd_t *ub_abd;
|
|
zio_t *write_zio;
|
|
int locks = (SCL_L2ARC | SCL_ZIO);
|
|
int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
|
|
ZIO_FLAG_SPECULATIVE;
|
|
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
|
|
SCL_STATE);
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
|
|
spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
|
|
|
|
ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
|
|
|
|
write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
|
|
for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
|
|
const int src_label = 0;
|
|
zio_t *zio;
|
|
|
|
zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
|
|
vdev_label_read(zio, vd, src_label, ub_abd,
|
|
VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
|
|
NULL, NULL, flags);
|
|
|
|
if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
|
|
abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
|
|
|
|
for (int l = 2; l < VDEV_LABELS; l++)
|
|
vdev_label_write(write_zio, vd, l, ub_abd,
|
|
VDEV_UBERBLOCK_OFFSET(vd, n),
|
|
VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
|
|
flags | ZIO_FLAG_DONT_PROPAGATE);
|
|
}
|
|
(void) zio_wait(write_zio);
|
|
|
|
spa_config_exit(vd->vdev_spa, locks, FTAG);
|
|
|
|
abd_free(ub_abd);
|
|
}
|
|
|
|
/*
|
|
* On success, increment root zio's count of good writes.
|
|
* We only get credit for writes to known-visible vdevs; see spa_vdev_add().
|
|
*/
|
|
static void
|
|
vdev_uberblock_sync_done(zio_t *zio)
|
|
{
|
|
uint64_t *good_writes = zio->io_private;
|
|
|
|
if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
|
|
atomic_inc_64(good_writes);
|
|
}
|
|
|
|
/*
|
|
* Write the uberblock to all labels of all leaves of the specified vdev.
|
|
*/
|
|
static void
|
|
vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
|
|
uberblock_t *ub, vdev_t *vd, int flags)
|
|
{
|
|
for (uint64_t c = 0; c < vd->vdev_children; c++) {
|
|
vdev_uberblock_sync(zio, good_writes,
|
|
ub, vd->vdev_child[c], flags);
|
|
}
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return;
|
|
|
|
if (!vdev_writeable(vd))
|
|
return;
|
|
|
|
/* If the vdev was expanded, need to copy uberblock rings. */
|
|
if (vd->vdev_state == VDEV_STATE_HEALTHY &&
|
|
vd->vdev_copy_uberblocks == B_TRUE) {
|
|
vdev_copy_uberblocks(vd);
|
|
vd->vdev_copy_uberblocks = B_FALSE;
|
|
}
|
|
|
|
int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
|
|
int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
|
|
|
|
/* Copy the uberblock_t into the ABD */
|
|
abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
|
|
abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
|
|
abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
|
|
|
|
for (int l = 0; l < VDEV_LABELS; l++)
|
|
vdev_label_write(zio, vd, l, ub_abd,
|
|
VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
|
|
vdev_uberblock_sync_done, good_writes,
|
|
flags | ZIO_FLAG_DONT_PROPAGATE);
|
|
|
|
abd_free(ub_abd);
|
|
}
|
|
|
|
/* Sync the uberblocks to all vdevs in svd[] */
|
|
int
|
|
vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
|
|
{
|
|
spa_t *spa = svd[0]->vdev_spa;
|
|
zio_t *zio;
|
|
uint64_t good_writes = 0;
|
|
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (int v = 0; v < svdcount; v++)
|
|
vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
|
|
|
|
(void) zio_wait(zio);
|
|
|
|
/*
|
|
* Flush the uberblocks to disk. This ensures that the odd labels
|
|
* are no longer needed (because the new uberblocks and the even
|
|
* labels are safely on disk), so it is safe to overwrite them.
|
|
*/
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (int v = 0; v < svdcount; v++) {
|
|
if (vdev_writeable(svd[v])) {
|
|
zio_flush(zio, svd[v]);
|
|
}
|
|
}
|
|
|
|
(void) zio_wait(zio);
|
|
|
|
return (good_writes >= 1 ? 0 : EIO);
|
|
}
|
|
|
|
/*
|
|
* On success, increment the count of good writes for our top-level vdev.
|
|
*/
|
|
static void
|
|
vdev_label_sync_done(zio_t *zio)
|
|
{
|
|
uint64_t *good_writes = zio->io_private;
|
|
|
|
if (zio->io_error == 0)
|
|
atomic_inc_64(good_writes);
|
|
}
|
|
|
|
/*
|
|
* If there weren't enough good writes, indicate failure to the parent.
|
|
*/
|
|
static void
|
|
vdev_label_sync_top_done(zio_t *zio)
|
|
{
|
|
uint64_t *good_writes = zio->io_private;
|
|
|
|
if (*good_writes == 0)
|
|
zio->io_error = SET_ERROR(EIO);
|
|
|
|
kmem_free(good_writes, sizeof (uint64_t));
|
|
}
|
|
|
|
/*
|
|
* We ignore errors for log and cache devices, simply free the private data.
|
|
*/
|
|
static void
|
|
vdev_label_sync_ignore_done(zio_t *zio)
|
|
{
|
|
kmem_free(zio->io_private, sizeof (uint64_t));
|
|
}
|
|
|
|
/*
|
|
* Write all even or odd labels to all leaves of the specified vdev.
|
|
*/
|
|
static void
|
|
vdev_label_sync(zio_t *zio, uint64_t *good_writes,
|
|
vdev_t *vd, int l, uint64_t txg, int flags)
|
|
{
|
|
nvlist_t *label;
|
|
vdev_phys_t *vp;
|
|
abd_t *vp_abd;
|
|
char *buf;
|
|
size_t buflen;
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
vdev_label_sync(zio, good_writes,
|
|
vd->vdev_child[c], l, txg, flags);
|
|
}
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return;
|
|
|
|
if (!vdev_writeable(vd))
|
|
return;
|
|
|
|
/*
|
|
* Generate a label describing the top-level config to which we belong.
|
|
*/
|
|
label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
|
|
|
|
vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
|
|
abd_zero(vp_abd, sizeof (vdev_phys_t));
|
|
vp = abd_to_buf(vp_abd);
|
|
|
|
buf = vp->vp_nvlist;
|
|
buflen = sizeof (vp->vp_nvlist);
|
|
|
|
if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
|
|
for (; l < VDEV_LABELS; l += 2) {
|
|
vdev_label_write(zio, vd, l, vp_abd,
|
|
offsetof(vdev_label_t, vl_vdev_phys),
|
|
sizeof (vdev_phys_t),
|
|
vdev_label_sync_done, good_writes,
|
|
flags | ZIO_FLAG_DONT_PROPAGATE);
|
|
}
|
|
}
|
|
|
|
abd_free(vp_abd);
|
|
nvlist_free(label);
|
|
}
|
|
|
|
int
|
|
vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
|
|
{
|
|
list_t *dl = &spa->spa_config_dirty_list;
|
|
vdev_t *vd;
|
|
zio_t *zio;
|
|
int error;
|
|
|
|
/*
|
|
* Write the new labels to disk.
|
|
*/
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
|
|
uint64_t *good_writes;
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
|
|
zio_t *vio = zio_null(zio, spa, NULL,
|
|
(vd->vdev_islog || vd->vdev_aux != NULL) ?
|
|
vdev_label_sync_ignore_done : vdev_label_sync_top_done,
|
|
good_writes, flags);
|
|
vdev_label_sync(vio, good_writes, vd, l, txg, flags);
|
|
zio_nowait(vio);
|
|
}
|
|
|
|
error = zio_wait(zio);
|
|
|
|
/*
|
|
* Flush the new labels to disk.
|
|
*/
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
|
|
zio_flush(zio, vd);
|
|
|
|
(void) zio_wait(zio);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Sync the uberblock and any changes to the vdev configuration.
|
|
*
|
|
* The order of operations is carefully crafted to ensure that
|
|
* if the system panics or loses power at any time, the state on disk
|
|
* is still transactionally consistent. The in-line comments below
|
|
* describe the failure semantics at each stage.
|
|
*
|
|
* Moreover, vdev_config_sync() is designed to be idempotent: if it fails
|
|
* at any time, you can just call it again, and it will resume its work.
|
|
*/
|
|
int
|
|
vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
|
|
{
|
|
spa_t *spa = svd[0]->vdev_spa;
|
|
uberblock_t *ub = &spa->spa_uberblock;
|
|
int error = 0;
|
|
int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
|
|
|
|
ASSERT(svdcount != 0);
|
|
retry:
|
|
/*
|
|
* Normally, we don't want to try too hard to write every label and
|
|
* uberblock. If there is a flaky disk, we don't want the rest of the
|
|
* sync process to block while we retry. But if we can't write a
|
|
* single label out, we should retry with ZIO_FLAG_TRYHARD before
|
|
* bailing out and declaring the pool faulted.
|
|
*/
|
|
if (error != 0) {
|
|
if ((flags & ZIO_FLAG_TRYHARD) != 0)
|
|
return (error);
|
|
flags |= ZIO_FLAG_TRYHARD;
|
|
}
|
|
|
|
ASSERT(ub->ub_txg <= txg);
|
|
|
|
/*
|
|
* If this isn't a resync due to I/O errors,
|
|
* and nothing changed in this transaction group,
|
|
* and the vdev configuration hasn't changed,
|
|
* then there's nothing to do.
|
|
*/
|
|
if (ub->ub_txg < txg) {
|
|
boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
|
|
txg, spa->spa_mmp.mmp_delay);
|
|
|
|
if (!changed && list_is_empty(&spa->spa_config_dirty_list))
|
|
return (0);
|
|
}
|
|
|
|
if (txg > spa_freeze_txg(spa))
|
|
return (0);
|
|
|
|
ASSERT(txg <= spa->spa_final_txg);
|
|
|
|
/*
|
|
* Flush the write cache of every disk that's been written to
|
|
* in this transaction group. This ensures that all blocks
|
|
* written in this txg will be committed to stable storage
|
|
* before any uberblock that references them.
|
|
*/
|
|
zio_t *zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (vdev_t *vd =
|
|
txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
|
|
vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
|
|
zio_flush(zio, vd);
|
|
|
|
(void) zio_wait(zio);
|
|
|
|
/*
|
|
* Sync out the even labels (L0, L2) for every dirty vdev. If the
|
|
* system dies in the middle of this process, that's OK: all of the
|
|
* even labels that made it to disk will be newer than any uberblock,
|
|
* and will therefore be considered invalid. The odd labels (L1, L3),
|
|
* which have not yet been touched, will still be valid. We flush
|
|
* the new labels to disk to ensure that all even-label updates
|
|
* are committed to stable storage before the uberblock update.
|
|
*/
|
|
if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
|
|
if ((flags & ZIO_FLAG_TRYHARD) != 0) {
|
|
zfs_dbgmsg("vdev_label_sync_list() returned error %d "
|
|
"for pool '%s' when syncing out the even labels "
|
|
"of dirty vdevs", error, spa_name(spa));
|
|
}
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* Sync the uberblocks to all vdevs in svd[].
|
|
* If the system dies in the middle of this step, there are two cases
|
|
* to consider, and the on-disk state is consistent either way:
|
|
*
|
|
* (1) If none of the new uberblocks made it to disk, then the
|
|
* previous uberblock will be the newest, and the odd labels
|
|
* (which had not yet been touched) will be valid with respect
|
|
* to that uberblock.
|
|
*
|
|
* (2) If one or more new uberblocks made it to disk, then they
|
|
* will be the newest, and the even labels (which had all
|
|
* been successfully committed) will be valid with respect
|
|
* to the new uberblocks.
|
|
*/
|
|
if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
|
|
if ((flags & ZIO_FLAG_TRYHARD) != 0) {
|
|
zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
|
|
"%d for pool '%s'", error, spa_name(spa));
|
|
}
|
|
goto retry;
|
|
}
|
|
|
|
if (spa_multihost(spa))
|
|
mmp_update_uberblock(spa, ub);
|
|
|
|
/*
|
|
* Sync out odd labels for every dirty vdev. If the system dies
|
|
* in the middle of this process, the even labels and the new
|
|
* uberblocks will suffice to open the pool. The next time
|
|
* the pool is opened, the first thing we'll do -- before any
|
|
* user data is modified -- is mark every vdev dirty so that
|
|
* all labels will be brought up to date. We flush the new labels
|
|
* to disk to ensure that all odd-label updates are committed to
|
|
* stable storage before the next transaction group begins.
|
|
*/
|
|
if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
|
|
if ((flags & ZIO_FLAG_TRYHARD) != 0) {
|
|
zfs_dbgmsg("vdev_label_sync_list() returned error %d "
|
|
"for pool '%s' when syncing out the odd labels of "
|
|
"dirty vdevs", error, spa_name(spa));
|
|
}
|
|
goto retry;
|
|
}
|
|
|
|
return (0);
|
|
}
|