mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-15 04:30:33 +03:00
d9ad3fea3b
In zfs/dmu_object and icp/core/kcf_sched, the CPU_SEQID macro should be surrounded by `kpreempt_disable` and `kpreempt_enable` calls to avoid a Linux kernel BUG warning. These code paths use the cpuid to minimize lock contention and is is safe to reschedule the process to a different processor at any time. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Morgan Jones <me@numin.it> Closes #6239
411 lines
11 KiB
C
411 lines
11 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2013, 2015 by Delphix. All rights reserved.
|
|
* Copyright 2014 HybridCluster. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/dsl_dataset.h>
|
|
|
|
/*
|
|
* Each of the concurrent object allocators will grab
|
|
* 2^dmu_object_alloc_chunk_shift dnode slots at a time. The default is to
|
|
* grab 128 slots, which is 4 blocks worth. This was experimentally
|
|
* determined to be the lowest value that eliminates the measurable effect
|
|
* of lock contention from this code path.
|
|
*/
|
|
int dmu_object_alloc_chunk_shift = 7;
|
|
|
|
uint64_t
|
|
dmu_object_alloc(objset_t *os, dmu_object_type_t ot, int blocksize,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
return dmu_object_alloc_dnsize(os, ot, blocksize, bonustype, bonuslen,
|
|
0, tx);
|
|
}
|
|
|
|
uint64_t
|
|
dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, int blocksize,
|
|
dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
|
|
{
|
|
uint64_t object;
|
|
uint64_t L1_dnode_count = DNODES_PER_BLOCK <<
|
|
(DMU_META_DNODE(os)->dn_indblkshift - SPA_BLKPTRSHIFT);
|
|
dnode_t *dn = NULL;
|
|
int dn_slots = dnodesize >> DNODE_SHIFT;
|
|
boolean_t restarted = B_FALSE;
|
|
uint64_t *cpuobj = NULL;
|
|
int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
|
|
|
|
kpreempt_disable();
|
|
cpuobj = &os->os_obj_next_percpu[CPU_SEQID %
|
|
os->os_obj_next_percpu_len];
|
|
kpreempt_enable();
|
|
|
|
if (dn_slots == 0) {
|
|
dn_slots = DNODE_MIN_SLOTS;
|
|
} else {
|
|
ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
|
|
ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
|
|
}
|
|
|
|
/*
|
|
* The "chunk" of dnodes that is assigned to a CPU-specific
|
|
* allocator needs to be at least one block's worth, to avoid
|
|
* lock contention on the dbuf. It can be at most one L1 block's
|
|
* worth, so that the "rescan after polishing off a L1's worth"
|
|
* logic below will be sure to kick in.
|
|
*/
|
|
if (dnodes_per_chunk < DNODES_PER_BLOCK)
|
|
dnodes_per_chunk = DNODES_PER_BLOCK;
|
|
if (dnodes_per_chunk > L1_dnode_count)
|
|
dnodes_per_chunk = L1_dnode_count;
|
|
|
|
object = *cpuobj;
|
|
for (;;) {
|
|
/*
|
|
* If we finished a chunk of dnodes, get a new one from
|
|
* the global allocator.
|
|
*/
|
|
if (P2PHASE(object, dnodes_per_chunk) == 0) {
|
|
mutex_enter(&os->os_obj_lock);
|
|
ASSERT0(P2PHASE(os->os_obj_next_chunk,
|
|
dnodes_per_chunk));
|
|
object = os->os_obj_next_chunk;
|
|
|
|
/*
|
|
* Each time we polish off a L1 bp worth of dnodes
|
|
* (2^12 objects), move to another L1 bp that's
|
|
* still reasonably sparse (at most 1/4 full). Look
|
|
* from the beginning at most once per txg. If we
|
|
* still can't allocate from that L1 block, search
|
|
* for an empty L0 block, which will quickly skip
|
|
* to the end of the metadnode if no nearby L0
|
|
* blocks are empty. This fallback avoids a
|
|
* pathology where full dnode blocks containing
|
|
* large dnodes appear sparse because they have a
|
|
* low blk_fill, leading to many failed allocation
|
|
* attempts. In the long term a better mechanism to
|
|
* search for sparse metadnode regions, such as
|
|
* spacemaps, could be implemented.
|
|
*
|
|
* os_scan_dnodes is set during txg sync if enough
|
|
* objects have been freed since the previous
|
|
* rescan to justify backfilling again.
|
|
*
|
|
* Note that dmu_traverse depends on the behavior
|
|
* that we use multiple blocks of the dnode object
|
|
* before going back to reuse objects. Any change
|
|
* to this algorithm should preserve that property
|
|
* or find another solution to the issues described
|
|
* in traverse_visitbp.
|
|
*/
|
|
if (P2PHASE(object, L1_dnode_count) == 0) {
|
|
uint64_t offset;
|
|
uint64_t blkfill;
|
|
int minlvl;
|
|
int error;
|
|
if (os->os_rescan_dnodes) {
|
|
offset = 0;
|
|
os->os_rescan_dnodes = B_FALSE;
|
|
} else {
|
|
offset = object << DNODE_SHIFT;
|
|
}
|
|
blkfill = restarted ? 1 : DNODES_PER_BLOCK >> 2;
|
|
minlvl = restarted ? 1 : 2;
|
|
restarted = B_TRUE;
|
|
error = dnode_next_offset(DMU_META_DNODE(os),
|
|
DNODE_FIND_HOLE, &offset, minlvl,
|
|
blkfill, 0);
|
|
if (error == 0) {
|
|
object = offset >> DNODE_SHIFT;
|
|
}
|
|
}
|
|
/*
|
|
* Note: if "restarted", we may find a L0 that
|
|
* is not suitably aligned.
|
|
*/
|
|
os->os_obj_next_chunk =
|
|
P2ALIGN(object, dnodes_per_chunk) +
|
|
dnodes_per_chunk;
|
|
(void) atomic_swap_64(cpuobj, object);
|
|
mutex_exit(&os->os_obj_lock);
|
|
}
|
|
|
|
/*
|
|
* XXX We should check for an i/o error here and return
|
|
* up to our caller. Actually we should pre-read it in
|
|
* dmu_tx_assign(), but there is currently no mechanism
|
|
* to do so.
|
|
*/
|
|
(void) dnode_hold_impl(os, object, DNODE_MUST_BE_FREE,
|
|
dn_slots, FTAG, &dn);
|
|
if (dn != NULL) {
|
|
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
|
/*
|
|
* Another thread could have allocated it; check
|
|
* again now that we have the struct lock.
|
|
*/
|
|
if (dn->dn_type == DMU_OT_NONE) {
|
|
dnode_allocate(dn, ot, blocksize, 0,
|
|
bonustype, bonuslen, dn_slots, tx);
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
dmu_tx_add_new_object(tx, dn);
|
|
dnode_rele(dn, FTAG);
|
|
|
|
(void) atomic_swap_64(cpuobj,
|
|
object + dn_slots);
|
|
return (object);
|
|
}
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
dnode_rele(dn, FTAG);
|
|
}
|
|
|
|
if (dmu_object_next(os, &object, B_TRUE, 0) != 0) {
|
|
/*
|
|
* Skip to next known valid starting point for a
|
|
* dnode.
|
|
*/
|
|
object = P2ROUNDUP(object + 1, DNODES_PER_BLOCK);
|
|
}
|
|
(void) atomic_swap_64(cpuobj, object);
|
|
}
|
|
}
|
|
|
|
int
|
|
dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
|
|
int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
return (dmu_object_claim_dnsize(os, object, ot, blocksize, bonustype,
|
|
bonuslen, 0, tx));
|
|
}
|
|
|
|
int
|
|
dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
|
|
int blocksize, dmu_object_type_t bonustype, int bonuslen,
|
|
int dnodesize, dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
int dn_slots = dnodesize >> DNODE_SHIFT;
|
|
int err;
|
|
|
|
if (dn_slots == 0)
|
|
dn_slots = DNODE_MIN_SLOTS;
|
|
ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
|
|
ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
|
|
|
|
if (object == DMU_META_DNODE_OBJECT && !dmu_tx_private_ok(tx))
|
|
return (SET_ERROR(EBADF));
|
|
|
|
err = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE, dn_slots,
|
|
FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
|
|
dnode_allocate(dn, ot, blocksize, 0, bonustype, bonuslen, dn_slots, tx);
|
|
dmu_tx_add_new_object(tx, dn);
|
|
|
|
dnode_rele(dn, FTAG);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
|
|
int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
return (dmu_object_reclaim_dnsize(os, object, ot, blocksize, bonustype,
|
|
bonuslen, 0, tx));
|
|
}
|
|
|
|
int
|
|
dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
|
|
int blocksize, dmu_object_type_t bonustype, int bonuslen, int dnodesize,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
int dn_slots = dnodesize >> DNODE_SHIFT;
|
|
int err;
|
|
|
|
if (object == DMU_META_DNODE_OBJECT)
|
|
return (SET_ERROR(EBADF));
|
|
|
|
err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
|
|
FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
|
|
dnode_reallocate(dn, ot, blocksize, bonustype, bonuslen, dn_slots, tx);
|
|
|
|
dnode_rele(dn, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
|
|
int
|
|
dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
ASSERT(object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
|
|
|
|
err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
|
|
FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
|
|
ASSERT(dn->dn_type != DMU_OT_NONE);
|
|
dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
|
|
dnode_free(dn, tx);
|
|
dnode_rele(dn, FTAG);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return (in *objectp) the next object which is allocated (or a hole)
|
|
* after *object, taking into account only objects that may have been modified
|
|
* after the specified txg.
|
|
*/
|
|
int
|
|
dmu_object_next(objset_t *os, uint64_t *objectp, boolean_t hole, uint64_t txg)
|
|
{
|
|
uint64_t offset;
|
|
uint64_t start_obj;
|
|
struct dsl_dataset *ds = os->os_dsl_dataset;
|
|
int error;
|
|
|
|
if (*objectp == 0) {
|
|
start_obj = 1;
|
|
} else if (ds && ds->ds_feature_inuse[SPA_FEATURE_LARGE_DNODE]) {
|
|
/*
|
|
* For large_dnode datasets, scan from the beginning of the
|
|
* dnode block to find the starting offset. This is needed
|
|
* because objectp could be part of a large dnode so we can't
|
|
* assume it's a hole even if dmu_object_info() returns ENOENT.
|
|
*/
|
|
int epb = DNODE_BLOCK_SIZE >> DNODE_SHIFT;
|
|
int skip;
|
|
uint64_t i;
|
|
|
|
for (i = *objectp & ~(epb - 1); i <= *objectp; i += skip) {
|
|
dmu_object_info_t doi;
|
|
|
|
error = dmu_object_info(os, i, &doi);
|
|
if (error)
|
|
skip = 1;
|
|
else
|
|
skip = doi.doi_dnodesize >> DNODE_SHIFT;
|
|
}
|
|
|
|
start_obj = i;
|
|
} else {
|
|
start_obj = *objectp + 1;
|
|
}
|
|
|
|
offset = start_obj << DNODE_SHIFT;
|
|
|
|
error = dnode_next_offset(DMU_META_DNODE(os),
|
|
(hole ? DNODE_FIND_HOLE : 0), &offset, 0, DNODES_PER_BLOCK, txg);
|
|
|
|
*objectp = offset >> DNODE_SHIFT;
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Turn this object from old_type into DMU_OTN_ZAP_METADATA, and bump the
|
|
* refcount on SPA_FEATURE_EXTENSIBLE_DATASET.
|
|
*
|
|
* Only for use from syncing context, on MOS objects.
|
|
*/
|
|
void
|
|
dmu_object_zapify(objset_t *mos, uint64_t object, dmu_object_type_t old_type,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
VERIFY0(dnode_hold(mos, object, FTAG, &dn));
|
|
if (dn->dn_type == DMU_OTN_ZAP_METADATA) {
|
|
dnode_rele(dn, FTAG);
|
|
return;
|
|
}
|
|
ASSERT3U(dn->dn_type, ==, old_type);
|
|
ASSERT0(dn->dn_maxblkid);
|
|
dn->dn_next_type[tx->tx_txg & TXG_MASK] = dn->dn_type =
|
|
DMU_OTN_ZAP_METADATA;
|
|
dnode_setdirty(dn, tx);
|
|
dnode_rele(dn, FTAG);
|
|
|
|
mzap_create_impl(mos, object, 0, 0, tx);
|
|
|
|
spa_feature_incr(dmu_objset_spa(mos),
|
|
SPA_FEATURE_EXTENSIBLE_DATASET, tx);
|
|
}
|
|
|
|
void
|
|
dmu_object_free_zapified(objset_t *mos, uint64_t object, dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
dmu_object_type_t t;
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
VERIFY0(dnode_hold(mos, object, FTAG, &dn));
|
|
t = dn->dn_type;
|
|
dnode_rele(dn, FTAG);
|
|
|
|
if (t == DMU_OTN_ZAP_METADATA) {
|
|
spa_feature_decr(dmu_objset_spa(mos),
|
|
SPA_FEATURE_EXTENSIBLE_DATASET, tx);
|
|
}
|
|
VERIFY0(dmu_object_free(mos, object, tx));
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
EXPORT_SYMBOL(dmu_object_alloc);
|
|
EXPORT_SYMBOL(dmu_object_alloc_dnsize);
|
|
EXPORT_SYMBOL(dmu_object_claim);
|
|
EXPORT_SYMBOL(dmu_object_claim_dnsize);
|
|
EXPORT_SYMBOL(dmu_object_reclaim);
|
|
EXPORT_SYMBOL(dmu_object_reclaim_dnsize);
|
|
EXPORT_SYMBOL(dmu_object_free);
|
|
EXPORT_SYMBOL(dmu_object_next);
|
|
EXPORT_SYMBOL(dmu_object_zapify);
|
|
EXPORT_SYMBOL(dmu_object_free_zapified);
|
|
|
|
/* BEGIN CSTYLED */
|
|
module_param(dmu_object_alloc_chunk_shift, int, 0644);
|
|
MODULE_PARM_DESC(dmu_object_alloc_chunk_shift,
|
|
"CPU-specific allocator grabs 2^N objects at once");
|
|
/* END CSTYLED */
|
|
#endif
|