mirror_zfs/module/os/linux/zfs/zpl_file.c
Brian Atkinson a10e552b99
Adding Direct IO Support
Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads.

O_DIRECT support in ZFS will always ensure there is coherency between
buffered and O_DIRECT IO requests. This ensures that all IO requests,
whether buffered or direct, will see the same file contents at all
times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While
data is written directly to VDEV disks, metadata will not be synced
until the associated  TXG is synced.
For both O_DIRECT read and write request the offset and request sizes,
at a minimum, must be PAGE_SIZE aligned. In the event they are not,
then EINVAL is returned unless the direct property is set to always (see
below).

For O_DIRECT writes:
The request also must be block aligned (recordsize) or the write
request will take the normal (buffered) write path. In the event that
request is block aligned and a cached copy of the buffer in the ARC,
then it will be discarded from the ARC forcing all further reads to
retrieve the data from disk.

For O_DIRECT reads:
The only alignment restrictions are PAGE_SIZE alignment. In the event
that the requested data is in buffered (in the ARC) it will just be
copied from the ARC into the user buffer.

For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in
the event that file contents are mmap'ed. In this case, all requests
that are at least PAGE_SIZE aligned will just fall back to the buffered
paths. If the request however is not PAGE_SIZE aligned, EINVAL will
be returned as always regardless if the file's contents are mmap'ed.

Since O_DIRECT writes go through the normal ZIO pipeline, the
following operations are supported just as with normal buffered writes:
Checksum
Compression
Encryption
Erasure Coding
There is one caveat for the data integrity of O_DIRECT writes that is
distinct for each of the OS's supported by ZFS.
FreeBSD - FreeBSD is able to place user pages under write protection so
          any data in the user buffers and written directly down to the
	  VDEV disks is guaranteed to not change. There is no concern
	  with data integrity and O_DIRECT writes.
Linux - Linux is not able to place anonymous user pages under write
        protection. Because of this, if the user decides to manipulate
	the page contents while the write operation is occurring, data
	integrity can not be guaranteed. However, there is a module
	parameter `zfs_vdev_direct_write_verify` that controls the
	if a O_DIRECT writes that can occur to a top-level VDEV before
	a checksum verify is run before the contents of the I/O buffer
        are committed to disk. In the event of a checksum verification
	failure the write will return EIO. The number of O_DIRECT write
	checksum verification errors can be observed by doing
	`zpool status -d`, which will list all verification errors that
	have occurred on a top-level VDEV. Along with `zpool status`, a
	ZED event will be issues as `dio_verify` when a checksum
	verification error occurs.

ZVOLs and dedup is not currently supported with Direct I/O.

A new dataset property `direct` has been added with the following 3
allowable values:
disabled - Accepts O_DIRECT flag, but silently ignores it and treats
	   the request as a buffered IO request.
standard - Follows the alignment restrictions  outlined above for
	   write/read IO requests when the O_DIRECT flag is used.
always   - Treats every write/read IO request as though it passed
           O_DIRECT and will do O_DIRECT if the alignment restrictions
	   are met otherwise will redirect through the ARC. This
	   property will not allow a request to fail.

There is also a module parameter zfs_dio_enabled that can be used to
force all reads and writes through the ARC. By setting this module
parameter to 0, it mimics as if the  direct dataset property is set to
disabled.

Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Atkinson <batkinson@lanl.gov>
Co-authored-by: Mark Maybee <mark.maybee@delphix.com>
Co-authored-by: Matt Macy <mmacy@FreeBSD.org>
Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov>
Closes #10018
2024-09-14 13:47:59 -07:00

1387 lines
35 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2011, Lawrence Livermore National Security, LLC.
* Copyright (c) 2015 by Chunwei Chen. All rights reserved.
*/
#ifdef CONFIG_COMPAT
#include <linux/compat.h>
#endif
#include <linux/fs.h>
#include <sys/file.h>
#include <sys/dmu_objset.h>
#include <sys/zfs_znode.h>
#include <sys/zfs_vfsops.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_project.h>
#if defined(HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS) || \
defined(HAVE_VFS_FILEMAP_DIRTY_FOLIO)
#include <linux/pagemap.h>
#endif
#ifdef HAVE_FILE_FADVISE
#include <linux/fadvise.h>
#endif
#ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
#include <linux/writeback.h>
#endif
/*
* When using fallocate(2) to preallocate space, inflate the requested
* capacity check by 10% to account for the required metadata blocks.
*/
static unsigned int zfs_fallocate_reserve_percent = 110;
static int
zpl_open(struct inode *ip, struct file *filp)
{
cred_t *cr = CRED();
int error;
fstrans_cookie_t cookie;
error = generic_file_open(ip, filp);
if (error)
return (error);
crhold(cr);
cookie = spl_fstrans_mark();
error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_release(struct inode *ip, struct file *filp)
{
cred_t *cr = CRED();
int error;
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
if (ITOZ(ip)->z_atime_dirty)
zfs_mark_inode_dirty(ip);
crhold(cr);
error = -zfs_close(ip, filp->f_flags, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_iterate(struct file *filp, zpl_dir_context_t *ctx)
{
cred_t *cr = CRED();
int error;
fstrans_cookie_t cookie;
crhold(cr);
cookie = spl_fstrans_mark();
error = -zfs_readdir(file_inode(filp), ctx, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
#if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
static int
zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
{
zpl_dir_context_t ctx =
ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
int error;
error = zpl_iterate(filp, &ctx);
filp->f_pos = ctx.pos;
return (error);
}
#endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */
#if defined(HAVE_FSYNC_WITHOUT_DENTRY)
/*
* Linux 2.6.35 - 3.0 API,
* As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
* redundant. The dentry is still accessible via filp->f_path.dentry,
* and we are guaranteed that filp will never be NULL.
*/
static int
zpl_fsync(struct file *filp, int datasync)
{
struct inode *inode = filp->f_mapping->host;
cred_t *cr = CRED();
int error;
fstrans_cookie_t cookie;
crhold(cr);
cookie = spl_fstrans_mark();
error = -zfs_fsync(ITOZ(inode), datasync, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
#ifdef HAVE_FILE_AIO_FSYNC
static int
zpl_aio_fsync(struct kiocb *kiocb, int datasync)
{
return (zpl_fsync(kiocb->ki_filp, datasync));
}
#endif
#elif defined(HAVE_FSYNC_RANGE)
/*
* Linux 3.1 API,
* As of 3.1 the responsibility to call filemap_write_and_wait_range() has
* been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex
* lock is no longer held by the caller, for zfs we don't require the lock
* to be held so we don't acquire it.
*/
static int
zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
{
struct inode *inode = filp->f_mapping->host;
znode_t *zp = ITOZ(inode);
zfsvfs_t *zfsvfs = ITOZSB(inode);
cred_t *cr = CRED();
int error;
fstrans_cookie_t cookie;
/*
* The variables z_sync_writes_cnt and z_async_writes_cnt work in
* tandem so that sync writes can detect if there are any non-sync
* writes going on and vice-versa. The "vice-versa" part to this logic
* is located in zfs_putpage() where non-sync writes check if there are
* any ongoing sync writes. If any sync and non-sync writes overlap,
* we do a commit to complete the non-sync writes since the latter can
* potentially take several seconds to complete and thus block sync
* writes in the upcoming call to filemap_write_and_wait_range().
*/
atomic_inc_32(&zp->z_sync_writes_cnt);
/*
* If the following check does not detect an overlapping non-sync write
* (say because it's just about to start), then it is guaranteed that
* the non-sync write will detect this sync write. This is because we
* always increment z_sync_writes_cnt / z_async_writes_cnt before doing
* the check on z_async_writes_cnt / z_sync_writes_cnt here and in
* zfs_putpage() respectively.
*/
if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
if ((error = zpl_enter(zfsvfs, FTAG)) != 0) {
atomic_dec_32(&zp->z_sync_writes_cnt);
return (error);
}
zil_commit(zfsvfs->z_log, zp->z_id);
zpl_exit(zfsvfs, FTAG);
}
error = filemap_write_and_wait_range(inode->i_mapping, start, end);
/*
* The sync write is not complete yet but we decrement
* z_sync_writes_cnt since zfs_fsync() increments and decrements
* it internally. If a non-sync write starts just after the decrement
* operation but before we call zfs_fsync(), it may not detect this
* overlapping sync write but it does not matter since we have already
* gone past filemap_write_and_wait_range() and we won't block due to
* the non-sync write.
*/
atomic_dec_32(&zp->z_sync_writes_cnt);
if (error)
return (error);
crhold(cr);
cookie = spl_fstrans_mark();
error = -zfs_fsync(zp, datasync, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
#ifdef HAVE_FILE_AIO_FSYNC
static int
zpl_aio_fsync(struct kiocb *kiocb, int datasync)
{
return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
}
#endif
#else
#error "Unsupported fops->fsync() implementation"
#endif
static inline int
zfs_io_flags(struct kiocb *kiocb)
{
int flags = 0;
#if defined(IOCB_DSYNC)
if (kiocb->ki_flags & IOCB_DSYNC)
flags |= O_DSYNC;
#endif
#if defined(IOCB_SYNC)
if (kiocb->ki_flags & IOCB_SYNC)
flags |= O_SYNC;
#endif
#if defined(IOCB_APPEND)
if (kiocb->ki_flags & IOCB_APPEND)
flags |= O_APPEND;
#endif
#if defined(IOCB_DIRECT)
if (kiocb->ki_flags & IOCB_DIRECT)
flags |= O_DIRECT;
#endif
return (flags);
}
/*
* If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
* is true. This is needed since datasets with inherited "relatime" property
* aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
* `zfs set relatime=...`), which is what relatime test in VFS by
* relatime_need_update() is based on.
*/
static inline void
zpl_file_accessed(struct file *filp)
{
struct inode *ip = filp->f_mapping->host;
if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
if (zfs_relatime_need_update(ip))
file_accessed(filp);
} else {
file_accessed(filp);
}
}
#if defined(HAVE_VFS_RW_ITERATE)
/*
* When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports
* iovecs, kvevs, bvecs and pipes, plus all the required interfaces to
* manipulate the iov_iter are available. In which case the full iov_iter
* can be attached to the uio and correctly handled in the lower layers.
* Otherwise, for older kernels extract the iovec and pass it instead.
*/
static void
zpl_uio_init(zfs_uio_t *uio, struct kiocb *kiocb, struct iov_iter *to,
loff_t pos, ssize_t count, size_t skip)
{
#if defined(HAVE_VFS_IOV_ITER)
zfs_uio_iov_iter_init(uio, to, pos, count, skip);
#else
zfs_uio_iovec_init(uio, zfs_uio_iter_iov(to), to->nr_segs, pos,
zfs_uio_iov_iter_type(to) & ITER_KVEC ?
UIO_SYSSPACE : UIO_USERSPACE,
count, skip);
#endif
}
static ssize_t
zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
{
cred_t *cr = CRED();
fstrans_cookie_t cookie;
struct file *filp = kiocb->ki_filp;
ssize_t count = iov_iter_count(to);
zfs_uio_t uio;
zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0);
crhold(cr);
cookie = spl_fstrans_mark();
ssize_t ret = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
filp->f_flags | zfs_io_flags(kiocb), cr);
spl_fstrans_unmark(cookie);
crfree(cr);
if (ret < 0)
return (ret);
ssize_t read = count - uio.uio_resid;
kiocb->ki_pos += read;
zpl_file_accessed(filp);
return (read);
}
static inline ssize_t
zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
size_t *countp)
{
#ifdef HAVE_GENERIC_WRITE_CHECKS_KIOCB
ssize_t ret = generic_write_checks(kiocb, from);
if (ret <= 0)
return (ret);
*countp = ret;
#else
struct file *file = kiocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *ip = mapping->host;
int isblk = S_ISBLK(ip->i_mode);
*countp = iov_iter_count(from);
ssize_t ret = generic_write_checks(file, &kiocb->ki_pos, countp, isblk);
if (ret)
return (ret);
#endif
return (0);
}
static ssize_t
zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
{
cred_t *cr = CRED();
fstrans_cookie_t cookie;
struct file *filp = kiocb->ki_filp;
struct inode *ip = filp->f_mapping->host;
zfs_uio_t uio;
size_t count = 0;
ssize_t ret;
ret = zpl_generic_write_checks(kiocb, from, &count);
if (ret)
return (ret);
zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset);
crhold(cr);
cookie = spl_fstrans_mark();
ret = -zfs_write(ITOZ(ip), &uio,
filp->f_flags | zfs_io_flags(kiocb), cr);
spl_fstrans_unmark(cookie);
crfree(cr);
if (ret < 0)
return (ret);
ssize_t wrote = count - uio.uio_resid;
kiocb->ki_pos += wrote;
return (wrote);
}
#else /* !HAVE_VFS_RW_ITERATE */
static ssize_t
zpl_aio_read(struct kiocb *kiocb, const struct iovec *iov,
unsigned long nr_segs, loff_t pos)
{
cred_t *cr = CRED();
fstrans_cookie_t cookie;
struct file *filp = kiocb->ki_filp;
size_t count;
ssize_t ret;
ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
if (ret)
return (ret);
zfs_uio_t uio;
zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
count, 0);
crhold(cr);
cookie = spl_fstrans_mark();
ret = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
flip->f_flags | zfs_io_flags(kiocb), cr);
spl_fstrans_unmark(cookie);
crfree(cr);
if (ret < 0)
return (ret);
ssize_t read = count - uio.uio_resid;
kiocb->ki_pos += read;
zpl_file_accessed(filp);
return (read);
}
static ssize_t
zpl_aio_write(struct kiocb *kiocb, const struct iovec *iov,
unsigned long nr_segs, loff_t pos)
{
cred_t *cr = CRED();
fstrans_cookie_t cookie;
struct file *filp = kiocb->ki_filp;
struct inode *ip = filp->f_mapping->host;
size_t count;
ssize_t ret;
ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
if (ret)
return (ret);
ret = generic_write_checks(filp, &pos, &count, S_ISBLK(ip->i_mode));
if (ret)
return (ret);
kiocb->ki_pos = pos;
zfs_uio_t uio;
zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
count, 0);
crhold(cr);
cookie = spl_fstrans_mark();
ret = -zfs_write(ITOZ(ip), &uio,
filp->f_flags | zfs_io_flags(kiocb), cr);
spl_fstrans_unmark(cookie);
crfree(cr);
if (ret < 0)
return (ret);
ssize_t wrote = count - uio.uio_resid;
kiocb->ki_pos += wrote;
return (wrote);
}
#endif /* HAVE_VFS_RW_ITERATE */
static ssize_t
zpl_direct_IO_impl(void)
{
/*
* All O_DIRECT requests should be handled by
* zpl_{iter/aio}_{write/read}(). There is no way kernel generic code
* should call the direct_IO address_space_operations function. We set
* this code path to be fatal if it is executed.
*/
PANIC(0);
return (0);
}
#if defined(HAVE_VFS_RW_ITERATE)
#if defined(HAVE_VFS_DIRECT_IO_ITER)
static ssize_t
zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
{
return (zpl_direct_IO_impl());
}
#elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET)
static ssize_t
zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
{
return (zpl_direct_IO_impl());
}
#elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
static ssize_t
zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
{
return (zpl_direct_IO_impl());
}
#else
#error "Unknown Direct I/O interface"
#endif
#else /* HAVE_VFS_RW_ITERATE */
#if defined(HAVE_VFS_DIRECT_IO_IOVEC)
static ssize_t
zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov,
loff_t pos, unsigned long nr_segs)
{
return (zpl_direct_IO_impl());
}
#elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
static ssize_t
zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
{
return (zpl_direct_IO_impl());
}
#else
#error "Unknown Direct I/O interface"
#endif
#endif /* HAVE_VFS_RW_ITERATE */
static loff_t
zpl_llseek(struct file *filp, loff_t offset, int whence)
{
#if defined(SEEK_HOLE) && defined(SEEK_DATA)
fstrans_cookie_t cookie;
if (whence == SEEK_DATA || whence == SEEK_HOLE) {
struct inode *ip = filp->f_mapping->host;
loff_t maxbytes = ip->i_sb->s_maxbytes;
loff_t error;
spl_inode_lock_shared(ip);
cookie = spl_fstrans_mark();
error = -zfs_holey(ITOZ(ip), whence, &offset);
spl_fstrans_unmark(cookie);
if (error == 0)
error = lseek_execute(filp, ip, offset, maxbytes);
spl_inode_unlock_shared(ip);
return (error);
}
#endif /* SEEK_HOLE && SEEK_DATA */
return (generic_file_llseek(filp, offset, whence));
}
/*
* It's worth taking a moment to describe how mmap is implemented
* for zfs because it differs considerably from other Linux filesystems.
* However, this issue is handled the same way under OpenSolaris.
*
* The issue is that by design zfs bypasses the Linux page cache and
* leaves all caching up to the ARC. This has been shown to work
* well for the common read(2)/write(2) case. However, mmap(2)
* is problem because it relies on being tightly integrated with the
* page cache. To handle this we cache mmap'ed files twice, once in
* the ARC and a second time in the page cache. The code is careful
* to keep both copies synchronized.
*
* When a file with an mmap'ed region is written to using write(2)
* both the data in the ARC and existing pages in the page cache
* are updated. For a read(2) data will be read first from the page
* cache then the ARC if needed. Neither a write(2) or read(2) will
* will ever result in new pages being added to the page cache.
*
* New pages are added to the page cache only via .readpage() which
* is called when the vfs needs to read a page off disk to back the
* virtual memory region. These pages may be modified without
* notifying the ARC and will be written out periodically via
* .writepage(). This will occur due to either a sync or the usual
* page aging behavior. Note because a read(2) of a mmap'ed file
* will always check the page cache first even when the ARC is out
* of date correct data will still be returned.
*
* While this implementation ensures correct behavior it does have
* have some drawbacks. The most obvious of which is that it
* increases the required memory footprint when access mmap'ed
* files. It also adds additional complexity to the code keeping
* both caches synchronized.
*
* Longer term it may be possible to cleanly resolve this wart by
* mapping page cache pages directly on to the ARC buffers. The
* Linux address space operations are flexible enough to allow
* selection of which pages back a particular index. The trick
* would be working out the details of which subsystem is in
* charge, the ARC, the page cache, or both. It may also prove
* helpful to move the ARC buffers to a scatter-gather lists
* rather than a vmalloc'ed region.
*/
static int
zpl_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct inode *ip = filp->f_mapping->host;
int error;
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
(size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
spl_fstrans_unmark(cookie);
if (error)
return (error);
error = generic_file_mmap(filp, vma);
if (error)
return (error);
#if !defined(HAVE_FILEMAP_RANGE_HAS_PAGE)
znode_t *zp = ITOZ(ip);
mutex_enter(&zp->z_lock);
zp->z_is_mapped = B_TRUE;
mutex_exit(&zp->z_lock);
#endif
return (error);
}
/*
* Populate a page with data for the Linux page cache. This function is
* only used to support mmap(2). There will be an identical copy of the
* data in the ARC which is kept up to date via .write() and .writepage().
*/
static inline int
zpl_readpage_common(struct page *pp)
{
fstrans_cookie_t cookie;
ASSERT(PageLocked(pp));
cookie = spl_fstrans_mark();
int error = -zfs_getpage(pp->mapping->host, pp);
spl_fstrans_unmark(cookie);
unlock_page(pp);
return (error);
}
#ifdef HAVE_VFS_READ_FOLIO
static int
zpl_read_folio(struct file *filp, struct folio *folio)
{
return (zpl_readpage_common(&folio->page));
}
#else
static int
zpl_readpage(struct file *filp, struct page *pp)
{
return (zpl_readpage_common(pp));
}
#endif
static int
zpl_readpage_filler(void *data, struct page *pp)
{
return (zpl_readpage_common(pp));
}
/*
* Populate a set of pages with data for the Linux page cache. This
* function will only be called for read ahead and never for demand
* paging. For simplicity, the code relies on read_cache_pages() to
* correctly lock each page for IO and call zpl_readpage().
*/
#ifdef HAVE_VFS_READPAGES
static int
zpl_readpages(struct file *filp, struct address_space *mapping,
struct list_head *pages, unsigned nr_pages)
{
return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL));
}
#else
static void
zpl_readahead(struct readahead_control *ractl)
{
struct page *page;
while ((page = readahead_page(ractl)) != NULL) {
int ret;
ret = zpl_readpage_filler(NULL, page);
put_page(page);
if (ret)
break;
}
}
#endif
static int
zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
{
boolean_t *for_sync = data;
fstrans_cookie_t cookie;
int ret;
ASSERT(PageLocked(pp));
ASSERT(!PageWriteback(pp));
cookie = spl_fstrans_mark();
ret = zfs_putpage(pp->mapping->host, pp, wbc, *for_sync);
spl_fstrans_unmark(cookie);
return (ret);
}
#ifdef HAVE_WRITEPAGE_T_FOLIO
static int
zpl_putfolio(struct folio *pp, struct writeback_control *wbc, void *data)
{
return (zpl_putpage(&pp->page, wbc, data));
}
#endif
static inline int
zpl_write_cache_pages(struct address_space *mapping,
struct writeback_control *wbc, void *data)
{
int result;
#ifdef HAVE_WRITEPAGE_T_FOLIO
result = write_cache_pages(mapping, wbc, zpl_putfolio, data);
#else
result = write_cache_pages(mapping, wbc, zpl_putpage, data);
#endif
return (result);
}
static int
zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
znode_t *zp = ITOZ(mapping->host);
zfsvfs_t *zfsvfs = ITOZSB(mapping->host);
enum writeback_sync_modes sync_mode;
int result;
if ((result = zpl_enter(zfsvfs, FTAG)) != 0)
return (result);
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
wbc->sync_mode = WB_SYNC_ALL;
zpl_exit(zfsvfs, FTAG);
sync_mode = wbc->sync_mode;
/*
* We don't want to run write_cache_pages() in SYNC mode here, because
* that would make putpage() wait for a single page to be committed to
* disk every single time, resulting in atrocious performance. Instead
* we run it once in non-SYNC mode so that the ZIL gets all the data,
* and then we commit it all in one go.
*/
boolean_t for_sync = (sync_mode == WB_SYNC_ALL);
wbc->sync_mode = WB_SYNC_NONE;
result = zpl_write_cache_pages(mapping, wbc, &for_sync);
if (sync_mode != wbc->sync_mode) {
if ((result = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
return (result);
if (zfsvfs->z_log != NULL)
zil_commit(zfsvfs->z_log, zp->z_id);
zpl_exit(zfsvfs, FTAG);
/*
* We need to call write_cache_pages() again (we can't just
* return after the commit) because the previous call in
* non-SYNC mode does not guarantee that we got all the dirty
* pages (see the implementation of write_cache_pages() for
* details). That being said, this is a no-op in most cases.
*/
wbc->sync_mode = sync_mode;
result = zpl_write_cache_pages(mapping, wbc, &for_sync);
}
return (result);
}
/*
* Write out dirty pages to the ARC, this function is only required to
* support mmap(2). Mapped pages may be dirtied by memory operations
* which never call .write(). These dirty pages are kept in sync with
* the ARC buffers via this hook.
*/
static int
zpl_writepage(struct page *pp, struct writeback_control *wbc)
{
if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
wbc->sync_mode = WB_SYNC_ALL;
boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL);
return (zpl_putpage(pp, wbc, &for_sync));
}
/*
* The flag combination which matches the behavior of zfs_space() is
* FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE
* flag was introduced in the 2.6.38 kernel.
*
* The original mode=0 (allocate space) behavior can be reasonably emulated
* by checking if enough space exists and creating a sparse file, as real
* persistent space reservation is not possible due to COW, snapshots, etc.
*/
static long
zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
{
cred_t *cr = CRED();
loff_t olen;
fstrans_cookie_t cookie;
int error = 0;
int test_mode = FALLOC_FL_PUNCH_HOLE;
#ifdef HAVE_FALLOC_FL_ZERO_RANGE
test_mode |= FALLOC_FL_ZERO_RANGE;
#endif
if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0)
return (-EOPNOTSUPP);
if (offset < 0 || len <= 0)
return (-EINVAL);
spl_inode_lock(ip);
olen = i_size_read(ip);
crhold(cr);
cookie = spl_fstrans_mark();
if (mode & (test_mode)) {
flock64_t bf;
if (mode & FALLOC_FL_KEEP_SIZE) {
if (offset > olen)
goto out_unmark;
if (offset + len > olen)
len = olen - offset;
}
bf.l_type = F_WRLCK;
bf.l_whence = SEEK_SET;
bf.l_start = offset;
bf.l_len = len;
bf.l_pid = 0;
error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
} else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
unsigned int percent = zfs_fallocate_reserve_percent;
struct kstatfs statfs;
/* Legacy mode, disable fallocate compatibility. */
if (percent == 0) {
error = -EOPNOTSUPP;
goto out_unmark;
}
/*
* Use zfs_statvfs() instead of dmu_objset_space() since it
* also checks project quota limits, which are relevant here.
*/
error = zfs_statvfs(ip, &statfs);
if (error)
goto out_unmark;
/*
* Shrink available space a bit to account for overhead/races.
* We know the product previously fit into availbytes from
* dmu_objset_space(), so the smaller product will also fit.
*/
if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
error = -ENOSPC;
goto out_unmark;
}
if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
}
out_unmark:
spl_fstrans_unmark(cookie);
spl_inode_unlock(ip);
crfree(cr);
return (error);
}
static long
zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
{
return zpl_fallocate_common(file_inode(filp),
mode, offset, len);
}
static int
zpl_ioctl_getversion(struct file *filp, void __user *arg)
{
uint32_t generation = file_inode(filp)->i_generation;
return (copy_to_user(arg, &generation, sizeof (generation)));
}
#ifdef HAVE_FILE_FADVISE
static int
zpl_fadvise(struct file *filp, loff_t offset, loff_t len, int advice)
{
struct inode *ip = file_inode(filp);
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
objset_t *os = zfsvfs->z_os;
int error = 0;
if (S_ISFIFO(ip->i_mode))
return (-ESPIPE);
if (offset < 0 || len < 0)
return (-EINVAL);
if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
return (error);
switch (advice) {
case POSIX_FADV_SEQUENTIAL:
case POSIX_FADV_WILLNEED:
#ifdef HAVE_GENERIC_FADVISE
if (zn_has_cached_data(zp, offset, offset + len - 1))
error = generic_fadvise(filp, offset, len, advice);
#endif
/*
* Pass on the caller's size directly, but note that
* dmu_prefetch_max will effectively cap it. If there
* really is a larger sequential access pattern, perhaps
* dmu_zfetch will detect it.
*/
if (len == 0)
len = i_size_read(ip) - offset;
dmu_prefetch(os, zp->z_id, 0, offset, len,
ZIO_PRIORITY_ASYNC_READ);
break;
case POSIX_FADV_NORMAL:
case POSIX_FADV_RANDOM:
case POSIX_FADV_DONTNEED:
case POSIX_FADV_NOREUSE:
/* ignored for now */
break;
default:
error = -EINVAL;
break;
}
zfs_exit(zfsvfs, FTAG);
return (error);
}
#endif /* HAVE_FILE_FADVISE */
#define ZFS_FL_USER_VISIBLE (FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
#define ZFS_FL_USER_MODIFIABLE (FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
static uint32_t
__zpl_ioctl_getflags(struct inode *ip)
{
uint64_t zfs_flags = ITOZ(ip)->z_pflags;
uint32_t ioctl_flags = 0;
if (zfs_flags & ZFS_IMMUTABLE)
ioctl_flags |= FS_IMMUTABLE_FL;
if (zfs_flags & ZFS_APPENDONLY)
ioctl_flags |= FS_APPEND_FL;
if (zfs_flags & ZFS_NODUMP)
ioctl_flags |= FS_NODUMP_FL;
if (zfs_flags & ZFS_PROJINHERIT)
ioctl_flags |= ZFS_PROJINHERIT_FL;
return (ioctl_flags & ZFS_FL_USER_VISIBLE);
}
/*
* Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
* attributes common to both Linux and Solaris are mapped.
*/
static int
zpl_ioctl_getflags(struct file *filp, void __user *arg)
{
uint32_t flags;
int err;
flags = __zpl_ioctl_getflags(file_inode(filp));
err = copy_to_user(arg, &flags, sizeof (flags));
return (err);
}
/*
* fchange() is a helper macro to detect if we have been asked to change a
* flag. This is ugly, but the requirement that we do this is a consequence of
* how the Linux file attribute interface was designed. Another consequence is
* that concurrent modification of files suffers from a TOCTOU race. Neither
* are things we can fix without modifying the kernel-userland interface, which
* is outside of our jurisdiction.
*/
#define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
static int
__zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
{
uint64_t zfs_flags = ITOZ(ip)->z_pflags;
xoptattr_t *xoap;
if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
ZFS_PROJINHERIT_FL))
return (-EOPNOTSUPP);
if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
return (-EACCES);
if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
!capable(CAP_LINUX_IMMUTABLE))
return (-EPERM);
if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
return (-EACCES);
xva_init(xva);
xoap = xva_getxoptattr(xva);
#define FLAG_CHANGE(iflag, zflag, xflag, xfield) do { \
if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) || \
((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) { \
XVA_SET_REQ(xva, (xflag)); \
(xfield) = ((ioctl_flags & (iflag)) != 0); \
} \
} while (0)
FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE,
xoap->xoa_immutable);
FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY,
xoap->xoa_appendonly);
FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP,
xoap->xoa_nodump);
FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT,
xoap->xoa_projinherit);
#undef FLAG_CHANGE
return (0);
}
static int
zpl_ioctl_setflags(struct file *filp, void __user *arg)
{
struct inode *ip = file_inode(filp);
uint32_t flags;
cred_t *cr = CRED();
xvattr_t xva;
int err;
fstrans_cookie_t cookie;
if (copy_from_user(&flags, arg, sizeof (flags)))
return (-EFAULT);
err = __zpl_ioctl_setflags(ip, flags, &xva);
if (err)
return (err);
crhold(cr);
cookie = spl_fstrans_mark();
err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
spl_fstrans_unmark(cookie);
crfree(cr);
return (err);
}
static int
zpl_ioctl_getxattr(struct file *filp, void __user *arg)
{
zfsxattr_t fsx = { 0 };
struct inode *ip = file_inode(filp);
int err;
fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
fsx.fsx_projid = ITOZ(ip)->z_projid;
err = copy_to_user(arg, &fsx, sizeof (fsx));
return (err);
}
static int
zpl_ioctl_setxattr(struct file *filp, void __user *arg)
{
struct inode *ip = file_inode(filp);
zfsxattr_t fsx;
cred_t *cr = CRED();
xvattr_t xva;
xoptattr_t *xoap;
int err;
fstrans_cookie_t cookie;
if (copy_from_user(&fsx, arg, sizeof (fsx)))
return (-EFAULT);
if (!zpl_is_valid_projid(fsx.fsx_projid))
return (-EINVAL);
err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
if (err)
return (err);
xoap = xva_getxoptattr(&xva);
XVA_SET_REQ(&xva, XAT_PROJID);
xoap->xoa_projid = fsx.fsx_projid;
crhold(cr);
cookie = spl_fstrans_mark();
err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
spl_fstrans_unmark(cookie);
crfree(cr);
return (err);
}
/*
* Expose Additional File Level Attributes of ZFS.
*/
static int
zpl_ioctl_getdosflags(struct file *filp, void __user *arg)
{
struct inode *ip = file_inode(filp);
uint64_t dosflags = ITOZ(ip)->z_pflags;
dosflags &= ZFS_DOS_FL_USER_VISIBLE;
int err = copy_to_user(arg, &dosflags, sizeof (dosflags));
return (err);
}
static int
__zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva)
{
uint64_t zfs_flags = ITOZ(ip)->z_pflags;
xoptattr_t *xoap;
if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE))
return (-EOPNOTSUPP);
if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) ||
fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) &&
!capable(CAP_LINUX_IMMUTABLE))
return (-EPERM);
if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
return (-EACCES);
xva_init(xva);
xoap = xva_getxoptattr(xva);
#define FLAG_CHANGE(iflag, xflag, xfield) do { \
if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) || \
((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) { \
XVA_SET_REQ(xva, (xflag)); \
(xfield) = ((ioctl_flags & (iflag)) != 0); \
} \
} while (0)
FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable);
FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly);
FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump);
FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly);
FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden);
FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system);
FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive);
FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink);
FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse);
FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline);
FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse);
#undef FLAG_CHANGE
return (0);
}
/*
* Set Additional File Level Attributes of ZFS.
*/
static int
zpl_ioctl_setdosflags(struct file *filp, void __user *arg)
{
struct inode *ip = file_inode(filp);
uint64_t dosflags;
cred_t *cr = CRED();
xvattr_t xva;
int err;
fstrans_cookie_t cookie;
if (copy_from_user(&dosflags, arg, sizeof (dosflags)))
return (-EFAULT);
err = __zpl_ioctl_setdosflags(ip, dosflags, &xva);
if (err)
return (err);
crhold(cr);
cookie = spl_fstrans_mark();
err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
spl_fstrans_unmark(cookie);
crfree(cr);
return (err);
}
static long
zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case FS_IOC_GETVERSION:
return (zpl_ioctl_getversion(filp, (void *)arg));
case FS_IOC_GETFLAGS:
return (zpl_ioctl_getflags(filp, (void *)arg));
case FS_IOC_SETFLAGS:
return (zpl_ioctl_setflags(filp, (void *)arg));
case ZFS_IOC_FSGETXATTR:
return (zpl_ioctl_getxattr(filp, (void *)arg));
case ZFS_IOC_FSSETXATTR:
return (zpl_ioctl_setxattr(filp, (void *)arg));
case ZFS_IOC_GETDOSFLAGS:
return (zpl_ioctl_getdosflags(filp, (void *)arg));
case ZFS_IOC_SETDOSFLAGS:
return (zpl_ioctl_setdosflags(filp, (void *)arg));
case ZFS_IOC_COMPAT_FICLONE:
return (zpl_ioctl_ficlone(filp, (void *)arg));
case ZFS_IOC_COMPAT_FICLONERANGE:
return (zpl_ioctl_ficlonerange(filp, (void *)arg));
case ZFS_IOC_COMPAT_FIDEDUPERANGE:
return (zpl_ioctl_fideduperange(filp, (void *)arg));
default:
return (-ENOTTY);
}
}
#ifdef CONFIG_COMPAT
static long
zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case FS_IOC32_GETVERSION:
cmd = FS_IOC_GETVERSION;
break;
case FS_IOC32_GETFLAGS:
cmd = FS_IOC_GETFLAGS;
break;
case FS_IOC32_SETFLAGS:
cmd = FS_IOC_SETFLAGS;
break;
default:
return (-ENOTTY);
}
return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
}
#endif /* CONFIG_COMPAT */
const struct address_space_operations zpl_address_space_operations = {
#ifdef HAVE_VFS_READPAGES
.readpages = zpl_readpages,
#else
.readahead = zpl_readahead,
#endif
#ifdef HAVE_VFS_READ_FOLIO
.read_folio = zpl_read_folio,
#else
.readpage = zpl_readpage,
#endif
.writepage = zpl_writepage,
.writepages = zpl_writepages,
.direct_IO = zpl_direct_IO,
#ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
.set_page_dirty = __set_page_dirty_nobuffers,
#endif
#ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
.dirty_folio = filemap_dirty_folio,
#endif
};
#ifdef HAVE_VFS_FILE_OPERATIONS_EXTEND
const struct file_operations_extend zpl_file_operations = {
.kabi_fops = {
#else
const struct file_operations zpl_file_operations = {
#endif
.open = zpl_open,
.release = zpl_release,
.llseek = zpl_llseek,
#ifdef HAVE_VFS_RW_ITERATE
#ifdef HAVE_NEW_SYNC_READ
.read = new_sync_read,
.write = new_sync_write,
#endif
.read_iter = zpl_iter_read,
.write_iter = zpl_iter_write,
#ifdef HAVE_VFS_IOV_ITER
#ifdef HAVE_COPY_SPLICE_READ
.splice_read = copy_splice_read,
#else
.splice_read = generic_file_splice_read,
#endif
.splice_write = iter_file_splice_write,
#endif
#else
.read = do_sync_read,
.write = do_sync_write,
.aio_read = zpl_aio_read,
.aio_write = zpl_aio_write,
#endif
.mmap = zpl_mmap,
.fsync = zpl_fsync,
#ifdef HAVE_FILE_AIO_FSYNC
.aio_fsync = zpl_aio_fsync,
#endif
.fallocate = zpl_fallocate,
#ifdef HAVE_VFS_COPY_FILE_RANGE
.copy_file_range = zpl_copy_file_range,
#endif
#ifdef HAVE_VFS_CLONE_FILE_RANGE
.clone_file_range = zpl_clone_file_range,
#endif
#ifdef HAVE_VFS_REMAP_FILE_RANGE
.remap_file_range = zpl_remap_file_range,
#endif
#ifdef HAVE_VFS_DEDUPE_FILE_RANGE
.dedupe_file_range = zpl_dedupe_file_range,
#endif
#ifdef HAVE_FILE_FADVISE
.fadvise = zpl_fadvise,
#endif
.unlocked_ioctl = zpl_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = zpl_compat_ioctl,
#endif
#ifdef HAVE_VFS_FILE_OPERATIONS_EXTEND
}, /* kabi_fops */
.copy_file_range = zpl_copy_file_range,
.clone_file_range = zpl_clone_file_range,
#endif
};
const struct file_operations zpl_dir_file_operations = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
#if defined(HAVE_VFS_ITERATE_SHARED)
.iterate_shared = zpl_iterate,
#elif defined(HAVE_VFS_ITERATE)
.iterate = zpl_iterate,
#else
.readdir = zpl_readdir,
#endif
.fsync = zpl_fsync,
.unlocked_ioctl = zpl_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = zpl_compat_ioctl,
#endif
};
/* CSTYLED */
module_param(zfs_fallocate_reserve_percent, uint, 0644);
MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
"Percentage of length to use for the available capacity check");