mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-25 18:59:33 +03:00
79c76d5b65
By marking DMU transaction processing contexts with PF_FSTRANS we can revert the KM_PUSHPAGE -> KM_SLEEP changes. This brings us back in line with upstream. In some cases this means simply swapping the flags back. For others fnvlist_alloc() was replaced by nvlist_alloc(..., KM_PUSHPAGE) and must be reverted back to fnvlist_alloc() which assumes KM_SLEEP. The one place KM_PUSHPAGE is kept is when allocating ARC buffers which allows us to dip in to reserved memory. This is again the same as upstream. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
852 lines
22 KiB
C
852 lines
22 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* LLNL-CODE-403049.
|
|
* Copyright (c) 2012, 2014 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/vdev_disk.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/sunldi.h>
|
|
|
|
char *zfs_vdev_scheduler = VDEV_SCHEDULER;
|
|
static void *zfs_vdev_holder = VDEV_HOLDER;
|
|
|
|
/*
|
|
* Virtual device vector for disks.
|
|
*/
|
|
typedef struct dio_request {
|
|
struct completion dr_comp; /* Completion for sync IO */
|
|
atomic_t dr_ref; /* References */
|
|
zio_t *dr_zio; /* Parent ZIO */
|
|
int dr_rw; /* Read/Write */
|
|
int dr_error; /* Bio error */
|
|
int dr_bio_count; /* Count of bio's */
|
|
struct bio *dr_bio[0]; /* Attached bio's */
|
|
} dio_request_t;
|
|
|
|
|
|
#ifdef HAVE_OPEN_BDEV_EXCLUSIVE
|
|
static fmode_t
|
|
vdev_bdev_mode(int smode)
|
|
{
|
|
fmode_t mode = 0;
|
|
|
|
ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
|
|
|
|
if (smode & FREAD)
|
|
mode |= FMODE_READ;
|
|
|
|
if (smode & FWRITE)
|
|
mode |= FMODE_WRITE;
|
|
|
|
return (mode);
|
|
}
|
|
#else
|
|
static int
|
|
vdev_bdev_mode(int smode)
|
|
{
|
|
int mode = 0;
|
|
|
|
ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
|
|
|
|
if ((smode & FREAD) && !(smode & FWRITE))
|
|
mode = MS_RDONLY;
|
|
|
|
return (mode);
|
|
}
|
|
#endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
|
|
|
|
static uint64_t
|
|
bdev_capacity(struct block_device *bdev)
|
|
{
|
|
struct hd_struct *part = bdev->bd_part;
|
|
|
|
/* The partition capacity referenced by the block device */
|
|
if (part)
|
|
return (part->nr_sects << 9);
|
|
|
|
/* Otherwise assume the full device capacity */
|
|
return (get_capacity(bdev->bd_disk) << 9);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_error(zio_t *zio)
|
|
{
|
|
#ifdef ZFS_DEBUG
|
|
printk("ZFS: zio error=%d type=%d offset=%llu size=%llu "
|
|
"flags=%x delay=%llu\n", zio->io_error, zio->io_type,
|
|
(u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
|
|
zio->io_flags, (u_longlong_t)zio->io_delay);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Use the Linux 'noop' elevator for zfs managed block devices. This
|
|
* strikes the ideal balance by allowing the zfs elevator to do all
|
|
* request ordering and prioritization. While allowing the Linux
|
|
* elevator to do the maximum front/back merging allowed by the
|
|
* physical device. This yields the largest possible requests for
|
|
* the device with the lowest total overhead.
|
|
*/
|
|
static int
|
|
vdev_elevator_switch(vdev_t *v, char *elevator)
|
|
{
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
struct block_device *bdev = vd->vd_bdev;
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
char *device = bdev->bd_disk->disk_name;
|
|
int error;
|
|
|
|
/*
|
|
* Skip devices which are not whole disks (partitions).
|
|
* Device-mapper devices are excepted since they may be whole
|
|
* disks despite the vdev_wholedisk flag, in which case we can
|
|
* and should switch the elevator. If the device-mapper device
|
|
* does not have an elevator (i.e. dm-raid, dm-crypt, etc.) the
|
|
* "Skip devices without schedulers" check below will fail.
|
|
*/
|
|
if (!v->vdev_wholedisk && strncmp(device, "dm-", 3) != 0)
|
|
return (0);
|
|
|
|
/* Skip devices without schedulers (loop, ram, dm, etc) */
|
|
if (!q->elevator || !blk_queue_stackable(q))
|
|
return (0);
|
|
|
|
/* Leave existing scheduler when set to "none" */
|
|
if (strncmp(elevator, "none", 4) && (strlen(elevator) == 4) == 0)
|
|
return (0);
|
|
|
|
#ifdef HAVE_ELEVATOR_CHANGE
|
|
error = elevator_change(q, elevator);
|
|
#else
|
|
/*
|
|
* For pre-2.6.36 kernels elevator_change() is not available.
|
|
* Therefore we fall back to using a usermodehelper to echo the
|
|
* elevator into sysfs; This requires /bin/echo and sysfs to be
|
|
* mounted which may not be true early in the boot process.
|
|
*/
|
|
#define SET_SCHEDULER_CMD \
|
|
"exec 0</dev/null " \
|
|
" 1>/sys/block/%s/queue/scheduler " \
|
|
" 2>/dev/null; " \
|
|
"echo %s"
|
|
|
|
{
|
|
char *argv[] = { "/bin/sh", "-c", NULL, NULL };
|
|
char *envp[] = { NULL };
|
|
|
|
argv[2] = kmem_asprintf(SET_SCHEDULER_CMD, device, elevator);
|
|
error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
|
|
strfree(argv[2]);
|
|
}
|
|
#endif /* HAVE_ELEVATOR_CHANGE */
|
|
if (error)
|
|
printk("ZFS: Unable to set \"%s\" scheduler for %s (%s): %d\n",
|
|
elevator, v->vdev_path, device, error);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Expanding a whole disk vdev involves invoking BLKRRPART on the
|
|
* whole disk device. This poses a problem, because BLKRRPART will
|
|
* return EBUSY if one of the disk's partitions is open. That's why
|
|
* we have to do it here, just before opening the data partition.
|
|
* Unfortunately, BLKRRPART works by dropping all partitions and
|
|
* recreating them, which means that for a short time window, all
|
|
* /dev/sdxN device files disappear (until udev recreates them).
|
|
* This means two things:
|
|
* - When we open the data partition just after a BLKRRPART, we
|
|
* can't do it using the normal device file path because of the
|
|
* obvious race condition with udev. Instead, we use reliable
|
|
* kernel APIs to get a handle to the new partition device from
|
|
* the whole disk device.
|
|
* - Because vdev_disk_open() initially needs to find the device
|
|
* using its path, multiple vdev_disk_open() invocations in
|
|
* short succession on the same disk with BLKRRPARTs in the
|
|
* middle have a high probability of failure (because of the
|
|
* race condition with udev). A typical situation where this
|
|
* might happen is when the zpool userspace tool does a
|
|
* TRYIMPORT immediately followed by an IMPORT. For this
|
|
* reason, we only invoke BLKRRPART in the module when strictly
|
|
* necessary (zpool online -e case), and rely on userspace to
|
|
* do it when possible.
|
|
*/
|
|
static struct block_device *
|
|
vdev_disk_rrpart(const char *path, int mode, vdev_disk_t *vd)
|
|
{
|
|
#if defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK)
|
|
struct block_device *bdev, *result = ERR_PTR(-ENXIO);
|
|
struct gendisk *disk;
|
|
int error, partno;
|
|
|
|
bdev = vdev_bdev_open(path, vdev_bdev_mode(mode), zfs_vdev_holder);
|
|
if (IS_ERR(bdev))
|
|
return (bdev);
|
|
|
|
disk = get_gendisk(bdev->bd_dev, &partno);
|
|
vdev_bdev_close(bdev, vdev_bdev_mode(mode));
|
|
|
|
if (disk) {
|
|
bdev = bdget(disk_devt(disk));
|
|
if (bdev) {
|
|
error = blkdev_get(bdev, vdev_bdev_mode(mode), vd);
|
|
if (error == 0)
|
|
error = ioctl_by_bdev(bdev, BLKRRPART, 0);
|
|
vdev_bdev_close(bdev, vdev_bdev_mode(mode));
|
|
}
|
|
|
|
bdev = bdget_disk(disk, partno);
|
|
if (bdev) {
|
|
error = blkdev_get(bdev,
|
|
vdev_bdev_mode(mode) | FMODE_EXCL, vd);
|
|
if (error == 0)
|
|
result = bdev;
|
|
}
|
|
put_disk(disk);
|
|
}
|
|
|
|
return (result);
|
|
#else
|
|
return (ERR_PTR(-EOPNOTSUPP));
|
|
#endif /* defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK) */
|
|
}
|
|
|
|
static int
|
|
vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
|
|
uint64_t *ashift)
|
|
{
|
|
struct block_device *bdev = ERR_PTR(-ENXIO);
|
|
vdev_disk_t *vd;
|
|
int mode, block_size;
|
|
|
|
/* Must have a pathname and it must be absolute. */
|
|
if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
|
|
v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Reopen the device if it's not currently open. Otherwise,
|
|
* just update the physical size of the device.
|
|
*/
|
|
if (v->vdev_tsd != NULL) {
|
|
ASSERT(v->vdev_reopening);
|
|
vd = v->vdev_tsd;
|
|
goto skip_open;
|
|
}
|
|
|
|
vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
|
|
if (vd == NULL)
|
|
return (ENOMEM);
|
|
|
|
/*
|
|
* Devices are always opened by the path provided at configuration
|
|
* time. This means that if the provided path is a udev by-id path
|
|
* then drives may be recabled without an issue. If the provided
|
|
* path is a udev by-path path, then the physical location information
|
|
* will be preserved. This can be critical for more complicated
|
|
* configurations where drives are located in specific physical
|
|
* locations to maximize the systems tolerence to component failure.
|
|
* Alternatively, you can provide your own udev rule to flexibly map
|
|
* the drives as you see fit. It is not advised that you use the
|
|
* /dev/[hd]d devices which may be reordered due to probing order.
|
|
* Devices in the wrong locations will be detected by the higher
|
|
* level vdev validation.
|
|
*/
|
|
mode = spa_mode(v->vdev_spa);
|
|
if (v->vdev_wholedisk && v->vdev_expanding)
|
|
bdev = vdev_disk_rrpart(v->vdev_path, mode, vd);
|
|
if (IS_ERR(bdev))
|
|
bdev = vdev_bdev_open(v->vdev_path,
|
|
vdev_bdev_mode(mode), zfs_vdev_holder);
|
|
if (IS_ERR(bdev)) {
|
|
kmem_free(vd, sizeof (vdev_disk_t));
|
|
return (-PTR_ERR(bdev));
|
|
}
|
|
|
|
v->vdev_tsd = vd;
|
|
vd->vd_bdev = bdev;
|
|
|
|
skip_open:
|
|
/* Determine the physical block size */
|
|
block_size = vdev_bdev_block_size(vd->vd_bdev);
|
|
|
|
/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
|
|
v->vdev_nowritecache = B_FALSE;
|
|
|
|
/* Physical volume size in bytes */
|
|
*psize = bdev_capacity(vd->vd_bdev);
|
|
|
|
/* TODO: report possible expansion size */
|
|
*max_psize = *psize;
|
|
|
|
/* Based on the minimum sector size set the block size */
|
|
*ashift = highbit64(MAX(block_size, SPA_MINBLOCKSIZE)) - 1;
|
|
|
|
/* Try to set the io scheduler elevator algorithm */
|
|
(void) vdev_elevator_switch(v, zfs_vdev_scheduler);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_close(vdev_t *v)
|
|
{
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
|
|
if (v->vdev_reopening || vd == NULL)
|
|
return;
|
|
|
|
if (vd->vd_bdev != NULL)
|
|
vdev_bdev_close(vd->vd_bdev,
|
|
vdev_bdev_mode(spa_mode(v->vdev_spa)));
|
|
|
|
kmem_free(vd, sizeof (vdev_disk_t));
|
|
v->vdev_tsd = NULL;
|
|
}
|
|
|
|
static dio_request_t *
|
|
vdev_disk_dio_alloc(int bio_count)
|
|
{
|
|
dio_request_t *dr;
|
|
int i;
|
|
|
|
dr = kmem_zalloc(sizeof (dio_request_t) +
|
|
sizeof (struct bio *) * bio_count, KM_SLEEP);
|
|
if (dr) {
|
|
init_completion(&dr->dr_comp);
|
|
atomic_set(&dr->dr_ref, 0);
|
|
dr->dr_bio_count = bio_count;
|
|
dr->dr_error = 0;
|
|
|
|
for (i = 0; i < dr->dr_bio_count; i++)
|
|
dr->dr_bio[i] = NULL;
|
|
}
|
|
|
|
return (dr);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_dio_free(dio_request_t *dr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < dr->dr_bio_count; i++)
|
|
if (dr->dr_bio[i])
|
|
bio_put(dr->dr_bio[i]);
|
|
|
|
kmem_free(dr, sizeof (dio_request_t) +
|
|
sizeof (struct bio *) * dr->dr_bio_count);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_dio_is_sync(dio_request_t *dr)
|
|
{
|
|
#ifdef HAVE_BIO_RW_SYNC
|
|
/* BIO_RW_SYNC preferred interface from 2.6.12-2.6.29 */
|
|
return (dr->dr_rw & (1 << BIO_RW_SYNC));
|
|
#else
|
|
#ifdef HAVE_BIO_RW_SYNCIO
|
|
/* BIO_RW_SYNCIO preferred interface from 2.6.30-2.6.35 */
|
|
return (dr->dr_rw & (1 << BIO_RW_SYNCIO));
|
|
#else
|
|
#ifdef HAVE_REQ_SYNC
|
|
/* REQ_SYNC preferred interface from 2.6.36-2.6.xx */
|
|
return (dr->dr_rw & REQ_SYNC);
|
|
#else
|
|
#error "Unable to determine bio sync flag"
|
|
#endif /* HAVE_REQ_SYNC */
|
|
#endif /* HAVE_BIO_RW_SYNC */
|
|
#endif /* HAVE_BIO_RW_SYNCIO */
|
|
}
|
|
|
|
static void
|
|
vdev_disk_dio_get(dio_request_t *dr)
|
|
{
|
|
atomic_inc(&dr->dr_ref);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_dio_put(dio_request_t *dr)
|
|
{
|
|
int rc = atomic_dec_return(&dr->dr_ref);
|
|
|
|
/*
|
|
* Free the dio_request when the last reference is dropped and
|
|
* ensure zio_interpret is called only once with the correct zio
|
|
*/
|
|
if (rc == 0) {
|
|
zio_t *zio = dr->dr_zio;
|
|
int error = dr->dr_error;
|
|
|
|
vdev_disk_dio_free(dr);
|
|
|
|
if (zio) {
|
|
zio->io_delay = jiffies_64 - zio->io_delay;
|
|
zio->io_error = error;
|
|
ASSERT3S(zio->io_error, >=, 0);
|
|
if (zio->io_error)
|
|
vdev_disk_error(zio);
|
|
zio_interrupt(zio);
|
|
}
|
|
}
|
|
|
|
return (rc);
|
|
}
|
|
|
|
BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, size, error)
|
|
{
|
|
dio_request_t *dr = bio->bi_private;
|
|
int rc;
|
|
|
|
/* Fatal error but print some useful debugging before asserting */
|
|
if (dr == NULL)
|
|
PANIC("dr == NULL, bio->bi_private == NULL\n"
|
|
"bi_next: %p, bi_flags: %lx, bi_rw: %lu, bi_vcnt: %d\n"
|
|
"bi_idx: %d, bi_size: %d, bi_end_io: %p, bi_cnt: %d\n",
|
|
bio->bi_next, bio->bi_flags, bio->bi_rw, bio->bi_vcnt,
|
|
BIO_BI_IDX(bio), BIO_BI_SIZE(bio), bio->bi_end_io,
|
|
atomic_read(&bio->bi_cnt));
|
|
|
|
#ifndef HAVE_2ARGS_BIO_END_IO_T
|
|
if (BIO_BI_SIZE(bio))
|
|
return (1);
|
|
#endif /* HAVE_2ARGS_BIO_END_IO_T */
|
|
|
|
if (error == 0 && !test_bit(BIO_UPTODATE, &bio->bi_flags))
|
|
error = (-EIO);
|
|
|
|
if (dr->dr_error == 0)
|
|
dr->dr_error = -error;
|
|
|
|
/* Drop reference aquired by __vdev_disk_physio */
|
|
rc = vdev_disk_dio_put(dr);
|
|
|
|
/* Wake up synchronous waiter this is the last outstanding bio */
|
|
if ((rc == 1) && vdev_disk_dio_is_sync(dr))
|
|
complete(&dr->dr_comp);
|
|
|
|
BIO_END_IO_RETURN(0);
|
|
}
|
|
|
|
static inline unsigned long
|
|
bio_nr_pages(void *bio_ptr, unsigned int bio_size)
|
|
{
|
|
return ((((unsigned long)bio_ptr + bio_size + PAGE_SIZE - 1) >>
|
|
PAGE_SHIFT) - ((unsigned long)bio_ptr >> PAGE_SHIFT));
|
|
}
|
|
|
|
static unsigned int
|
|
bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
|
|
{
|
|
unsigned int offset, size, i;
|
|
struct page *page;
|
|
|
|
offset = offset_in_page(bio_ptr);
|
|
for (i = 0; i < bio->bi_max_vecs; i++) {
|
|
size = PAGE_SIZE - offset;
|
|
|
|
if (bio_size <= 0)
|
|
break;
|
|
|
|
if (size > bio_size)
|
|
size = bio_size;
|
|
|
|
if (is_vmalloc_addr(bio_ptr))
|
|
page = vmalloc_to_page(bio_ptr);
|
|
else
|
|
page = virt_to_page(bio_ptr);
|
|
|
|
/*
|
|
* Some network related block device uses tcp_sendpage, which
|
|
* doesn't behave well when using 0-count page, this is a
|
|
* safety net to catch them.
|
|
*/
|
|
ASSERT3S(page_count(page), >, 0);
|
|
|
|
if (bio_add_page(bio, page, size, offset) != size)
|
|
break;
|
|
|
|
bio_ptr += size;
|
|
bio_size -= size;
|
|
offset = 0;
|
|
}
|
|
|
|
return (bio_size);
|
|
}
|
|
|
|
static int
|
|
__vdev_disk_physio(struct block_device *bdev, zio_t *zio, caddr_t kbuf_ptr,
|
|
size_t kbuf_size, uint64_t kbuf_offset, int flags)
|
|
{
|
|
dio_request_t *dr;
|
|
caddr_t bio_ptr;
|
|
uint64_t bio_offset;
|
|
int bio_size, bio_count = 16;
|
|
int i = 0, error = 0;
|
|
|
|
ASSERT3U(kbuf_offset + kbuf_size, <=, bdev->bd_inode->i_size);
|
|
|
|
retry:
|
|
dr = vdev_disk_dio_alloc(bio_count);
|
|
if (dr == NULL)
|
|
return (ENOMEM);
|
|
|
|
if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
|
|
bio_set_flags_failfast(bdev, &flags);
|
|
|
|
dr->dr_zio = zio;
|
|
dr->dr_rw = flags;
|
|
|
|
/*
|
|
* When the IO size exceeds the maximum bio size for the request
|
|
* queue we are forced to break the IO in multiple bio's and wait
|
|
* for them all to complete. Ideally, all pool users will set
|
|
* their volume block size to match the maximum request size and
|
|
* the common case will be one bio per vdev IO request.
|
|
*/
|
|
bio_ptr = kbuf_ptr;
|
|
bio_offset = kbuf_offset;
|
|
bio_size = kbuf_size;
|
|
for (i = 0; i <= dr->dr_bio_count; i++) {
|
|
|
|
/* Finished constructing bio's for given buffer */
|
|
if (bio_size <= 0)
|
|
break;
|
|
|
|
/*
|
|
* By default only 'bio_count' bio's per dio are allowed.
|
|
* However, if we find ourselves in a situation where more
|
|
* are needed we allocate a larger dio and warn the user.
|
|
*/
|
|
if (dr->dr_bio_count == i) {
|
|
vdev_disk_dio_free(dr);
|
|
bio_count *= 2;
|
|
goto retry;
|
|
}
|
|
|
|
dr->dr_bio[i] = bio_alloc(GFP_NOIO,
|
|
bio_nr_pages(bio_ptr, bio_size));
|
|
/* bio_alloc() with __GFP_WAIT never returns NULL */
|
|
if (unlikely(dr->dr_bio[i] == NULL)) {
|
|
vdev_disk_dio_free(dr);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Matching put called by vdev_disk_physio_completion */
|
|
vdev_disk_dio_get(dr);
|
|
|
|
dr->dr_bio[i]->bi_bdev = bdev;
|
|
BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
|
|
dr->dr_bio[i]->bi_rw = dr->dr_rw;
|
|
dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
|
|
dr->dr_bio[i]->bi_private = dr;
|
|
|
|
/* Remaining size is returned to become the new size */
|
|
bio_size = bio_map(dr->dr_bio[i], bio_ptr, bio_size);
|
|
|
|
/* Advance in buffer and construct another bio if needed */
|
|
bio_ptr += BIO_BI_SIZE(dr->dr_bio[i]);
|
|
bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
|
|
}
|
|
|
|
/* Extra reference to protect dio_request during submit_bio */
|
|
vdev_disk_dio_get(dr);
|
|
if (zio)
|
|
zio->io_delay = jiffies_64;
|
|
|
|
/* Submit all bio's associated with this dio */
|
|
for (i = 0; i < dr->dr_bio_count; i++)
|
|
if (dr->dr_bio[i])
|
|
submit_bio(dr->dr_rw, dr->dr_bio[i]);
|
|
|
|
/*
|
|
* On synchronous blocking requests we wait for all bio the completion
|
|
* callbacks to run. We will be woken when the last callback runs
|
|
* for this dio. We are responsible for putting the last dio_request
|
|
* reference will in turn put back the last bio references. The
|
|
* only synchronous consumer is vdev_disk_read_rootlabel() all other
|
|
* IO originating from vdev_disk_io_start() is asynchronous.
|
|
*/
|
|
if (vdev_disk_dio_is_sync(dr)) {
|
|
wait_for_completion(&dr->dr_comp);
|
|
error = dr->dr_error;
|
|
ASSERT3S(atomic_read(&dr->dr_ref), ==, 1);
|
|
}
|
|
|
|
(void) vdev_disk_dio_put(dr);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vdev_disk_physio(struct block_device *bdev, caddr_t kbuf,
|
|
size_t size, uint64_t offset, int flags)
|
|
{
|
|
bio_set_flags_failfast(bdev, &flags);
|
|
return (__vdev_disk_physio(bdev, NULL, kbuf, size, offset, flags));
|
|
}
|
|
|
|
BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, size, rc)
|
|
{
|
|
zio_t *zio = bio->bi_private;
|
|
|
|
zio->io_delay = jiffies_64 - zio->io_delay;
|
|
zio->io_error = -rc;
|
|
if (rc && (rc == -EOPNOTSUPP))
|
|
zio->io_vd->vdev_nowritecache = B_TRUE;
|
|
|
|
bio_put(bio);
|
|
ASSERT3S(zio->io_error, >=, 0);
|
|
if (zio->io_error)
|
|
vdev_disk_error(zio);
|
|
zio_interrupt(zio);
|
|
|
|
BIO_END_IO_RETURN(0);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
|
|
{
|
|
struct request_queue *q;
|
|
struct bio *bio;
|
|
|
|
q = bdev_get_queue(bdev);
|
|
if (!q)
|
|
return (ENXIO);
|
|
|
|
bio = bio_alloc(GFP_NOIO, 0);
|
|
/* bio_alloc() with __GFP_WAIT never returns NULL */
|
|
if (unlikely(bio == NULL))
|
|
return (ENOMEM);
|
|
|
|
bio->bi_end_io = vdev_disk_io_flush_completion;
|
|
bio->bi_private = zio;
|
|
bio->bi_bdev = bdev;
|
|
zio->io_delay = jiffies_64;
|
|
submit_bio(VDEV_WRITE_FLUSH_FUA, bio);
|
|
invalidate_bdev(bdev);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_io_start(zio_t *zio)
|
|
{
|
|
vdev_t *v = zio->io_vd;
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
int flags, error;
|
|
|
|
switch (zio->io_type) {
|
|
case ZIO_TYPE_IOCTL:
|
|
|
|
if (!vdev_readable(v)) {
|
|
zio->io_error = SET_ERROR(ENXIO);
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
switch (zio->io_cmd) {
|
|
case DKIOCFLUSHWRITECACHE:
|
|
|
|
if (zfs_nocacheflush)
|
|
break;
|
|
|
|
if (v->vdev_nowritecache) {
|
|
zio->io_error = SET_ERROR(ENOTSUP);
|
|
break;
|
|
}
|
|
|
|
error = vdev_disk_io_flush(vd->vd_bdev, zio);
|
|
if (error == 0)
|
|
return (ZIO_PIPELINE_STOP);
|
|
|
|
zio->io_error = error;
|
|
if (error == ENOTSUP)
|
|
v->vdev_nowritecache = B_TRUE;
|
|
|
|
break;
|
|
|
|
default:
|
|
zio->io_error = SET_ERROR(ENOTSUP);
|
|
}
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
|
|
case ZIO_TYPE_WRITE:
|
|
flags = WRITE;
|
|
break;
|
|
|
|
case ZIO_TYPE_READ:
|
|
flags = READ;
|
|
break;
|
|
|
|
default:
|
|
zio->io_error = SET_ERROR(ENOTSUP);
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
error = __vdev_disk_physio(vd->vd_bdev, zio, zio->io_data,
|
|
zio->io_size, zio->io_offset, flags);
|
|
if (error) {
|
|
zio->io_error = error;
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
return (ZIO_PIPELINE_STOP);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_io_done(zio_t *zio)
|
|
{
|
|
/*
|
|
* If the device returned EIO, we revalidate the media. If it is
|
|
* determined the media has changed this triggers the asynchronous
|
|
* removal of the device from the configuration.
|
|
*/
|
|
if (zio->io_error == EIO) {
|
|
vdev_t *v = zio->io_vd;
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
|
|
if (check_disk_change(vd->vd_bdev)) {
|
|
vdev_bdev_invalidate(vd->vd_bdev);
|
|
v->vdev_remove_wanted = B_TRUE;
|
|
spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_disk_hold(vdev_t *vd)
|
|
{
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
|
|
|
|
/* We must have a pathname, and it must be absolute. */
|
|
if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
|
|
return;
|
|
|
|
/*
|
|
* Only prefetch path and devid info if the device has
|
|
* never been opened.
|
|
*/
|
|
if (vd->vdev_tsd != NULL)
|
|
return;
|
|
|
|
/* XXX: Implement me as a vnode lookup for the device */
|
|
vd->vdev_name_vp = NULL;
|
|
vd->vdev_devid_vp = NULL;
|
|
}
|
|
|
|
static void
|
|
vdev_disk_rele(vdev_t *vd)
|
|
{
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
|
|
|
|
/* XXX: Implement me as a vnode rele for the device */
|
|
}
|
|
|
|
vdev_ops_t vdev_disk_ops = {
|
|
vdev_disk_open,
|
|
vdev_disk_close,
|
|
vdev_default_asize,
|
|
vdev_disk_io_start,
|
|
vdev_disk_io_done,
|
|
NULL,
|
|
vdev_disk_hold,
|
|
vdev_disk_rele,
|
|
VDEV_TYPE_DISK, /* name of this vdev type */
|
|
B_TRUE /* leaf vdev */
|
|
};
|
|
|
|
/*
|
|
* Given the root disk device devid or pathname, read the label from
|
|
* the device, and construct a configuration nvlist.
|
|
*/
|
|
int
|
|
vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config)
|
|
{
|
|
struct block_device *bdev;
|
|
vdev_label_t *label;
|
|
uint64_t s, size;
|
|
int i;
|
|
|
|
bdev = vdev_bdev_open(devpath, vdev_bdev_mode(FREAD), zfs_vdev_holder);
|
|
if (IS_ERR(bdev))
|
|
return (-PTR_ERR(bdev));
|
|
|
|
s = bdev_capacity(bdev);
|
|
if (s == 0) {
|
|
vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
|
|
return (EIO);
|
|
}
|
|
|
|
size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t);
|
|
label = vmem_alloc(sizeof (vdev_label_t), KM_SLEEP);
|
|
|
|
for (i = 0; i < VDEV_LABELS; i++) {
|
|
uint64_t offset, state, txg = 0;
|
|
|
|
/* read vdev label */
|
|
offset = vdev_label_offset(size, i, 0);
|
|
if (vdev_disk_physio(bdev, (caddr_t)label,
|
|
VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, READ_SYNC) != 0)
|
|
continue;
|
|
|
|
if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
|
|
sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
|
|
*config = NULL;
|
|
continue;
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
|
|
&state) != 0 || state >= POOL_STATE_DESTROYED) {
|
|
nvlist_free(*config);
|
|
*config = NULL;
|
|
continue;
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
|
|
&txg) != 0 || txg == 0) {
|
|
nvlist_free(*config);
|
|
*config = NULL;
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
vmem_free(label, sizeof (vdev_label_t));
|
|
vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
|
|
|
|
return (0);
|
|
}
|
|
|
|
module_param(zfs_vdev_scheduler, charp, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
|