mirror_zfs/module/os/linux/zfs/abd_os.c
Rob Norris c6be6ce175 abd_iter_page: don't use compound heads on Linux <4.5
Before 4.5 (specifically, torvalds/linux@ddc58f2), head and tail pages
in a compound page were refcounted separately. This means that using the
head page without taking a reference to it could see it cleaned up later
before we're finished with it. Specifically, bio_add_page() would take a
reference, and drop its reference after the bio completion callback
returns.

If the zio is executed immediately from the completion callback, this is
usually ok, as any data is referenced through the tail page referenced
by the ABD, and so becomes "live" that way. If there's a delay in zio
execution (high load, error injection), then the head page can be freed,
along with any dirty flags or other indicators that the underlying
memory is used. Later, when the zio completes and that memory is
accessed, its either unmapped and an unhandled fault takes down the
entire system, or it is mapped and we end up messing around in someone
else's memory. Both of these are very bad.

The solution on these older kernels is to take a reference to the head
page when we use it, and release it when we're done. There's not really
a sensible way under our current structure to do this; the "best" would
be to keep a list of head page references in the ABD, and release them
when the ABD is freed.

Since this additional overhead is totally unnecessary on 4.5+, where
head and tail pages share refcounts, I've opted to simply not use the
compound head in ABD page iteration there. This is theoretically less
efficient (though cleaning up head page references would add overhead),
but its safe, and we still get the other benefits of not mapping pages
before adding them to a bio and not mis-splitting pages.

There doesn't appear to be an obvious symbol name or config option we
can match on to discover this behaviour in configure (and the mm/page
APIs have changed a lot since then anyway), so I've gone with a simple
version check.

Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Closes #15533
Closes #15588
2024-03-25 16:51:54 -07:00

1274 lines
36 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2014 by Chunwei Chen. All rights reserved.
* Copyright (c) 2019 by Delphix. All rights reserved.
* Copyright (c) 2023, 2024, Klara Inc.
*/
/*
* See abd.c for a general overview of the arc buffered data (ABD).
*
* Linear buffers act exactly like normal buffers and are always mapped into the
* kernel's virtual memory space, while scattered ABD data chunks are allocated
* as physical pages and then mapped in only while they are actually being
* accessed through one of the abd_* library functions. Using scattered ABDs
* provides several benefits:
*
* (1) They avoid use of kmem_*, preventing performance problems where running
* kmem_reap on very large memory systems never finishes and causes
* constant TLB shootdowns.
*
* (2) Fragmentation is less of an issue since when we are at the limit of
* allocatable space, we won't have to search around for a long free
* hole in the VA space for large ARC allocations. Each chunk is mapped in
* individually, so even if we are using HIGHMEM (see next point) we
* wouldn't need to worry about finding a contiguous address range.
*
* (3) If we are not using HIGHMEM, then all physical memory is always
* mapped into the kernel's address space, so we also avoid the map /
* unmap costs on each ABD access.
*
* If we are not using HIGHMEM, scattered buffers which have only one chunk
* can be treated as linear buffers, because they are contiguous in the
* kernel's virtual address space. See abd_alloc_chunks() for details.
*/
#include <sys/abd_impl.h>
#include <sys/param.h>
#include <sys/zio.h>
#include <sys/arc.h>
#include <sys/zfs_context.h>
#include <sys/zfs_znode.h>
#ifdef _KERNEL
#include <linux/kmap_compat.h>
#include <linux/mm_compat.h>
#include <linux/scatterlist.h>
#include <linux/version.h>
#endif
#ifdef _KERNEL
#if defined(MAX_ORDER)
#define ABD_MAX_ORDER (MAX_ORDER)
#elif defined(MAX_PAGE_ORDER)
#define ABD_MAX_ORDER (MAX_PAGE_ORDER)
#endif
#else
#define ABD_MAX_ORDER (1)
#endif
typedef struct abd_stats {
kstat_named_t abdstat_struct_size;
kstat_named_t abdstat_linear_cnt;
kstat_named_t abdstat_linear_data_size;
kstat_named_t abdstat_scatter_cnt;
kstat_named_t abdstat_scatter_data_size;
kstat_named_t abdstat_scatter_chunk_waste;
kstat_named_t abdstat_scatter_orders[ABD_MAX_ORDER];
kstat_named_t abdstat_scatter_page_multi_chunk;
kstat_named_t abdstat_scatter_page_multi_zone;
kstat_named_t abdstat_scatter_page_alloc_retry;
kstat_named_t abdstat_scatter_sg_table_retry;
} abd_stats_t;
static abd_stats_t abd_stats = {
/* Amount of memory occupied by all of the abd_t struct allocations */
{ "struct_size", KSTAT_DATA_UINT64 },
/*
* The number of linear ABDs which are currently allocated, excluding
* ABDs which don't own their data (for instance the ones which were
* allocated through abd_get_offset() and abd_get_from_buf()). If an
* ABD takes ownership of its buf then it will become tracked.
*/
{ "linear_cnt", KSTAT_DATA_UINT64 },
/* Amount of data stored in all linear ABDs tracked by linear_cnt */
{ "linear_data_size", KSTAT_DATA_UINT64 },
/*
* The number of scatter ABDs which are currently allocated, excluding
* ABDs which don't own their data (for instance the ones which were
* allocated through abd_get_offset()).
*/
{ "scatter_cnt", KSTAT_DATA_UINT64 },
/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
{ "scatter_data_size", KSTAT_DATA_UINT64 },
/*
* The amount of space wasted at the end of the last chunk across all
* scatter ABDs tracked by scatter_cnt.
*/
{ "scatter_chunk_waste", KSTAT_DATA_UINT64 },
/*
* The number of compound allocations of a given order. These
* allocations are spread over all currently allocated ABDs, and
* act as a measure of memory fragmentation.
*/
{ { "scatter_order_N", KSTAT_DATA_UINT64 } },
/*
* The number of scatter ABDs which contain multiple chunks.
* ABDs are preferentially allocated from the minimum number of
* contiguous multi-page chunks, a single chunk is optimal.
*/
{ "scatter_page_multi_chunk", KSTAT_DATA_UINT64 },
/*
* The number of scatter ABDs which are split across memory zones.
* ABDs are preferentially allocated using pages from a single zone.
*/
{ "scatter_page_multi_zone", KSTAT_DATA_UINT64 },
/*
* The total number of retries encountered when attempting to
* allocate the pages to populate the scatter ABD.
*/
{ "scatter_page_alloc_retry", KSTAT_DATA_UINT64 },
/*
* The total number of retries encountered when attempting to
* allocate the sg table for an ABD.
*/
{ "scatter_sg_table_retry", KSTAT_DATA_UINT64 },
};
static struct {
wmsum_t abdstat_struct_size;
wmsum_t abdstat_linear_cnt;
wmsum_t abdstat_linear_data_size;
wmsum_t abdstat_scatter_cnt;
wmsum_t abdstat_scatter_data_size;
wmsum_t abdstat_scatter_chunk_waste;
wmsum_t abdstat_scatter_orders[ABD_MAX_ORDER];
wmsum_t abdstat_scatter_page_multi_chunk;
wmsum_t abdstat_scatter_page_multi_zone;
wmsum_t abdstat_scatter_page_alloc_retry;
wmsum_t abdstat_scatter_sg_table_retry;
} abd_sums;
#define abd_for_each_sg(abd, sg, n, i) \
for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
/*
* zfs_abd_scatter_min_size is the minimum allocation size to use scatter
* ABD's. Smaller allocations will use linear ABD's which uses
* zio_[data_]buf_alloc().
*
* Scatter ABD's use at least one page each, so sub-page allocations waste
* some space when allocated as scatter (e.g. 2KB scatter allocation wastes
* half of each page). Using linear ABD's for small allocations means that
* they will be put on slabs which contain many allocations. This can
* improve memory efficiency, but it also makes it much harder for ARC
* evictions to actually free pages, because all the buffers on one slab need
* to be freed in order for the slab (and underlying pages) to be freed.
* Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
* possible for them to actually waste more memory than scatter (one page per
* buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
*
* Spill blocks are typically 512B and are heavily used on systems running
* selinux with the default dnode size and the `xattr=sa` property set.
*
* By default we use linear allocations for 512B and 1KB, and scatter
* allocations for larger (1.5KB and up).
*/
static int zfs_abd_scatter_min_size = 512 * 3;
/*
* We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
* just a single zero'd page. This allows us to conserve memory by
* only using a single zero page for the scatterlist.
*/
abd_t *abd_zero_scatter = NULL;
struct page;
/*
* _KERNEL - Will point to ZERO_PAGE if it is available or it will be
* an allocated zero'd PAGESIZE buffer.
* Userspace - Will be an allocated zero'ed PAGESIZE buffer.
*
* abd_zero_page is assigned to each of the pages of abd_zero_scatter.
*/
static struct page *abd_zero_page = NULL;
static kmem_cache_t *abd_cache = NULL;
static kstat_t *abd_ksp;
static uint_t
abd_chunkcnt_for_bytes(size_t size)
{
return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
}
abd_t *
abd_alloc_struct_impl(size_t size)
{
/*
* In Linux we do not use the size passed in during ABD
* allocation, so we just ignore it.
*/
(void) size;
abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
ASSERT3P(abd, !=, NULL);
ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));
return (abd);
}
void
abd_free_struct_impl(abd_t *abd)
{
kmem_cache_free(abd_cache, abd);
ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
}
#ifdef _KERNEL
static unsigned zfs_abd_scatter_max_order = ABD_MAX_ORDER - 1;
/*
* Mark zfs data pages so they can be excluded from kernel crash dumps
*/
#ifdef _LP64
#define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E
static inline void
abd_mark_zfs_page(struct page *page)
{
get_page(page);
SetPagePrivate(page);
set_page_private(page, ABD_FILE_CACHE_PAGE);
}
static inline void
abd_unmark_zfs_page(struct page *page)
{
set_page_private(page, 0UL);
ClearPagePrivate(page);
put_page(page);
}
#else
#define abd_mark_zfs_page(page)
#define abd_unmark_zfs_page(page)
#endif /* _LP64 */
#ifndef CONFIG_HIGHMEM
#ifndef __GFP_RECLAIM
#define __GFP_RECLAIM __GFP_WAIT
#endif
/*
* The goal is to minimize fragmentation by preferentially populating ABDs
* with higher order compound pages from a single zone. Allocation size is
* progressively decreased until it can be satisfied without performing
* reclaim or compaction. When necessary this function will degenerate to
* allocating individual pages and allowing reclaim to satisfy allocations.
*/
void
abd_alloc_chunks(abd_t *abd, size_t size)
{
struct list_head pages;
struct sg_table table;
struct scatterlist *sg;
struct page *page, *tmp_page = NULL;
gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
unsigned int max_order = MIN(zfs_abd_scatter_max_order,
ABD_MAX_ORDER - 1);
unsigned int nr_pages = abd_chunkcnt_for_bytes(size);
unsigned int chunks = 0, zones = 0;
size_t remaining_size;
int nid = NUMA_NO_NODE;
unsigned int alloc_pages = 0;
INIT_LIST_HEAD(&pages);
ASSERT3U(alloc_pages, <, nr_pages);
while (alloc_pages < nr_pages) {
unsigned int chunk_pages;
unsigned int order;
order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
chunk_pages = (1U << order);
page = alloc_pages_node(nid, order ? gfp_comp : gfp, order);
if (page == NULL) {
if (order == 0) {
ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
schedule_timeout_interruptible(1);
} else {
max_order = MAX(0, order - 1);
}
continue;
}
list_add_tail(&page->lru, &pages);
if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
zones++;
nid = page_to_nid(page);
ABDSTAT_BUMP(abdstat_scatter_orders[order]);
chunks++;
alloc_pages += chunk_pages;
}
ASSERT3S(alloc_pages, ==, nr_pages);
while (sg_alloc_table(&table, chunks, gfp)) {
ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
schedule_timeout_interruptible(1);
}
sg = table.sgl;
remaining_size = size;
list_for_each_entry_safe(page, tmp_page, &pages, lru) {
size_t sg_size = MIN(PAGESIZE << compound_order(page),
remaining_size);
sg_set_page(sg, page, sg_size, 0);
abd_mark_zfs_page(page);
remaining_size -= sg_size;
sg = sg_next(sg);
list_del(&page->lru);
}
/*
* These conditions ensure that a possible transformation to a linear
* ABD would be valid.
*/
ASSERT(!PageHighMem(sg_page(table.sgl)));
ASSERT0(ABD_SCATTER(abd).abd_offset);
if (table.nents == 1) {
/*
* Since there is only one entry, this ABD can be represented
* as a linear buffer. All single-page (4K) ABD's can be
* represented this way. Some multi-page ABD's can also be
* represented this way, if we were able to allocate a single
* "chunk" (higher-order "page" which represents a power-of-2
* series of physically-contiguous pages). This is often the
* case for 2-page (8K) ABD's.
*
* Representing a single-entry scatter ABD as a linear ABD
* has the performance advantage of avoiding the copy (and
* allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
* A performance increase of around 5% has been observed for
* ARC-cached reads (of small blocks which can take advantage
* of this).
*
* Note that this optimization is only possible because the
* pages are always mapped into the kernel's address space.
* This is not the case for highmem pages, so the
* optimization can not be made there.
*/
abd->abd_flags |= ABD_FLAG_LINEAR;
abd->abd_flags |= ABD_FLAG_LINEAR_PAGE;
abd->abd_u.abd_linear.abd_sgl = table.sgl;
ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl));
} else if (table.nents > 1) {
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
if (zones) {
ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
}
ABD_SCATTER(abd).abd_sgl = table.sgl;
ABD_SCATTER(abd).abd_nents = table.nents;
}
}
#else
/*
* Allocate N individual pages to construct a scatter ABD. This function
* makes no attempt to request contiguous pages and requires the minimal
* number of kernel interfaces. It's designed for maximum compatibility.
*/
void
abd_alloc_chunks(abd_t *abd, size_t size)
{
struct scatterlist *sg = NULL;
struct sg_table table;
struct page *page;
gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
int nr_pages = abd_chunkcnt_for_bytes(size);
int i = 0;
while (sg_alloc_table(&table, nr_pages, gfp)) {
ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
schedule_timeout_interruptible(1);
}
ASSERT3U(table.nents, ==, nr_pages);
ABD_SCATTER(abd).abd_sgl = table.sgl;
ABD_SCATTER(abd).abd_nents = nr_pages;
abd_for_each_sg(abd, sg, nr_pages, i) {
while ((page = __page_cache_alloc(gfp)) == NULL) {
ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
schedule_timeout_interruptible(1);
}
ABDSTAT_BUMP(abdstat_scatter_orders[0]);
sg_set_page(sg, page, PAGESIZE, 0);
abd_mark_zfs_page(page);
}
if (nr_pages > 1) {
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
}
}
#endif /* !CONFIG_HIGHMEM */
/*
* This must be called if any of the sg_table allocation functions
* are called.
*/
static void
abd_free_sg_table(abd_t *abd)
{
struct sg_table table;
table.sgl = ABD_SCATTER(abd).abd_sgl;
table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents;
sg_free_table(&table);
}
void
abd_free_chunks(abd_t *abd)
{
struct scatterlist *sg = NULL;
struct page *page;
int nr_pages = ABD_SCATTER(abd).abd_nents;
int order, i = 0;
if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);
if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
abd_for_each_sg(abd, sg, nr_pages, i) {
page = sg_page(sg);
abd_unmark_zfs_page(page);
order = compound_order(page);
__free_pages(page, order);
ASSERT3U(sg->length, <=, PAGE_SIZE << order);
ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
}
abd_free_sg_table(abd);
}
/*
* Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
* the scatterlist will be set to the zero'd out buffer abd_zero_page.
*/
static void
abd_alloc_zero_scatter(void)
{
struct scatterlist *sg = NULL;
struct sg_table table;
gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
int i = 0;
#if defined(HAVE_ZERO_PAGE_GPL_ONLY)
gfp_t gfp_zero_page = gfp | __GFP_ZERO;
while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) {
ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
schedule_timeout_interruptible(1);
}
abd_mark_zfs_page(abd_zero_page);
#else
abd_zero_page = ZERO_PAGE(0);
#endif /* HAVE_ZERO_PAGE_GPL_ONLY */
while (sg_alloc_table(&table, nr_pages, gfp)) {
ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
schedule_timeout_interruptible(1);
}
ASSERT3U(table.nents, ==, nr_pages);
abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl;
ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
}
ABDSTAT_BUMP(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
}
#else /* _KERNEL */
#ifndef PAGE_SHIFT
#define PAGE_SHIFT (highbit64(PAGESIZE)-1)
#endif
#define zfs_kmap_atomic(chunk) ((void *)chunk)
#define zfs_kunmap_atomic(addr) do { (void)(addr); } while (0)
#define local_irq_save(flags) do { (void)(flags); } while (0)
#define local_irq_restore(flags) do { (void)(flags); } while (0)
#define nth_page(pg, i) \
((struct page *)((void *)(pg) + (i) * PAGESIZE))
struct scatterlist {
struct page *page;
int length;
int end;
};
static void
sg_init_table(struct scatterlist *sg, int nr)
{
memset(sg, 0, nr * sizeof (struct scatterlist));
sg[nr - 1].end = 1;
}
/*
* This must be called if any of the sg_table allocation functions
* are called.
*/
static void
abd_free_sg_table(abd_t *abd)
{
int nents = ABD_SCATTER(abd).abd_nents;
vmem_free(ABD_SCATTER(abd).abd_sgl,
nents * sizeof (struct scatterlist));
}
#define for_each_sg(sgl, sg, nr, i) \
for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg))
static inline void
sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len,
unsigned int offset)
{
/* currently we don't use offset */
ASSERT(offset == 0);
sg->page = page;
sg->length = len;
}
static inline struct page *
sg_page(struct scatterlist *sg)
{
return (sg->page);
}
static inline struct scatterlist *
sg_next(struct scatterlist *sg)
{
if (sg->end)
return (NULL);
return (sg + 1);
}
void
abd_alloc_chunks(abd_t *abd, size_t size)
{
unsigned nr_pages = abd_chunkcnt_for_bytes(size);
struct scatterlist *sg;
int i;
ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages *
sizeof (struct scatterlist), KM_SLEEP);
sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages);
abd_for_each_sg(abd, sg, nr_pages, i) {
struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
sg_set_page(sg, p, PAGESIZE, 0);
}
ABD_SCATTER(abd).abd_nents = nr_pages;
}
void
abd_free_chunks(abd_t *abd)
{
int i, n = ABD_SCATTER(abd).abd_nents;
struct scatterlist *sg;
abd_for_each_sg(abd, sg, n, i) {
struct page *p = nth_page(sg_page(sg), 0);
umem_free_aligned(p, PAGESIZE);
}
abd_free_sg_table(abd);
}
static void
abd_alloc_zero_scatter(void)
{
unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
struct scatterlist *sg;
int i;
abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
memset(abd_zero_page, 0, PAGESIZE);
abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages *
sizeof (struct scatterlist), KM_SLEEP);
sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages);
abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
}
ABDSTAT_BUMP(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
}
#endif /* _KERNEL */
boolean_t
abd_size_alloc_linear(size_t size)
{
return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size);
}
void
abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
{
ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size;
if (op == ABDSTAT_INCR) {
ABDSTAT_BUMP(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
} else {
ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
}
}
void
abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
{
ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
if (op == ABDSTAT_INCR) {
ABDSTAT_BUMP(abdstat_linear_cnt);
ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
} else {
ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
}
}
void
abd_verify_scatter(abd_t *abd)
{
size_t n;
int i = 0;
struct scatterlist *sg = NULL;
ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
ABD_SCATTER(abd).abd_sgl->length);
n = ABD_SCATTER(abd).abd_nents;
abd_for_each_sg(abd, sg, n, i) {
ASSERT3P(sg_page(sg), !=, NULL);
}
}
static void
abd_free_zero_scatter(void)
{
ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE);
ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
abd_free_sg_table(abd_zero_scatter);
abd_free_struct(abd_zero_scatter);
abd_zero_scatter = NULL;
ASSERT3P(abd_zero_page, !=, NULL);
#if defined(_KERNEL)
#if defined(HAVE_ZERO_PAGE_GPL_ONLY)
abd_unmark_zfs_page(abd_zero_page);
__free_page(abd_zero_page);
#endif /* HAVE_ZERO_PAGE_GPL_ONLY */
#else
umem_free_aligned(abd_zero_page, PAGESIZE);
#endif /* _KERNEL */
}
static int
abd_kstats_update(kstat_t *ksp, int rw)
{
abd_stats_t *as = ksp->ks_data;
if (rw == KSTAT_WRITE)
return (EACCES);
as->abdstat_struct_size.value.ui64 =
wmsum_value(&abd_sums.abdstat_struct_size);
as->abdstat_linear_cnt.value.ui64 =
wmsum_value(&abd_sums.abdstat_linear_cnt);
as->abdstat_linear_data_size.value.ui64 =
wmsum_value(&abd_sums.abdstat_linear_data_size);
as->abdstat_scatter_cnt.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_cnt);
as->abdstat_scatter_data_size.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_data_size);
as->abdstat_scatter_chunk_waste.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_chunk_waste);
for (int i = 0; i < ABD_MAX_ORDER; i++) {
as->abdstat_scatter_orders[i].value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_orders[i]);
}
as->abdstat_scatter_page_multi_chunk.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk);
as->abdstat_scatter_page_multi_zone.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone);
as->abdstat_scatter_page_alloc_retry.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry);
as->abdstat_scatter_sg_table_retry.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry);
return (0);
}
void
abd_init(void)
{
int i;
abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
0, NULL, NULL, NULL, NULL, NULL, 0);
wmsum_init(&abd_sums.abdstat_struct_size, 0);
wmsum_init(&abd_sums.abdstat_linear_cnt, 0);
wmsum_init(&abd_sums.abdstat_linear_data_size, 0);
wmsum_init(&abd_sums.abdstat_scatter_cnt, 0);
wmsum_init(&abd_sums.abdstat_scatter_data_size, 0);
wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0);
for (i = 0; i < ABD_MAX_ORDER; i++)
wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0);
wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0);
wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0);
wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0);
wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0);
abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
if (abd_ksp != NULL) {
for (i = 0; i < ABD_MAX_ORDER; i++) {
snprintf(abd_stats.abdstat_scatter_orders[i].name,
KSTAT_STRLEN, "scatter_order_%d", i);
abd_stats.abdstat_scatter_orders[i].data_type =
KSTAT_DATA_UINT64;
}
abd_ksp->ks_data = &abd_stats;
abd_ksp->ks_update = abd_kstats_update;
kstat_install(abd_ksp);
}
abd_alloc_zero_scatter();
}
void
abd_fini(void)
{
abd_free_zero_scatter();
if (abd_ksp != NULL) {
kstat_delete(abd_ksp);
abd_ksp = NULL;
}
wmsum_fini(&abd_sums.abdstat_struct_size);
wmsum_fini(&abd_sums.abdstat_linear_cnt);
wmsum_fini(&abd_sums.abdstat_linear_data_size);
wmsum_fini(&abd_sums.abdstat_scatter_cnt);
wmsum_fini(&abd_sums.abdstat_scatter_data_size);
wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste);
for (int i = 0; i < ABD_MAX_ORDER; i++)
wmsum_fini(&abd_sums.abdstat_scatter_orders[i]);
wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk);
wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone);
wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry);
wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry);
if (abd_cache) {
kmem_cache_destroy(abd_cache);
abd_cache = NULL;
}
}
void
abd_free_linear_page(abd_t *abd)
{
/* Transform it back into a scatter ABD for freeing */
struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl;
abd->abd_flags &= ~ABD_FLAG_LINEAR;
abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE;
ABD_SCATTER(abd).abd_nents = 1;
ABD_SCATTER(abd).abd_offset = 0;
ABD_SCATTER(abd).abd_sgl = sg;
abd_free_chunks(abd);
abd_update_scatter_stats(abd, ABDSTAT_DECR);
}
/*
* If we're going to use this ABD for doing I/O using the block layer, the
* consumer of the ABD data doesn't care if it's scattered or not, and we don't
* plan to store this ABD in memory for a long period of time, we should
* allocate the ABD type that requires the least data copying to do the I/O.
*
* On Linux the optimal thing to do would be to use abd_get_offset() and
* construct a new ABD which shares the original pages thereby eliminating
* the copy. But for the moment a new linear ABD is allocated until this
* performance optimization can be implemented.
*/
abd_t *
abd_alloc_for_io(size_t size, boolean_t is_metadata)
{
return (abd_alloc(size, is_metadata));
}
abd_t *
abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off,
size_t size)
{
(void) size;
int i = 0;
struct scatterlist *sg = NULL;
abd_verify(sabd);
ASSERT3U(off, <=, sabd->abd_size);
size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;
if (abd == NULL)
abd = abd_alloc_struct(0);
/*
* Even if this buf is filesystem metadata, we only track that
* if we own the underlying data buffer, which is not true in
* this case. Therefore, we don't ever use ABD_FLAG_META here.
*/
abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
if (new_offset < sg->length)
break;
new_offset -= sg->length;
}
ABD_SCATTER(abd).abd_sgl = sg;
ABD_SCATTER(abd).abd_offset = new_offset;
ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;
return (abd);
}
/*
* Initialize the abd_iter.
*/
void
abd_iter_init(struct abd_iter *aiter, abd_t *abd)
{
ASSERT(!abd_is_gang(abd));
abd_verify(abd);
memset(aiter, 0, sizeof (struct abd_iter));
aiter->iter_abd = abd;
if (!abd_is_linear(abd)) {
aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
}
}
/*
* This is just a helper function to see if we have exhausted the
* abd_iter and reached the end.
*/
boolean_t
abd_iter_at_end(struct abd_iter *aiter)
{
ASSERT3U(aiter->iter_pos, <=, aiter->iter_abd->abd_size);
return (aiter->iter_pos == aiter->iter_abd->abd_size);
}
/*
* Advance the iterator by a certain amount. Cannot be called when a chunk is
* in use. This can be safely called when the aiter has already exhausted, in
* which case this does nothing.
*/
void
abd_iter_advance(struct abd_iter *aiter, size_t amount)
{
/*
* Ensure that last chunk is not in use. abd_iterate_*() must clear
* this state (directly or abd_iter_unmap()) before advancing.
*/
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
ASSERT0(aiter->iter_mapsize);
ASSERT3P(aiter->iter_page, ==, NULL);
ASSERT0(aiter->iter_page_doff);
ASSERT0(aiter->iter_page_dsize);
/* There's nothing left to advance to, so do nothing */
if (abd_iter_at_end(aiter))
return;
aiter->iter_pos += amount;
aiter->iter_offset += amount;
if (!abd_is_linear(aiter->iter_abd)) {
while (aiter->iter_offset >= aiter->iter_sg->length) {
aiter->iter_offset -= aiter->iter_sg->length;
aiter->iter_sg = sg_next(aiter->iter_sg);
if (aiter->iter_sg == NULL) {
ASSERT0(aiter->iter_offset);
break;
}
}
}
}
/*
* Map the current chunk into aiter. This can be safely called when the aiter
* has already exhausted, in which case this does nothing.
*/
void
abd_iter_map(struct abd_iter *aiter)
{
void *paddr;
size_t offset = 0;
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
ASSERT0(aiter->iter_mapsize);
/* There's nothing left to iterate over, so do nothing */
if (abd_iter_at_end(aiter))
return;
if (abd_is_linear(aiter->iter_abd)) {
ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
offset = aiter->iter_offset;
aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
paddr = ABD_LINEAR_BUF(aiter->iter_abd);
} else {
offset = aiter->iter_offset;
aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
aiter->iter_abd->abd_size - aiter->iter_pos);
paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg));
}
aiter->iter_mapaddr = (char *)paddr + offset;
}
/*
* Unmap the current chunk from aiter. This can be safely called when the aiter
* has already exhausted, in which case this does nothing.
*/
void
abd_iter_unmap(struct abd_iter *aiter)
{
/* There's nothing left to unmap, so do nothing */
if (abd_iter_at_end(aiter))
return;
if (!abd_is_linear(aiter->iter_abd)) {
/* LINTED E_FUNC_SET_NOT_USED */
zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset);
}
ASSERT3P(aiter->iter_mapaddr, !=, NULL);
ASSERT3U(aiter->iter_mapsize, >, 0);
aiter->iter_mapaddr = NULL;
aiter->iter_mapsize = 0;
}
void
abd_cache_reap_now(void)
{
}
#if defined(_KERNEL)
/*
* Yield the next page struct and data offset and size within it, without
* mapping it into the address space.
*/
void
abd_iter_page(struct abd_iter *aiter)
{
if (abd_iter_at_end(aiter)) {
aiter->iter_page = NULL;
aiter->iter_page_doff = 0;
aiter->iter_page_dsize = 0;
return;
}
struct page *page;
size_t doff, dsize;
if (abd_is_linear(aiter->iter_abd)) {
ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
/* memory address at iter_pos */
void *paddr = ABD_LINEAR_BUF(aiter->iter_abd) + aiter->iter_pos;
/* struct page for address */
page = is_vmalloc_addr(paddr) ?
vmalloc_to_page(paddr) : virt_to_page(paddr);
/* offset of address within the page */
doff = offset_in_page(paddr);
/* total data remaining in abd from this position */
dsize = aiter->iter_abd->abd_size - aiter->iter_offset;
} else {
ASSERT(!abd_is_gang(aiter->iter_abd));
/* current scatter page */
page = sg_page(aiter->iter_sg);
/* position within page */
doff = aiter->iter_offset;
/* remaining data in scatterlist */
dsize = MIN(aiter->iter_sg->length - aiter->iter_offset,
aiter->iter_abd->abd_size - aiter->iter_pos);
}
ASSERT(page);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 5, 0)
if (PageTail(page)) {
/*
* This page is part of a "compound page", which is a group of
* pages that can be referenced from a single struct page *.
* Its organised as a "head" page, followed by a series of
* "tail" pages.
*
* In OpenZFS, compound pages are allocated using the
* __GFP_COMP flag, which we get from scatter ABDs and SPL
* vmalloc slabs (ie >16K allocations). So a great many of the
* IO buffers we get are going to be of this type.
*
* The tail pages are just regular PAGE_SIZE pages, and can be
* safely used as-is. However, the head page has length
* covering itself and all the tail pages. If this ABD chunk
* spans multiple pages, then we can use the head page and a
* >PAGE_SIZE length, which is far more efficient.
*
* To do this, we need to adjust the offset to be counted from
* the head page. struct page for compound pages are stored
* contiguously, so we can just adjust by a simple offset.
*
* Before kernel 4.5, compound page heads were refcounted
* separately, such that moving back to the head page would
* require us to take a reference to it and releasing it once
* we're completely finished with it. In practice, that means
* when our caller is done with the ABD, which we have no
* insight into from here. Rather than contort this API to
* track head page references on such ancient kernels, we just
* compile this block out and use the tail pages directly. This
* is slightly less efficient, but makes everything far
* simpler.
*/
struct page *head = compound_head(page);
doff += ((page - head) * PAGESIZE);
page = head;
}
#endif
/* final page and position within it */
aiter->iter_page = page;
aiter->iter_page_doff = doff;
/* amount of data in the chunk, up to the end of the page */
aiter->iter_page_dsize = MIN(dsize, page_size(page) - doff);
}
/*
* Note: ABD BIO functions only needed to support vdev_classic. See comments in
* vdev_disk.c.
*/
/*
* bio_nr_pages for ABD.
* @off is the offset in @abd
*/
unsigned long
abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
{
unsigned long pos;
if (abd_is_gang(abd)) {
unsigned long count = 0;
for (abd_t *cabd = abd_gang_get_offset(abd, &off);
cabd != NULL && size != 0;
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
ASSERT3U(off, <, cabd->abd_size);
int mysize = MIN(size, cabd->abd_size - off);
count += abd_nr_pages_off(cabd, mysize, off);
size -= mysize;
off = 0;
}
return (count);
}
if (abd_is_linear(abd))
pos = (unsigned long)abd_to_buf(abd) + off;
else
pos = ABD_SCATTER(abd).abd_offset + off;
return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
(pos >> PAGE_SHIFT));
}
static unsigned int
bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size)
{
unsigned int offset, size, i;
struct page *page;
offset = offset_in_page(buf_ptr);
for (i = 0; i < bio->bi_max_vecs; i++) {
size = PAGE_SIZE - offset;
if (bio_size <= 0)
break;
if (size > bio_size)
size = bio_size;
if (is_vmalloc_addr(buf_ptr))
page = vmalloc_to_page(buf_ptr);
else
page = virt_to_page(buf_ptr);
/*
* Some network related block device uses tcp_sendpage, which
* doesn't behave well when using 0-count page, this is a
* safety net to catch them.
*/
ASSERT3S(page_count(page), >, 0);
if (bio_add_page(bio, page, size, offset) != size)
break;
buf_ptr += size;
bio_size -= size;
offset = 0;
}
return (bio_size);
}
/*
* bio_map for gang ABD.
*/
static unsigned int
abd_gang_bio_map_off(struct bio *bio, abd_t *abd,
unsigned int io_size, size_t off)
{
ASSERT(abd_is_gang(abd));
for (abd_t *cabd = abd_gang_get_offset(abd, &off);
cabd != NULL;
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
ASSERT3U(off, <, cabd->abd_size);
int size = MIN(io_size, cabd->abd_size - off);
int remainder = abd_bio_map_off(bio, cabd, size, off);
io_size -= (size - remainder);
if (io_size == 0 || remainder > 0)
return (io_size);
off = 0;
}
ASSERT0(io_size);
return (io_size);
}
/*
* bio_map for ABD.
* @off is the offset in @abd
* Remaining IO size is returned
*/
unsigned int
abd_bio_map_off(struct bio *bio, abd_t *abd,
unsigned int io_size, size_t off)
{
struct abd_iter aiter;
ASSERT3U(io_size, <=, abd->abd_size - off);
if (abd_is_linear(abd))
return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size));
ASSERT(!abd_is_linear(abd));
if (abd_is_gang(abd))
return (abd_gang_bio_map_off(bio, abd, io_size, off));
abd_iter_init(&aiter, abd);
abd_iter_advance(&aiter, off);
for (int i = 0; i < bio->bi_max_vecs; i++) {
struct page *pg;
size_t len, sgoff, pgoff;
struct scatterlist *sg;
if (io_size <= 0)
break;
sg = aiter.iter_sg;
sgoff = aiter.iter_offset;
pgoff = sgoff & (PAGESIZE - 1);
len = MIN(io_size, PAGESIZE - pgoff);
ASSERT(len > 0);
pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
if (bio_add_page(bio, pg, len, pgoff) != len)
break;
io_size -= len;
abd_iter_advance(&aiter, len);
}
return (io_size);
}
/* Tunable Parameters */
module_param(zfs_abd_scatter_enabled, int, 0644);
MODULE_PARM_DESC(zfs_abd_scatter_enabled,
"Toggle whether ABD allocations must be linear.");
module_param(zfs_abd_scatter_min_size, int, 0644);
MODULE_PARM_DESC(zfs_abd_scatter_min_size,
"Minimum size of scatter allocations.");
/* CSTYLED */
module_param(zfs_abd_scatter_max_order, uint, 0644);
MODULE_PARM_DESC(zfs_abd_scatter_max_order,
"Maximum order allocation used for a scatter ABD.");
#endif /* _KERNEL */