mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-07 08:40:25 +03:00
17443e0b20
CodeQL's cpp/constant-comparison query from its security-and-extended query set reported 4 instances where we have comparions that always evaluate the same way. In `draid_config_by_type()`, we have an early `if (nparity == 0)` check that returns `EINVAL`, making a later `if (nparity == 0 || nparity > VDEV_DRAID_MAXPARITY)` partially redundant. The later check prints an error message when parity is 0, but the early check does not. This is not useful feedback, so we move the later check to the place where the early check runs to replace the early check. In `perform_thread_merge()`, we return when `num_threads == 0`. After that block, we do `if (num_threads > 0) {`, which will always be true. We remove the `if` statement. In `sa_modify_attrs()`, we have a loop condition that is `k != 2`, but at the end of the loop, we have `if (k == 0 && hdl->sa_spill)` followed by an else that does a break. The result is that k != 2 will never be evaluated when it is false. We drop the comparison. In `zap_leaf_array_read()`, we have a for loop condition that is `i < ZAP_LEAF_ARRAY_BYTES && len > 0`. However, that loop itself is in a loop that is `while (len > 0)` and while the value of len is decremented inside the loop, when `len == 0`, it will return, such that `len > 0` inside the loop condition will always be true. We drop that part of the condition. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #14575
2259 lines
60 KiB
C
2259 lines
60 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2013, 2017 by Delphix. All rights reserved.
|
|
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/sysmacros.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_impl.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/sa.h>
|
|
#include <sys/sunddi.h>
|
|
#include <sys/sa_impl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/zfs_context.h>
|
|
|
|
#ifdef _KERNEL
|
|
#include <sys/zfs_znode.h>
|
|
#endif
|
|
|
|
/*
|
|
* ZFS System attributes:
|
|
*
|
|
* A generic mechanism to allow for arbitrary attributes
|
|
* to be stored in a dnode. The data will be stored in the bonus buffer of
|
|
* the dnode and if necessary a special "spill" block will be used to handle
|
|
* overflow situations. The spill block will be sized to fit the data
|
|
* from 512 - 128K. When a spill block is used the BP (blkptr_t) for the
|
|
* spill block is stored at the end of the current bonus buffer. Any
|
|
* attributes that would be in the way of the blkptr_t will be relocated
|
|
* into the spill block.
|
|
*
|
|
* Attribute registration:
|
|
*
|
|
* Stored persistently on a per dataset basis
|
|
* a mapping between attribute "string" names and their actual attribute
|
|
* numeric values, length, and byteswap function. The names are only used
|
|
* during registration. All attributes are known by their unique attribute
|
|
* id value. If an attribute can have a variable size then the value
|
|
* 0 will be used to indicate this.
|
|
*
|
|
* Attribute Layout:
|
|
*
|
|
* Attribute layouts are a way to compactly store multiple attributes, but
|
|
* without taking the overhead associated with managing each attribute
|
|
* individually. Since you will typically have the same set of attributes
|
|
* stored in the same order a single table will be used to represent that
|
|
* layout. The ZPL for example will usually have only about 10 different
|
|
* layouts (regular files, device files, symlinks,
|
|
* regular files + scanstamp, files/dir with extended attributes, and then
|
|
* you have the possibility of all of those minus ACL, because it would
|
|
* be kicked out into the spill block)
|
|
*
|
|
* Layouts are simply an array of the attributes and their
|
|
* ordering i.e. [0, 1, 4, 5, 2]
|
|
*
|
|
* Each distinct layout is given a unique layout number and that is what's
|
|
* stored in the header at the beginning of the SA data buffer.
|
|
*
|
|
* A layout only covers a single dbuf (bonus or spill). If a set of
|
|
* attributes is split up between the bonus buffer and a spill buffer then
|
|
* two different layouts will be used. This allows us to byteswap the
|
|
* spill without looking at the bonus buffer and keeps the on disk format of
|
|
* the bonus and spill buffer the same.
|
|
*
|
|
* Adding a single attribute will cause the entire set of attributes to
|
|
* be rewritten and could result in a new layout number being constructed
|
|
* as part of the rewrite if no such layout exists for the new set of
|
|
* attributes. The new attribute will be appended to the end of the already
|
|
* existing attributes.
|
|
*
|
|
* Both the attribute registration and attribute layout information are
|
|
* stored in normal ZAP attributes. Their should be a small number of
|
|
* known layouts and the set of attributes is assumed to typically be quite
|
|
* small.
|
|
*
|
|
* The registered attributes and layout "table" information is maintained
|
|
* in core and a special "sa_os_t" is attached to the objset_t.
|
|
*
|
|
* A special interface is provided to allow for quickly applying
|
|
* a large set of attributes at once. sa_replace_all_by_template() is
|
|
* used to set an array of attributes. This is used by the ZPL when
|
|
* creating a brand new file. The template that is passed into the function
|
|
* specifies the attribute, size for variable length attributes, location of
|
|
* data and special "data locator" function if the data isn't in a contiguous
|
|
* location.
|
|
*
|
|
* Byteswap implications:
|
|
*
|
|
* Since the SA attributes are not entirely self describing we can't do
|
|
* the normal byteswap processing. The special ZAP layout attribute and
|
|
* attribute registration attributes define the byteswap function and the
|
|
* size of the attributes, unless it is variable sized.
|
|
* The normal ZFS byteswapping infrastructure assumes you don't need
|
|
* to read any objects in order to do the necessary byteswapping. Whereas
|
|
* SA attributes can only be properly byteswapped if the dataset is opened
|
|
* and the layout/attribute ZAP attributes are available. Because of this
|
|
* the SA attributes will be byteswapped when they are first accessed by
|
|
* the SA code that will read the SA data.
|
|
*/
|
|
|
|
typedef void (sa_iterfunc_t)(void *hdr, void *addr, sa_attr_type_t,
|
|
uint16_t length, int length_idx, boolean_t, void *userp);
|
|
|
|
static int sa_build_index(sa_handle_t *hdl, sa_buf_type_t buftype);
|
|
static void sa_idx_tab_hold(objset_t *os, sa_idx_tab_t *idx_tab);
|
|
static sa_idx_tab_t *sa_find_idx_tab(objset_t *os, dmu_object_type_t bonustype,
|
|
sa_hdr_phys_t *hdr);
|
|
static void sa_idx_tab_rele(objset_t *os, void *arg);
|
|
static void sa_copy_data(sa_data_locator_t *func, void *start, void *target,
|
|
int buflen);
|
|
static int sa_modify_attrs(sa_handle_t *hdl, sa_attr_type_t newattr,
|
|
sa_data_op_t action, sa_data_locator_t *locator, void *datastart,
|
|
uint16_t buflen, dmu_tx_t *tx);
|
|
|
|
static arc_byteswap_func_t sa_bswap_table[] = {
|
|
byteswap_uint64_array,
|
|
byteswap_uint32_array,
|
|
byteswap_uint16_array,
|
|
byteswap_uint8_array,
|
|
zfs_acl_byteswap,
|
|
};
|
|
|
|
#ifdef HAVE_EFFICIENT_UNALIGNED_ACCESS
|
|
#define SA_COPY_DATA(f, s, t, l) \
|
|
do { \
|
|
if (f == NULL) { \
|
|
if (l == 8) { \
|
|
*(uint64_t *)t = *(uint64_t *)s; \
|
|
} else if (l == 16) { \
|
|
*(uint64_t *)t = *(uint64_t *)s; \
|
|
*(uint64_t *)((uintptr_t)t + 8) = \
|
|
*(uint64_t *)((uintptr_t)s + 8); \
|
|
} else { \
|
|
memcpy(t, s, l); \
|
|
} \
|
|
} else { \
|
|
sa_copy_data(f, s, t, l); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define SA_COPY_DATA(f, s, t, l) sa_copy_data(f, s, t, l)
|
|
#endif
|
|
|
|
/*
|
|
* This table is fixed and cannot be changed. Its purpose is to
|
|
* allow the SA code to work with both old/new ZPL file systems.
|
|
* It contains the list of legacy attributes. These attributes aren't
|
|
* stored in the "attribute" registry zap objects, since older ZPL file systems
|
|
* won't have the registry. Only objsets of type ZFS_TYPE_FILESYSTEM will
|
|
* use this static table.
|
|
*/
|
|
static const sa_attr_reg_t sa_legacy_attrs[] = {
|
|
{"ZPL_ATIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 0},
|
|
{"ZPL_MTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 1},
|
|
{"ZPL_CTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 2},
|
|
{"ZPL_CRTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 3},
|
|
{"ZPL_GEN", sizeof (uint64_t), SA_UINT64_ARRAY, 4},
|
|
{"ZPL_MODE", sizeof (uint64_t), SA_UINT64_ARRAY, 5},
|
|
{"ZPL_SIZE", sizeof (uint64_t), SA_UINT64_ARRAY, 6},
|
|
{"ZPL_PARENT", sizeof (uint64_t), SA_UINT64_ARRAY, 7},
|
|
{"ZPL_LINKS", sizeof (uint64_t), SA_UINT64_ARRAY, 8},
|
|
{"ZPL_XATTR", sizeof (uint64_t), SA_UINT64_ARRAY, 9},
|
|
{"ZPL_RDEV", sizeof (uint64_t), SA_UINT64_ARRAY, 10},
|
|
{"ZPL_FLAGS", sizeof (uint64_t), SA_UINT64_ARRAY, 11},
|
|
{"ZPL_UID", sizeof (uint64_t), SA_UINT64_ARRAY, 12},
|
|
{"ZPL_GID", sizeof (uint64_t), SA_UINT64_ARRAY, 13},
|
|
{"ZPL_PAD", sizeof (uint64_t) * 4, SA_UINT64_ARRAY, 14},
|
|
{"ZPL_ZNODE_ACL", 88, SA_UINT8_ARRAY, 15},
|
|
};
|
|
|
|
/*
|
|
* This is only used for objects of type DMU_OT_ZNODE
|
|
*/
|
|
static const sa_attr_type_t sa_legacy_zpl_layout[] = {
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
|
|
};
|
|
|
|
/*
|
|
* Special dummy layout used for buffers with no attributes.
|
|
*/
|
|
static const sa_attr_type_t sa_dummy_zpl_layout[] = { 0 };
|
|
|
|
static const size_t sa_legacy_attr_count = ARRAY_SIZE(sa_legacy_attrs);
|
|
static kmem_cache_t *sa_cache = NULL;
|
|
|
|
static int
|
|
sa_cache_constructor(void *buf, void *unused, int kmflag)
|
|
{
|
|
(void) unused, (void) kmflag;
|
|
sa_handle_t *hdl = buf;
|
|
|
|
mutex_init(&hdl->sa_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sa_cache_destructor(void *buf, void *unused)
|
|
{
|
|
(void) unused;
|
|
sa_handle_t *hdl = buf;
|
|
mutex_destroy(&hdl->sa_lock);
|
|
}
|
|
|
|
void
|
|
sa_cache_init(void)
|
|
{
|
|
sa_cache = kmem_cache_create("sa_cache",
|
|
sizeof (sa_handle_t), 0, sa_cache_constructor,
|
|
sa_cache_destructor, NULL, NULL, NULL, 0);
|
|
}
|
|
|
|
void
|
|
sa_cache_fini(void)
|
|
{
|
|
if (sa_cache)
|
|
kmem_cache_destroy(sa_cache);
|
|
}
|
|
|
|
static int
|
|
layout_num_compare(const void *arg1, const void *arg2)
|
|
{
|
|
const sa_lot_t *node1 = (const sa_lot_t *)arg1;
|
|
const sa_lot_t *node2 = (const sa_lot_t *)arg2;
|
|
|
|
return (TREE_CMP(node1->lot_num, node2->lot_num));
|
|
}
|
|
|
|
static int
|
|
layout_hash_compare(const void *arg1, const void *arg2)
|
|
{
|
|
const sa_lot_t *node1 = (const sa_lot_t *)arg1;
|
|
const sa_lot_t *node2 = (const sa_lot_t *)arg2;
|
|
|
|
int cmp = TREE_CMP(node1->lot_hash, node2->lot_hash);
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
return (TREE_CMP(node1->lot_instance, node2->lot_instance));
|
|
}
|
|
|
|
static boolean_t
|
|
sa_layout_equal(sa_lot_t *tbf, sa_attr_type_t *attrs, int count)
|
|
{
|
|
int i;
|
|
|
|
if (count != tbf->lot_attr_count)
|
|
return (1);
|
|
|
|
for (i = 0; i != count; i++) {
|
|
if (attrs[i] != tbf->lot_attrs[i])
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
#define SA_ATTR_HASH(attr) (zfs_crc64_table[(-1ULL ^ attr) & 0xFF])
|
|
|
|
static uint64_t
|
|
sa_layout_info_hash(const sa_attr_type_t *attrs, int attr_count)
|
|
{
|
|
uint64_t crc = -1ULL;
|
|
|
|
for (int i = 0; i != attr_count; i++)
|
|
crc ^= SA_ATTR_HASH(attrs[i]);
|
|
|
|
return (crc);
|
|
}
|
|
|
|
static int
|
|
sa_get_spill(sa_handle_t *hdl)
|
|
{
|
|
int rc;
|
|
if (hdl->sa_spill == NULL) {
|
|
if ((rc = dmu_spill_hold_existing(hdl->sa_bonus, NULL,
|
|
&hdl->sa_spill)) == 0)
|
|
VERIFY(0 == sa_build_index(hdl, SA_SPILL));
|
|
} else {
|
|
rc = 0;
|
|
}
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* Main attribute lookup/update function
|
|
* returns 0 for success or non zero for failures
|
|
*
|
|
* Operates on bulk array, first failure will abort further processing
|
|
*/
|
|
static int
|
|
sa_attr_op(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count,
|
|
sa_data_op_t data_op, dmu_tx_t *tx)
|
|
{
|
|
sa_os_t *sa = hdl->sa_os->os_sa;
|
|
int i;
|
|
int error = 0;
|
|
sa_buf_type_t buftypes;
|
|
|
|
buftypes = 0;
|
|
|
|
ASSERT(count > 0);
|
|
for (i = 0; i != count; i++) {
|
|
ASSERT(bulk[i].sa_attr <= hdl->sa_os->os_sa->sa_num_attrs);
|
|
|
|
bulk[i].sa_addr = NULL;
|
|
/* First check the bonus buffer */
|
|
|
|
if (hdl->sa_bonus_tab && TOC_ATTR_PRESENT(
|
|
hdl->sa_bonus_tab->sa_idx_tab[bulk[i].sa_attr])) {
|
|
SA_ATTR_INFO(sa, hdl->sa_bonus_tab,
|
|
SA_GET_HDR(hdl, SA_BONUS),
|
|
bulk[i].sa_attr, bulk[i], SA_BONUS, hdl);
|
|
if (tx && !(buftypes & SA_BONUS)) {
|
|
dmu_buf_will_dirty(hdl->sa_bonus, tx);
|
|
buftypes |= SA_BONUS;
|
|
}
|
|
}
|
|
if (bulk[i].sa_addr == NULL &&
|
|
((error = sa_get_spill(hdl)) == 0)) {
|
|
if (TOC_ATTR_PRESENT(
|
|
hdl->sa_spill_tab->sa_idx_tab[bulk[i].sa_attr])) {
|
|
SA_ATTR_INFO(sa, hdl->sa_spill_tab,
|
|
SA_GET_HDR(hdl, SA_SPILL),
|
|
bulk[i].sa_attr, bulk[i], SA_SPILL, hdl);
|
|
if (tx && !(buftypes & SA_SPILL) &&
|
|
bulk[i].sa_size == bulk[i].sa_length) {
|
|
dmu_buf_will_dirty(hdl->sa_spill, tx);
|
|
buftypes |= SA_SPILL;
|
|
}
|
|
}
|
|
}
|
|
if (error && error != ENOENT) {
|
|
return ((error == ECKSUM) ? EIO : error);
|
|
}
|
|
|
|
switch (data_op) {
|
|
case SA_LOOKUP:
|
|
if (bulk[i].sa_addr == NULL)
|
|
return (SET_ERROR(ENOENT));
|
|
if (bulk[i].sa_data) {
|
|
SA_COPY_DATA(bulk[i].sa_data_func,
|
|
bulk[i].sa_addr, bulk[i].sa_data,
|
|
bulk[i].sa_size);
|
|
}
|
|
continue;
|
|
|
|
case SA_UPDATE:
|
|
/* existing rewrite of attr */
|
|
if (bulk[i].sa_addr &&
|
|
bulk[i].sa_size == bulk[i].sa_length) {
|
|
SA_COPY_DATA(bulk[i].sa_data_func,
|
|
bulk[i].sa_data, bulk[i].sa_addr,
|
|
bulk[i].sa_length);
|
|
continue;
|
|
} else if (bulk[i].sa_addr) { /* attr size change */
|
|
error = sa_modify_attrs(hdl, bulk[i].sa_attr,
|
|
SA_REPLACE, bulk[i].sa_data_func,
|
|
bulk[i].sa_data, bulk[i].sa_length, tx);
|
|
} else { /* adding new attribute */
|
|
error = sa_modify_attrs(hdl, bulk[i].sa_attr,
|
|
SA_ADD, bulk[i].sa_data_func,
|
|
bulk[i].sa_data, bulk[i].sa_length, tx);
|
|
}
|
|
if (error)
|
|
return (error);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static sa_lot_t *
|
|
sa_add_layout_entry(objset_t *os, const sa_attr_type_t *attrs, int attr_count,
|
|
uint64_t lot_num, uint64_t hash, boolean_t zapadd, dmu_tx_t *tx)
|
|
{
|
|
sa_os_t *sa = os->os_sa;
|
|
sa_lot_t *tb, *findtb;
|
|
int i;
|
|
avl_index_t loc;
|
|
|
|
ASSERT(MUTEX_HELD(&sa->sa_lock));
|
|
tb = kmem_zalloc(sizeof (sa_lot_t), KM_SLEEP);
|
|
tb->lot_attr_count = attr_count;
|
|
tb->lot_attrs = kmem_alloc(sizeof (sa_attr_type_t) * attr_count,
|
|
KM_SLEEP);
|
|
memcpy(tb->lot_attrs, attrs, sizeof (sa_attr_type_t) * attr_count);
|
|
tb->lot_num = lot_num;
|
|
tb->lot_hash = hash;
|
|
tb->lot_instance = 0;
|
|
|
|
if (zapadd) {
|
|
char attr_name[8];
|
|
|
|
if (sa->sa_layout_attr_obj == 0) {
|
|
sa->sa_layout_attr_obj = zap_create_link(os,
|
|
DMU_OT_SA_ATTR_LAYOUTS,
|
|
sa->sa_master_obj, SA_LAYOUTS, tx);
|
|
}
|
|
|
|
(void) snprintf(attr_name, sizeof (attr_name),
|
|
"%d", (int)lot_num);
|
|
VERIFY(0 == zap_update(os, os->os_sa->sa_layout_attr_obj,
|
|
attr_name, 2, attr_count, attrs, tx));
|
|
}
|
|
|
|
list_create(&tb->lot_idx_tab, sizeof (sa_idx_tab_t),
|
|
offsetof(sa_idx_tab_t, sa_next));
|
|
|
|
for (i = 0; i != attr_count; i++) {
|
|
if (sa->sa_attr_table[tb->lot_attrs[i]].sa_length == 0)
|
|
tb->lot_var_sizes++;
|
|
}
|
|
|
|
avl_add(&sa->sa_layout_num_tree, tb);
|
|
|
|
/* verify we don't have a hash collision */
|
|
if ((findtb = avl_find(&sa->sa_layout_hash_tree, tb, &loc)) != NULL) {
|
|
for (; findtb && findtb->lot_hash == hash;
|
|
findtb = AVL_NEXT(&sa->sa_layout_hash_tree, findtb)) {
|
|
if (findtb->lot_instance != tb->lot_instance)
|
|
break;
|
|
tb->lot_instance++;
|
|
}
|
|
}
|
|
avl_add(&sa->sa_layout_hash_tree, tb);
|
|
return (tb);
|
|
}
|
|
|
|
static void
|
|
sa_find_layout(objset_t *os, uint64_t hash, sa_attr_type_t *attrs,
|
|
int count, dmu_tx_t *tx, sa_lot_t **lot)
|
|
{
|
|
sa_lot_t *tb, tbsearch;
|
|
avl_index_t loc;
|
|
sa_os_t *sa = os->os_sa;
|
|
boolean_t found = B_FALSE;
|
|
|
|
mutex_enter(&sa->sa_lock);
|
|
tbsearch.lot_hash = hash;
|
|
tbsearch.lot_instance = 0;
|
|
tb = avl_find(&sa->sa_layout_hash_tree, &tbsearch, &loc);
|
|
if (tb) {
|
|
for (; tb && tb->lot_hash == hash;
|
|
tb = AVL_NEXT(&sa->sa_layout_hash_tree, tb)) {
|
|
if (sa_layout_equal(tb, attrs, count) == 0) {
|
|
found = B_TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!found) {
|
|
tb = sa_add_layout_entry(os, attrs, count,
|
|
avl_numnodes(&sa->sa_layout_num_tree), hash, B_TRUE, tx);
|
|
}
|
|
mutex_exit(&sa->sa_lock);
|
|
*lot = tb;
|
|
}
|
|
|
|
static int
|
|
sa_resize_spill(sa_handle_t *hdl, uint32_t size, dmu_tx_t *tx)
|
|
{
|
|
int error;
|
|
uint32_t blocksize;
|
|
|
|
if (size == 0) {
|
|
blocksize = SPA_MINBLOCKSIZE;
|
|
} else if (size > SPA_OLD_MAXBLOCKSIZE) {
|
|
ASSERT(0);
|
|
return (SET_ERROR(EFBIG));
|
|
} else {
|
|
blocksize = P2ROUNDUP_TYPED(size, SPA_MINBLOCKSIZE, uint32_t);
|
|
}
|
|
|
|
error = dbuf_spill_set_blksz(hdl->sa_spill, blocksize, tx);
|
|
ASSERT(error == 0);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
sa_copy_data(sa_data_locator_t *func, void *datastart, void *target, int buflen)
|
|
{
|
|
if (func == NULL) {
|
|
memcpy(target, datastart, buflen);
|
|
} else {
|
|
boolean_t start;
|
|
int bytes;
|
|
void *dataptr;
|
|
void *saptr = target;
|
|
uint32_t length;
|
|
|
|
start = B_TRUE;
|
|
bytes = 0;
|
|
while (bytes < buflen) {
|
|
func(&dataptr, &length, buflen, start, datastart);
|
|
memcpy(saptr, dataptr, length);
|
|
saptr = (void *)((caddr_t)saptr + length);
|
|
bytes += length;
|
|
start = B_FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine several different values pertaining to system attribute
|
|
* buffers.
|
|
*
|
|
* Return the size of the sa_hdr_phys_t header for the buffer. Each
|
|
* variable length attribute except the first contributes two bytes to
|
|
* the header size, which is then rounded up to an 8-byte boundary.
|
|
*
|
|
* The following output parameters are also computed.
|
|
*
|
|
* index - The index of the first attribute in attr_desc that will
|
|
* spill over. Only valid if will_spill is set.
|
|
*
|
|
* total - The total number of bytes of all system attributes described
|
|
* in attr_desc.
|
|
*
|
|
* will_spill - Set when spilling is necessary. It is only set when
|
|
* the buftype is SA_BONUS.
|
|
*/
|
|
static int
|
|
sa_find_sizes(sa_os_t *sa, sa_bulk_attr_t *attr_desc, int attr_count,
|
|
dmu_buf_t *db, sa_buf_type_t buftype, int full_space, int *index,
|
|
int *total, boolean_t *will_spill)
|
|
{
|
|
int var_size_count = 0;
|
|
int i;
|
|
int hdrsize;
|
|
int extra_hdrsize;
|
|
|
|
if (buftype == SA_BONUS && sa->sa_force_spill) {
|
|
*total = 0;
|
|
*index = 0;
|
|
*will_spill = B_TRUE;
|
|
return (0);
|
|
}
|
|
|
|
*index = -1;
|
|
*total = 0;
|
|
*will_spill = B_FALSE;
|
|
|
|
extra_hdrsize = 0;
|
|
hdrsize = (SA_BONUSTYPE_FROM_DB(db) == DMU_OT_ZNODE) ? 0 :
|
|
sizeof (sa_hdr_phys_t);
|
|
|
|
ASSERT(IS_P2ALIGNED(full_space, 8));
|
|
|
|
for (i = 0; i != attr_count; i++) {
|
|
boolean_t is_var_sz, might_spill_here;
|
|
int tmp_hdrsize;
|
|
|
|
*total = P2ROUNDUP(*total, 8);
|
|
*total += attr_desc[i].sa_length;
|
|
if (*will_spill)
|
|
continue;
|
|
|
|
is_var_sz = (SA_REGISTERED_LEN(sa, attr_desc[i].sa_attr) == 0);
|
|
if (is_var_sz)
|
|
var_size_count++;
|
|
|
|
/*
|
|
* Calculate what the SA header size would be if this
|
|
* attribute doesn't spill.
|
|
*/
|
|
tmp_hdrsize = hdrsize + ((is_var_sz && var_size_count > 1) ?
|
|
sizeof (uint16_t) : 0);
|
|
|
|
/*
|
|
* Check whether this attribute spans into the space
|
|
* that would be used by the spill block pointer should
|
|
* a spill block be needed.
|
|
*/
|
|
might_spill_here =
|
|
buftype == SA_BONUS && *index == -1 &&
|
|
(*total + P2ROUNDUP(tmp_hdrsize, 8)) >
|
|
(full_space - sizeof (blkptr_t));
|
|
|
|
if (is_var_sz && var_size_count > 1) {
|
|
if (buftype == SA_SPILL ||
|
|
tmp_hdrsize + *total < full_space) {
|
|
/*
|
|
* Record the extra header size in case this
|
|
* increase needs to be reversed due to
|
|
* spill-over.
|
|
*/
|
|
hdrsize = tmp_hdrsize;
|
|
if (*index != -1 || might_spill_here)
|
|
extra_hdrsize += sizeof (uint16_t);
|
|
} else {
|
|
ASSERT(buftype == SA_BONUS);
|
|
if (*index == -1)
|
|
*index = i;
|
|
*will_spill = B_TRUE;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Store index of where spill *could* occur. Then
|
|
* continue to count the remaining attribute sizes. The
|
|
* sum is used later for sizing bonus and spill buffer.
|
|
*/
|
|
if (might_spill_here)
|
|
*index = i;
|
|
|
|
if ((*total + P2ROUNDUP(hdrsize, 8)) > full_space &&
|
|
buftype == SA_BONUS)
|
|
*will_spill = B_TRUE;
|
|
}
|
|
|
|
if (*will_spill)
|
|
hdrsize -= extra_hdrsize;
|
|
|
|
hdrsize = P2ROUNDUP(hdrsize, 8);
|
|
return (hdrsize);
|
|
}
|
|
|
|
#define BUF_SPACE_NEEDED(total, header) (total + header)
|
|
|
|
/*
|
|
* Find layout that corresponds to ordering of attributes
|
|
* If not found a new layout number is created and added to
|
|
* persistent layout tables.
|
|
*/
|
|
static int
|
|
sa_build_layouts(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc, int attr_count,
|
|
dmu_tx_t *tx)
|
|
{
|
|
sa_os_t *sa = hdl->sa_os->os_sa;
|
|
uint64_t hash;
|
|
sa_buf_type_t buftype;
|
|
sa_hdr_phys_t *sahdr;
|
|
void *data_start;
|
|
sa_attr_type_t *attrs, *attrs_start;
|
|
int i, lot_count;
|
|
int dnodesize;
|
|
int spill_idx;
|
|
int hdrsize;
|
|
int spillhdrsize = 0;
|
|
int used;
|
|
dmu_object_type_t bonustype;
|
|
sa_lot_t *lot;
|
|
int len_idx;
|
|
int spill_used;
|
|
int bonuslen;
|
|
boolean_t spilling;
|
|
|
|
dmu_buf_will_dirty(hdl->sa_bonus, tx);
|
|
bonustype = SA_BONUSTYPE_FROM_DB(hdl->sa_bonus);
|
|
dmu_object_dnsize_from_db(hdl->sa_bonus, &dnodesize);
|
|
bonuslen = DN_BONUS_SIZE(dnodesize);
|
|
|
|
/* first determine bonus header size and sum of all attributes */
|
|
hdrsize = sa_find_sizes(sa, attr_desc, attr_count, hdl->sa_bonus,
|
|
SA_BONUS, bonuslen, &spill_idx, &used, &spilling);
|
|
|
|
if (used > SPA_OLD_MAXBLOCKSIZE)
|
|
return (SET_ERROR(EFBIG));
|
|
|
|
VERIFY0(dmu_set_bonus(hdl->sa_bonus, spilling ?
|
|
MIN(bonuslen - sizeof (blkptr_t), used + hdrsize) :
|
|
used + hdrsize, tx));
|
|
|
|
ASSERT((bonustype == DMU_OT_ZNODE && spilling == 0) ||
|
|
bonustype == DMU_OT_SA);
|
|
|
|
/* setup and size spill buffer when needed */
|
|
if (spilling) {
|
|
boolean_t dummy;
|
|
|
|
if (hdl->sa_spill == NULL) {
|
|
VERIFY(dmu_spill_hold_by_bonus(hdl->sa_bonus, 0, NULL,
|
|
&hdl->sa_spill) == 0);
|
|
}
|
|
dmu_buf_will_dirty(hdl->sa_spill, tx);
|
|
|
|
spillhdrsize = sa_find_sizes(sa, &attr_desc[spill_idx],
|
|
attr_count - spill_idx, hdl->sa_spill, SA_SPILL,
|
|
hdl->sa_spill->db_size, &i, &spill_used, &dummy);
|
|
|
|
if (spill_used > SPA_OLD_MAXBLOCKSIZE)
|
|
return (SET_ERROR(EFBIG));
|
|
|
|
if (BUF_SPACE_NEEDED(spill_used, spillhdrsize) >
|
|
hdl->sa_spill->db_size)
|
|
VERIFY(0 == sa_resize_spill(hdl,
|
|
BUF_SPACE_NEEDED(spill_used, spillhdrsize), tx));
|
|
}
|
|
|
|
/* setup starting pointers to lay down data */
|
|
data_start = (void *)((uintptr_t)hdl->sa_bonus->db_data + hdrsize);
|
|
sahdr = (sa_hdr_phys_t *)hdl->sa_bonus->db_data;
|
|
buftype = SA_BONUS;
|
|
|
|
attrs_start = attrs = kmem_alloc(sizeof (sa_attr_type_t) * attr_count,
|
|
KM_SLEEP);
|
|
lot_count = 0;
|
|
|
|
for (i = 0, len_idx = 0, hash = -1ULL; i != attr_count; i++) {
|
|
uint16_t length;
|
|
|
|
ASSERT(IS_P2ALIGNED(data_start, 8));
|
|
attrs[i] = attr_desc[i].sa_attr;
|
|
length = SA_REGISTERED_LEN(sa, attrs[i]);
|
|
if (length == 0)
|
|
length = attr_desc[i].sa_length;
|
|
|
|
if (spilling && i == spill_idx) { /* switch to spill buffer */
|
|
VERIFY(bonustype == DMU_OT_SA);
|
|
if (buftype == SA_BONUS && !sa->sa_force_spill) {
|
|
sa_find_layout(hdl->sa_os, hash, attrs_start,
|
|
lot_count, tx, &lot);
|
|
SA_SET_HDR(sahdr, lot->lot_num, hdrsize);
|
|
}
|
|
|
|
buftype = SA_SPILL;
|
|
hash = -1ULL;
|
|
len_idx = 0;
|
|
|
|
sahdr = (sa_hdr_phys_t *)hdl->sa_spill->db_data;
|
|
sahdr->sa_magic = SA_MAGIC;
|
|
data_start = (void *)((uintptr_t)sahdr +
|
|
spillhdrsize);
|
|
attrs_start = &attrs[i];
|
|
lot_count = 0;
|
|
}
|
|
hash ^= SA_ATTR_HASH(attrs[i]);
|
|
attr_desc[i].sa_addr = data_start;
|
|
attr_desc[i].sa_size = length;
|
|
SA_COPY_DATA(attr_desc[i].sa_data_func, attr_desc[i].sa_data,
|
|
data_start, length);
|
|
if (sa->sa_attr_table[attrs[i]].sa_length == 0) {
|
|
sahdr->sa_lengths[len_idx++] = length;
|
|
}
|
|
data_start = (void *)P2ROUNDUP(((uintptr_t)data_start +
|
|
length), 8);
|
|
lot_count++;
|
|
}
|
|
|
|
sa_find_layout(hdl->sa_os, hash, attrs_start, lot_count, tx, &lot);
|
|
|
|
/*
|
|
* Verify that old znodes always have layout number 0.
|
|
* Must be DMU_OT_SA for arbitrary layouts
|
|
*/
|
|
VERIFY((bonustype == DMU_OT_ZNODE && lot->lot_num == 0) ||
|
|
(bonustype == DMU_OT_SA && lot->lot_num > 1));
|
|
|
|
if (bonustype == DMU_OT_SA) {
|
|
SA_SET_HDR(sahdr, lot->lot_num,
|
|
buftype == SA_BONUS ? hdrsize : spillhdrsize);
|
|
}
|
|
|
|
kmem_free(attrs, sizeof (sa_attr_type_t) * attr_count);
|
|
if (hdl->sa_bonus_tab) {
|
|
sa_idx_tab_rele(hdl->sa_os, hdl->sa_bonus_tab);
|
|
hdl->sa_bonus_tab = NULL;
|
|
}
|
|
if (!sa->sa_force_spill)
|
|
VERIFY(0 == sa_build_index(hdl, SA_BONUS));
|
|
if (hdl->sa_spill) {
|
|
sa_idx_tab_rele(hdl->sa_os, hdl->sa_spill_tab);
|
|
if (!spilling) {
|
|
/*
|
|
* remove spill block that is no longer needed.
|
|
*/
|
|
dmu_buf_rele(hdl->sa_spill, NULL);
|
|
hdl->sa_spill = NULL;
|
|
hdl->sa_spill_tab = NULL;
|
|
VERIFY(0 == dmu_rm_spill(hdl->sa_os,
|
|
sa_handle_object(hdl), tx));
|
|
} else {
|
|
VERIFY(0 == sa_build_index(hdl, SA_SPILL));
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sa_free_attr_table(sa_os_t *sa)
|
|
{
|
|
int i;
|
|
|
|
if (sa->sa_attr_table == NULL)
|
|
return;
|
|
|
|
for (i = 0; i != sa->sa_num_attrs; i++) {
|
|
if (sa->sa_attr_table[i].sa_name)
|
|
kmem_free(sa->sa_attr_table[i].sa_name,
|
|
strlen(sa->sa_attr_table[i].sa_name) + 1);
|
|
}
|
|
|
|
kmem_free(sa->sa_attr_table,
|
|
sizeof (sa_attr_table_t) * sa->sa_num_attrs);
|
|
|
|
sa->sa_attr_table = NULL;
|
|
}
|
|
|
|
static int
|
|
sa_attr_table_setup(objset_t *os, const sa_attr_reg_t *reg_attrs, int count)
|
|
{
|
|
sa_os_t *sa = os->os_sa;
|
|
uint64_t sa_attr_count = 0;
|
|
uint64_t sa_reg_count = 0;
|
|
int error = 0;
|
|
uint64_t attr_value;
|
|
sa_attr_table_t *tb;
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
int registered_count = 0;
|
|
int i;
|
|
dmu_objset_type_t ostype = dmu_objset_type(os);
|
|
|
|
sa->sa_user_table =
|
|
kmem_zalloc(count * sizeof (sa_attr_type_t), KM_SLEEP);
|
|
sa->sa_user_table_sz = count * sizeof (sa_attr_type_t);
|
|
|
|
if (sa->sa_reg_attr_obj != 0) {
|
|
error = zap_count(os, sa->sa_reg_attr_obj,
|
|
&sa_attr_count);
|
|
|
|
/*
|
|
* Make sure we retrieved a count and that it isn't zero
|
|
*/
|
|
if (error || (error == 0 && sa_attr_count == 0)) {
|
|
if (error == 0)
|
|
error = SET_ERROR(EINVAL);
|
|
goto bail;
|
|
}
|
|
sa_reg_count = sa_attr_count;
|
|
}
|
|
|
|
if (ostype == DMU_OST_ZFS && sa_attr_count == 0)
|
|
sa_attr_count += sa_legacy_attr_count;
|
|
|
|
/* Allocate attribute numbers for attributes that aren't registered */
|
|
for (i = 0; i != count; i++) {
|
|
boolean_t found = B_FALSE;
|
|
int j;
|
|
|
|
if (ostype == DMU_OST_ZFS) {
|
|
for (j = 0; j != sa_legacy_attr_count; j++) {
|
|
if (strcmp(reg_attrs[i].sa_name,
|
|
sa_legacy_attrs[j].sa_name) == 0) {
|
|
sa->sa_user_table[i] =
|
|
sa_legacy_attrs[j].sa_attr;
|
|
found = B_TRUE;
|
|
}
|
|
}
|
|
}
|
|
if (found)
|
|
continue;
|
|
|
|
if (sa->sa_reg_attr_obj)
|
|
error = zap_lookup(os, sa->sa_reg_attr_obj,
|
|
reg_attrs[i].sa_name, 8, 1, &attr_value);
|
|
else
|
|
error = SET_ERROR(ENOENT);
|
|
switch (error) {
|
|
case ENOENT:
|
|
sa->sa_user_table[i] = (sa_attr_type_t)sa_attr_count;
|
|
sa_attr_count++;
|
|
break;
|
|
case 0:
|
|
sa->sa_user_table[i] = ATTR_NUM(attr_value);
|
|
break;
|
|
default:
|
|
goto bail;
|
|
}
|
|
}
|
|
|
|
sa->sa_num_attrs = sa_attr_count;
|
|
tb = sa->sa_attr_table =
|
|
kmem_zalloc(sizeof (sa_attr_table_t) * sa_attr_count, KM_SLEEP);
|
|
|
|
/*
|
|
* Attribute table is constructed from requested attribute list,
|
|
* previously foreign registered attributes, and also the legacy
|
|
* ZPL set of attributes.
|
|
*/
|
|
|
|
if (sa->sa_reg_attr_obj) {
|
|
for (zap_cursor_init(&zc, os, sa->sa_reg_attr_obj);
|
|
(error = zap_cursor_retrieve(&zc, &za)) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
uint64_t value;
|
|
value = za.za_first_integer;
|
|
|
|
registered_count++;
|
|
tb[ATTR_NUM(value)].sa_attr = ATTR_NUM(value);
|
|
tb[ATTR_NUM(value)].sa_length = ATTR_LENGTH(value);
|
|
tb[ATTR_NUM(value)].sa_byteswap = ATTR_BSWAP(value);
|
|
tb[ATTR_NUM(value)].sa_registered = B_TRUE;
|
|
|
|
if (tb[ATTR_NUM(value)].sa_name) {
|
|
continue;
|
|
}
|
|
tb[ATTR_NUM(value)].sa_name =
|
|
kmem_zalloc(strlen(za.za_name) +1, KM_SLEEP);
|
|
(void) strlcpy(tb[ATTR_NUM(value)].sa_name, za.za_name,
|
|
strlen(za.za_name) +1);
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
/*
|
|
* Make sure we processed the correct number of registered
|
|
* attributes
|
|
*/
|
|
if (registered_count != sa_reg_count) {
|
|
ASSERT(error != 0);
|
|
goto bail;
|
|
}
|
|
|
|
}
|
|
|
|
if (ostype == DMU_OST_ZFS) {
|
|
for (i = 0; i != sa_legacy_attr_count; i++) {
|
|
if (tb[i].sa_name)
|
|
continue;
|
|
tb[i].sa_attr = sa_legacy_attrs[i].sa_attr;
|
|
tb[i].sa_length = sa_legacy_attrs[i].sa_length;
|
|
tb[i].sa_byteswap = sa_legacy_attrs[i].sa_byteswap;
|
|
tb[i].sa_registered = B_FALSE;
|
|
tb[i].sa_name =
|
|
kmem_zalloc(strlen(sa_legacy_attrs[i].sa_name) +1,
|
|
KM_SLEEP);
|
|
(void) strlcpy(tb[i].sa_name,
|
|
sa_legacy_attrs[i].sa_name,
|
|
strlen(sa_legacy_attrs[i].sa_name) + 1);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i != count; i++) {
|
|
sa_attr_type_t attr_id;
|
|
|
|
attr_id = sa->sa_user_table[i];
|
|
if (tb[attr_id].sa_name)
|
|
continue;
|
|
|
|
tb[attr_id].sa_length = reg_attrs[i].sa_length;
|
|
tb[attr_id].sa_byteswap = reg_attrs[i].sa_byteswap;
|
|
tb[attr_id].sa_attr = attr_id;
|
|
tb[attr_id].sa_name =
|
|
kmem_zalloc(strlen(reg_attrs[i].sa_name) + 1, KM_SLEEP);
|
|
(void) strlcpy(tb[attr_id].sa_name, reg_attrs[i].sa_name,
|
|
strlen(reg_attrs[i].sa_name) + 1);
|
|
}
|
|
|
|
sa->sa_need_attr_registration =
|
|
(sa_attr_count != registered_count);
|
|
|
|
return (0);
|
|
bail:
|
|
kmem_free(sa->sa_user_table, count * sizeof (sa_attr_type_t));
|
|
sa->sa_user_table = NULL;
|
|
sa_free_attr_table(sa);
|
|
ASSERT(error != 0);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sa_setup(objset_t *os, uint64_t sa_obj, const sa_attr_reg_t *reg_attrs,
|
|
int count, sa_attr_type_t **user_table)
|
|
{
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
sa_os_t *sa;
|
|
dmu_objset_type_t ostype = dmu_objset_type(os);
|
|
sa_attr_type_t *tb;
|
|
int error;
|
|
|
|
mutex_enter(&os->os_user_ptr_lock);
|
|
if (os->os_sa) {
|
|
mutex_enter(&os->os_sa->sa_lock);
|
|
mutex_exit(&os->os_user_ptr_lock);
|
|
tb = os->os_sa->sa_user_table;
|
|
mutex_exit(&os->os_sa->sa_lock);
|
|
*user_table = tb;
|
|
return (0);
|
|
}
|
|
|
|
sa = kmem_zalloc(sizeof (sa_os_t), KM_SLEEP);
|
|
mutex_init(&sa->sa_lock, NULL, MUTEX_NOLOCKDEP, NULL);
|
|
sa->sa_master_obj = sa_obj;
|
|
|
|
os->os_sa = sa;
|
|
mutex_enter(&sa->sa_lock);
|
|
mutex_exit(&os->os_user_ptr_lock);
|
|
avl_create(&sa->sa_layout_num_tree, layout_num_compare,
|
|
sizeof (sa_lot_t), offsetof(sa_lot_t, lot_num_node));
|
|
avl_create(&sa->sa_layout_hash_tree, layout_hash_compare,
|
|
sizeof (sa_lot_t), offsetof(sa_lot_t, lot_hash_node));
|
|
|
|
if (sa_obj) {
|
|
error = zap_lookup(os, sa_obj, SA_LAYOUTS,
|
|
8, 1, &sa->sa_layout_attr_obj);
|
|
if (error != 0 && error != ENOENT)
|
|
goto fail;
|
|
error = zap_lookup(os, sa_obj, SA_REGISTRY,
|
|
8, 1, &sa->sa_reg_attr_obj);
|
|
if (error != 0 && error != ENOENT)
|
|
goto fail;
|
|
}
|
|
|
|
if ((error = sa_attr_table_setup(os, reg_attrs, count)) != 0)
|
|
goto fail;
|
|
|
|
if (sa->sa_layout_attr_obj != 0) {
|
|
uint64_t layout_count;
|
|
|
|
error = zap_count(os, sa->sa_layout_attr_obj,
|
|
&layout_count);
|
|
|
|
/*
|
|
* Layout number count should be > 0
|
|
*/
|
|
if (error || (error == 0 && layout_count == 0)) {
|
|
if (error == 0)
|
|
error = SET_ERROR(EINVAL);
|
|
goto fail;
|
|
}
|
|
|
|
for (zap_cursor_init(&zc, os, sa->sa_layout_attr_obj);
|
|
(error = zap_cursor_retrieve(&zc, &za)) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
sa_attr_type_t *lot_attrs;
|
|
uint64_t lot_num;
|
|
|
|
lot_attrs = kmem_zalloc(sizeof (sa_attr_type_t) *
|
|
za.za_num_integers, KM_SLEEP);
|
|
|
|
if ((error = (zap_lookup(os, sa->sa_layout_attr_obj,
|
|
za.za_name, 2, za.za_num_integers,
|
|
lot_attrs))) != 0) {
|
|
kmem_free(lot_attrs, sizeof (sa_attr_type_t) *
|
|
za.za_num_integers);
|
|
break;
|
|
}
|
|
VERIFY0(ddi_strtoull(za.za_name, NULL, 10,
|
|
(unsigned long long *)&lot_num));
|
|
|
|
(void) sa_add_layout_entry(os, lot_attrs,
|
|
za.za_num_integers, lot_num,
|
|
sa_layout_info_hash(lot_attrs,
|
|
za.za_num_integers), B_FALSE, NULL);
|
|
kmem_free(lot_attrs, sizeof (sa_attr_type_t) *
|
|
za.za_num_integers);
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
|
|
/*
|
|
* Make sure layout count matches number of entries added
|
|
* to AVL tree
|
|
*/
|
|
if (avl_numnodes(&sa->sa_layout_num_tree) != layout_count) {
|
|
ASSERT(error != 0);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Add special layout number for old ZNODES */
|
|
if (ostype == DMU_OST_ZFS) {
|
|
(void) sa_add_layout_entry(os, sa_legacy_zpl_layout,
|
|
sa_legacy_attr_count, 0,
|
|
sa_layout_info_hash(sa_legacy_zpl_layout,
|
|
sa_legacy_attr_count), B_FALSE, NULL);
|
|
|
|
(void) sa_add_layout_entry(os, sa_dummy_zpl_layout, 0, 1,
|
|
0, B_FALSE, NULL);
|
|
}
|
|
*user_table = os->os_sa->sa_user_table;
|
|
mutex_exit(&sa->sa_lock);
|
|
return (0);
|
|
fail:
|
|
os->os_sa = NULL;
|
|
sa_free_attr_table(sa);
|
|
if (sa->sa_user_table)
|
|
kmem_free(sa->sa_user_table, sa->sa_user_table_sz);
|
|
mutex_exit(&sa->sa_lock);
|
|
avl_destroy(&sa->sa_layout_hash_tree);
|
|
avl_destroy(&sa->sa_layout_num_tree);
|
|
mutex_destroy(&sa->sa_lock);
|
|
kmem_free(sa, sizeof (sa_os_t));
|
|
return ((error == ECKSUM) ? EIO : error);
|
|
}
|
|
|
|
void
|
|
sa_tear_down(objset_t *os)
|
|
{
|
|
sa_os_t *sa = os->os_sa;
|
|
sa_lot_t *layout;
|
|
void *cookie;
|
|
|
|
kmem_free(sa->sa_user_table, sa->sa_user_table_sz);
|
|
|
|
/* Free up attr table */
|
|
|
|
sa_free_attr_table(sa);
|
|
|
|
cookie = NULL;
|
|
while ((layout =
|
|
avl_destroy_nodes(&sa->sa_layout_hash_tree, &cookie))) {
|
|
sa_idx_tab_t *tab;
|
|
while ((tab = list_head(&layout->lot_idx_tab))) {
|
|
ASSERT(zfs_refcount_count(&tab->sa_refcount));
|
|
sa_idx_tab_rele(os, tab);
|
|
}
|
|
}
|
|
|
|
cookie = NULL;
|
|
while ((layout = avl_destroy_nodes(&sa->sa_layout_num_tree, &cookie))) {
|
|
kmem_free(layout->lot_attrs,
|
|
sizeof (sa_attr_type_t) * layout->lot_attr_count);
|
|
kmem_free(layout, sizeof (sa_lot_t));
|
|
}
|
|
|
|
avl_destroy(&sa->sa_layout_hash_tree);
|
|
avl_destroy(&sa->sa_layout_num_tree);
|
|
mutex_destroy(&sa->sa_lock);
|
|
|
|
kmem_free(sa, sizeof (sa_os_t));
|
|
os->os_sa = NULL;
|
|
}
|
|
|
|
static void
|
|
sa_build_idx_tab(void *hdr, void *attr_addr, sa_attr_type_t attr,
|
|
uint16_t length, int length_idx, boolean_t var_length, void *userp)
|
|
{
|
|
sa_idx_tab_t *idx_tab = userp;
|
|
|
|
if (var_length) {
|
|
ASSERT(idx_tab->sa_variable_lengths);
|
|
idx_tab->sa_variable_lengths[length_idx] = length;
|
|
}
|
|
TOC_ATTR_ENCODE(idx_tab->sa_idx_tab[attr], length_idx,
|
|
(uint32_t)((uintptr_t)attr_addr - (uintptr_t)hdr));
|
|
}
|
|
|
|
static void
|
|
sa_attr_iter(objset_t *os, sa_hdr_phys_t *hdr, dmu_object_type_t type,
|
|
sa_iterfunc_t func, sa_lot_t *tab, void *userp)
|
|
{
|
|
void *data_start;
|
|
sa_lot_t *tb = tab;
|
|
sa_lot_t search;
|
|
avl_index_t loc;
|
|
sa_os_t *sa = os->os_sa;
|
|
int i;
|
|
uint16_t *length_start = NULL;
|
|
uint8_t length_idx = 0;
|
|
|
|
if (tab == NULL) {
|
|
search.lot_num = SA_LAYOUT_NUM(hdr, type);
|
|
tb = avl_find(&sa->sa_layout_num_tree, &search, &loc);
|
|
ASSERT(tb);
|
|
}
|
|
|
|
if (IS_SA_BONUSTYPE(type)) {
|
|
data_start = (void *)P2ROUNDUP(((uintptr_t)hdr +
|
|
offsetof(sa_hdr_phys_t, sa_lengths) +
|
|
(sizeof (uint16_t) * tb->lot_var_sizes)), 8);
|
|
length_start = hdr->sa_lengths;
|
|
} else {
|
|
data_start = hdr;
|
|
}
|
|
|
|
for (i = 0; i != tb->lot_attr_count; i++) {
|
|
int attr_length, reg_length;
|
|
uint8_t idx_len;
|
|
|
|
reg_length = sa->sa_attr_table[tb->lot_attrs[i]].sa_length;
|
|
IMPLY(reg_length == 0, IS_SA_BONUSTYPE(type));
|
|
if (reg_length) {
|
|
attr_length = reg_length;
|
|
idx_len = 0;
|
|
} else {
|
|
attr_length = length_start[length_idx];
|
|
idx_len = length_idx++;
|
|
}
|
|
|
|
func(hdr, data_start, tb->lot_attrs[i], attr_length,
|
|
idx_len, reg_length == 0 ? B_TRUE : B_FALSE, userp);
|
|
|
|
data_start = (void *)P2ROUNDUP(((uintptr_t)data_start +
|
|
attr_length), 8);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sa_byteswap_cb(void *hdr, void *attr_addr, sa_attr_type_t attr,
|
|
uint16_t length, int length_idx, boolean_t variable_length, void *userp)
|
|
{
|
|
(void) hdr, (void) length_idx, (void) variable_length;
|
|
sa_handle_t *hdl = userp;
|
|
sa_os_t *sa = hdl->sa_os->os_sa;
|
|
|
|
sa_bswap_table[sa->sa_attr_table[attr].sa_byteswap](attr_addr, length);
|
|
}
|
|
|
|
static void
|
|
sa_byteswap(sa_handle_t *hdl, sa_buf_type_t buftype)
|
|
{
|
|
sa_hdr_phys_t *sa_hdr_phys = SA_GET_HDR(hdl, buftype);
|
|
dmu_buf_impl_t *db;
|
|
int num_lengths = 1;
|
|
int i;
|
|
sa_os_t *sa __maybe_unused = hdl->sa_os->os_sa;
|
|
|
|
ASSERT(MUTEX_HELD(&sa->sa_lock));
|
|
if (sa_hdr_phys->sa_magic == SA_MAGIC)
|
|
return;
|
|
|
|
db = SA_GET_DB(hdl, buftype);
|
|
|
|
if (buftype == SA_SPILL) {
|
|
arc_release(db->db_buf, NULL);
|
|
arc_buf_thaw(db->db_buf);
|
|
}
|
|
|
|
sa_hdr_phys->sa_magic = BSWAP_32(sa_hdr_phys->sa_magic);
|
|
sa_hdr_phys->sa_layout_info = BSWAP_16(sa_hdr_phys->sa_layout_info);
|
|
|
|
/*
|
|
* Determine number of variable lengths in header
|
|
* The standard 8 byte header has one for free and a
|
|
* 16 byte header would have 4 + 1;
|
|
*/
|
|
if (SA_HDR_SIZE(sa_hdr_phys) > 8)
|
|
num_lengths += (SA_HDR_SIZE(sa_hdr_phys) - 8) >> 1;
|
|
for (i = 0; i != num_lengths; i++)
|
|
sa_hdr_phys->sa_lengths[i] =
|
|
BSWAP_16(sa_hdr_phys->sa_lengths[i]);
|
|
|
|
sa_attr_iter(hdl->sa_os, sa_hdr_phys, DMU_OT_SA,
|
|
sa_byteswap_cb, NULL, hdl);
|
|
|
|
if (buftype == SA_SPILL)
|
|
arc_buf_freeze(((dmu_buf_impl_t *)hdl->sa_spill)->db_buf);
|
|
}
|
|
|
|
static int
|
|
sa_build_index(sa_handle_t *hdl, sa_buf_type_t buftype)
|
|
{
|
|
sa_hdr_phys_t *sa_hdr_phys;
|
|
dmu_buf_impl_t *db = SA_GET_DB(hdl, buftype);
|
|
dmu_object_type_t bonustype = SA_BONUSTYPE_FROM_DB(db);
|
|
sa_os_t *sa = hdl->sa_os->os_sa;
|
|
sa_idx_tab_t *idx_tab;
|
|
|
|
sa_hdr_phys = SA_GET_HDR(hdl, buftype);
|
|
|
|
mutex_enter(&sa->sa_lock);
|
|
|
|
/* Do we need to byteswap? */
|
|
|
|
/* only check if not old znode */
|
|
if (IS_SA_BONUSTYPE(bonustype) && sa_hdr_phys->sa_magic != SA_MAGIC &&
|
|
sa_hdr_phys->sa_magic != 0) {
|
|
if (BSWAP_32(sa_hdr_phys->sa_magic) != SA_MAGIC) {
|
|
mutex_exit(&sa->sa_lock);
|
|
zfs_dbgmsg("Buffer Header: %x != SA_MAGIC:%x "
|
|
"object=%#llx\n", sa_hdr_phys->sa_magic, SA_MAGIC,
|
|
(u_longlong_t)db->db.db_object);
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
sa_byteswap(hdl, buftype);
|
|
}
|
|
|
|
idx_tab = sa_find_idx_tab(hdl->sa_os, bonustype, sa_hdr_phys);
|
|
|
|
if (buftype == SA_BONUS)
|
|
hdl->sa_bonus_tab = idx_tab;
|
|
else
|
|
hdl->sa_spill_tab = idx_tab;
|
|
|
|
mutex_exit(&sa->sa_lock);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sa_evict_sync(void *dbu)
|
|
{
|
|
(void) dbu;
|
|
panic("evicting sa dbuf\n");
|
|
}
|
|
|
|
static void
|
|
sa_idx_tab_rele(objset_t *os, void *arg)
|
|
{
|
|
sa_os_t *sa = os->os_sa;
|
|
sa_idx_tab_t *idx_tab = arg;
|
|
|
|
if (idx_tab == NULL)
|
|
return;
|
|
|
|
mutex_enter(&sa->sa_lock);
|
|
if (zfs_refcount_remove(&idx_tab->sa_refcount, NULL) == 0) {
|
|
list_remove(&idx_tab->sa_layout->lot_idx_tab, idx_tab);
|
|
if (idx_tab->sa_variable_lengths)
|
|
kmem_free(idx_tab->sa_variable_lengths,
|
|
sizeof (uint16_t) *
|
|
idx_tab->sa_layout->lot_var_sizes);
|
|
zfs_refcount_destroy(&idx_tab->sa_refcount);
|
|
kmem_free(idx_tab->sa_idx_tab,
|
|
sizeof (uint32_t) * sa->sa_num_attrs);
|
|
kmem_free(idx_tab, sizeof (sa_idx_tab_t));
|
|
}
|
|
mutex_exit(&sa->sa_lock);
|
|
}
|
|
|
|
static void
|
|
sa_idx_tab_hold(objset_t *os, sa_idx_tab_t *idx_tab)
|
|
{
|
|
sa_os_t *sa __maybe_unused = os->os_sa;
|
|
|
|
ASSERT(MUTEX_HELD(&sa->sa_lock));
|
|
(void) zfs_refcount_add(&idx_tab->sa_refcount, NULL);
|
|
}
|
|
|
|
void
|
|
sa_spill_rele(sa_handle_t *hdl)
|
|
{
|
|
mutex_enter(&hdl->sa_lock);
|
|
if (hdl->sa_spill) {
|
|
sa_idx_tab_rele(hdl->sa_os, hdl->sa_spill_tab);
|
|
dmu_buf_rele(hdl->sa_spill, NULL);
|
|
hdl->sa_spill = NULL;
|
|
hdl->sa_spill_tab = NULL;
|
|
}
|
|
mutex_exit(&hdl->sa_lock);
|
|
}
|
|
|
|
void
|
|
sa_handle_destroy(sa_handle_t *hdl)
|
|
{
|
|
dmu_buf_t *db = hdl->sa_bonus;
|
|
|
|
mutex_enter(&hdl->sa_lock);
|
|
(void) dmu_buf_remove_user(db, &hdl->sa_dbu);
|
|
|
|
if (hdl->sa_bonus_tab)
|
|
sa_idx_tab_rele(hdl->sa_os, hdl->sa_bonus_tab);
|
|
|
|
if (hdl->sa_spill_tab)
|
|
sa_idx_tab_rele(hdl->sa_os, hdl->sa_spill_tab);
|
|
|
|
dmu_buf_rele(hdl->sa_bonus, NULL);
|
|
|
|
if (hdl->sa_spill)
|
|
dmu_buf_rele(hdl->sa_spill, NULL);
|
|
mutex_exit(&hdl->sa_lock);
|
|
|
|
kmem_cache_free(sa_cache, hdl);
|
|
}
|
|
|
|
int
|
|
sa_handle_get_from_db(objset_t *os, dmu_buf_t *db, void *userp,
|
|
sa_handle_type_t hdl_type, sa_handle_t **handlepp)
|
|
{
|
|
int error = 0;
|
|
sa_handle_t *handle = NULL;
|
|
#ifdef ZFS_DEBUG
|
|
dmu_object_info_t doi;
|
|
|
|
dmu_object_info_from_db(db, &doi);
|
|
ASSERT(doi.doi_bonus_type == DMU_OT_SA ||
|
|
doi.doi_bonus_type == DMU_OT_ZNODE);
|
|
#endif
|
|
/* find handle, if it exists */
|
|
/* if one doesn't exist then create a new one, and initialize it */
|
|
|
|
if (hdl_type == SA_HDL_SHARED)
|
|
handle = dmu_buf_get_user(db);
|
|
|
|
if (handle == NULL) {
|
|
sa_handle_t *winner = NULL;
|
|
|
|
handle = kmem_cache_alloc(sa_cache, KM_SLEEP);
|
|
handle->sa_dbu.dbu_evict_func_sync = NULL;
|
|
handle->sa_dbu.dbu_evict_func_async = NULL;
|
|
handle->sa_userp = userp;
|
|
handle->sa_bonus = db;
|
|
handle->sa_os = os;
|
|
handle->sa_spill = NULL;
|
|
handle->sa_bonus_tab = NULL;
|
|
handle->sa_spill_tab = NULL;
|
|
|
|
error = sa_build_index(handle, SA_BONUS);
|
|
|
|
if (hdl_type == SA_HDL_SHARED) {
|
|
dmu_buf_init_user(&handle->sa_dbu, sa_evict_sync, NULL,
|
|
NULL);
|
|
winner = dmu_buf_set_user_ie(db, &handle->sa_dbu);
|
|
}
|
|
|
|
if (winner != NULL) {
|
|
kmem_cache_free(sa_cache, handle);
|
|
handle = winner;
|
|
}
|
|
}
|
|
*handlepp = handle;
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sa_handle_get(objset_t *objset, uint64_t objid, void *userp,
|
|
sa_handle_type_t hdl_type, sa_handle_t **handlepp)
|
|
{
|
|
dmu_buf_t *db;
|
|
int error;
|
|
|
|
if ((error = dmu_bonus_hold(objset, objid, NULL, &db)))
|
|
return (error);
|
|
|
|
return (sa_handle_get_from_db(objset, db, userp, hdl_type,
|
|
handlepp));
|
|
}
|
|
|
|
int
|
|
sa_buf_hold(objset_t *objset, uint64_t obj_num, const void *tag, dmu_buf_t **db)
|
|
{
|
|
return (dmu_bonus_hold(objset, obj_num, tag, db));
|
|
}
|
|
|
|
void
|
|
sa_buf_rele(dmu_buf_t *db, const void *tag)
|
|
{
|
|
dmu_buf_rele(db, tag);
|
|
}
|
|
|
|
static int
|
|
sa_lookup_impl(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count)
|
|
{
|
|
ASSERT(hdl);
|
|
ASSERT(MUTEX_HELD(&hdl->sa_lock));
|
|
return (sa_attr_op(hdl, bulk, count, SA_LOOKUP, NULL));
|
|
}
|
|
|
|
static int
|
|
sa_lookup_locked(sa_handle_t *hdl, sa_attr_type_t attr, void *buf,
|
|
uint32_t buflen)
|
|
{
|
|
int error;
|
|
sa_bulk_attr_t bulk;
|
|
|
|
VERIFY3U(buflen, <=, SA_ATTR_MAX_LEN);
|
|
|
|
bulk.sa_attr = attr;
|
|
bulk.sa_data = buf;
|
|
bulk.sa_length = buflen;
|
|
bulk.sa_data_func = NULL;
|
|
|
|
ASSERT(hdl);
|
|
error = sa_lookup_impl(hdl, &bulk, 1);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sa_lookup(sa_handle_t *hdl, sa_attr_type_t attr, void *buf, uint32_t buflen)
|
|
{
|
|
int error;
|
|
|
|
mutex_enter(&hdl->sa_lock);
|
|
error = sa_lookup_locked(hdl, attr, buf, buflen);
|
|
mutex_exit(&hdl->sa_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
int
|
|
sa_lookup_uio(sa_handle_t *hdl, sa_attr_type_t attr, zfs_uio_t *uio)
|
|
{
|
|
int error;
|
|
sa_bulk_attr_t bulk;
|
|
|
|
bulk.sa_data = NULL;
|
|
bulk.sa_attr = attr;
|
|
bulk.sa_data_func = NULL;
|
|
|
|
ASSERT(hdl);
|
|
|
|
mutex_enter(&hdl->sa_lock);
|
|
if ((error = sa_attr_op(hdl, &bulk, 1, SA_LOOKUP, NULL)) == 0) {
|
|
error = zfs_uiomove((void *)bulk.sa_addr, MIN(bulk.sa_size,
|
|
zfs_uio_resid(uio)), UIO_READ, uio);
|
|
}
|
|
mutex_exit(&hdl->sa_lock);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* For the existed object that is upgraded from old system, its ondisk layout
|
|
* has no slot for the project ID attribute. But quota accounting logic needs
|
|
* to access related slots by offset directly. So we need to adjust these old
|
|
* objects' layout to make the project ID to some unified and fixed offset.
|
|
*/
|
|
int
|
|
sa_add_projid(sa_handle_t *hdl, dmu_tx_t *tx, uint64_t projid)
|
|
{
|
|
znode_t *zp = sa_get_userdata(hdl);
|
|
dmu_buf_t *db = sa_get_db(hdl);
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
int count = 0, err = 0;
|
|
sa_bulk_attr_t *bulk, *attrs;
|
|
zfs_acl_locator_cb_t locate = { 0 };
|
|
uint64_t uid, gid, mode, rdev, xattr = 0, parent, gen, links;
|
|
uint64_t crtime[2], mtime[2], ctime[2], atime[2];
|
|
zfs_acl_phys_t znode_acl = { 0 };
|
|
char scanstamp[AV_SCANSTAMP_SZ];
|
|
|
|
if (zp->z_acl_cached == NULL) {
|
|
zfs_acl_t *aclp;
|
|
|
|
mutex_enter(&zp->z_acl_lock);
|
|
err = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE);
|
|
mutex_exit(&zp->z_acl_lock);
|
|
if (err != 0 && err != ENOENT)
|
|
return (err);
|
|
}
|
|
|
|
bulk = kmem_zalloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP);
|
|
attrs = kmem_zalloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP);
|
|
mutex_enter(&hdl->sa_lock);
|
|
mutex_enter(&zp->z_lock);
|
|
|
|
err = sa_lookup_locked(hdl, SA_ZPL_PROJID(zfsvfs), &projid,
|
|
sizeof (uint64_t));
|
|
if (unlikely(err == 0))
|
|
/* Someone has added project ID attr by race. */
|
|
err = EEXIST;
|
|
if (err != ENOENT)
|
|
goto out;
|
|
|
|
/* First do a bulk query of the attributes that aren't cached */
|
|
if (zp->z_is_sa) {
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
|
|
&mode, 8);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
|
|
&gen, 8);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
|
|
&uid, 8);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
|
|
&gid, 8);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
|
|
&parent, 8);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
|
|
&atime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
|
|
&mtime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
|
|
&ctime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL,
|
|
&crtime, 16);
|
|
if (Z_ISBLK(ZTOTYPE(zp)) || Z_ISCHR(ZTOTYPE(zp)))
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL,
|
|
&rdev, 8);
|
|
} else {
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
|
|
&atime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
|
|
&mtime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
|
|
&ctime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL,
|
|
&crtime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
|
|
&gen, 8);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
|
|
&mode, 8);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
|
|
&parent, 8);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_XATTR(zfsvfs), NULL,
|
|
&xattr, 8);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL,
|
|
&rdev, 8);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
|
|
&uid, 8);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
|
|
&gid, 8);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
|
|
&znode_acl, 88);
|
|
}
|
|
err = sa_bulk_lookup_locked(hdl, bulk, count);
|
|
if (err != 0)
|
|
goto out;
|
|
|
|
err = sa_lookup_locked(hdl, SA_ZPL_XATTR(zfsvfs), &xattr, 8);
|
|
if (err != 0 && err != ENOENT)
|
|
goto out;
|
|
|
|
zp->z_projid = projid;
|
|
zp->z_pflags |= ZFS_PROJID;
|
|
links = ZTONLNK(zp);
|
|
count = 0;
|
|
err = 0;
|
|
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_SIZE(zfsvfs), NULL,
|
|
&zp->z_size, 8);
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_GEN(zfsvfs), NULL, &gen, 8);
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_UID(zfsvfs), NULL, &uid, 8);
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_GID(zfsvfs), NULL, &gid, 8);
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8);
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_FLAGS(zfsvfs), NULL,
|
|
&zp->z_pflags, 8);
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_CRTIME(zfsvfs), NULL,
|
|
&crtime, 16);
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_PROJID(zfsvfs), NULL, &projid, 8);
|
|
|
|
if (Z_ISBLK(ZTOTYPE(zp)) || Z_ISCHR(ZTOTYPE(zp)))
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_RDEV(zfsvfs), NULL,
|
|
&rdev, 8);
|
|
|
|
if (zp->z_acl_cached != NULL) {
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
|
|
&zp->z_acl_cached->z_acl_count, 8);
|
|
if (zp->z_acl_cached->z_version < ZFS_ACL_VERSION_FUID)
|
|
zfs_acl_xform(zp, zp->z_acl_cached, CRED());
|
|
locate.cb_aclp = zp->z_acl_cached;
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_DACL_ACES(zfsvfs),
|
|
zfs_acl_data_locator, &locate,
|
|
zp->z_acl_cached->z_acl_bytes);
|
|
}
|
|
|
|
if (xattr)
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_XATTR(zfsvfs), NULL,
|
|
&xattr, 8);
|
|
|
|
if (zp->z_pflags & ZFS_BONUS_SCANSTAMP) {
|
|
memcpy(scanstamp,
|
|
(caddr_t)db->db_data + ZFS_OLD_ZNODE_PHYS_SIZE,
|
|
AV_SCANSTAMP_SZ);
|
|
SA_ADD_BULK_ATTR(attrs, count, SA_ZPL_SCANSTAMP(zfsvfs), NULL,
|
|
scanstamp, AV_SCANSTAMP_SZ);
|
|
zp->z_pflags &= ~ZFS_BONUS_SCANSTAMP;
|
|
}
|
|
|
|
VERIFY(dmu_set_bonustype(db, DMU_OT_SA, tx) == 0);
|
|
VERIFY(sa_replace_all_by_template_locked(hdl, attrs, count, tx) == 0);
|
|
if (znode_acl.z_acl_extern_obj) {
|
|
VERIFY(0 == dmu_object_free(zfsvfs->z_os,
|
|
znode_acl.z_acl_extern_obj, tx));
|
|
}
|
|
|
|
zp->z_is_sa = B_TRUE;
|
|
|
|
out:
|
|
mutex_exit(&zp->z_lock);
|
|
mutex_exit(&hdl->sa_lock);
|
|
kmem_free(attrs, sizeof (sa_bulk_attr_t) * ZPL_END);
|
|
kmem_free(bulk, sizeof (sa_bulk_attr_t) * ZPL_END);
|
|
return (err);
|
|
}
|
|
#endif
|
|
|
|
static sa_idx_tab_t *
|
|
sa_find_idx_tab(objset_t *os, dmu_object_type_t bonustype, sa_hdr_phys_t *hdr)
|
|
{
|
|
sa_idx_tab_t *idx_tab;
|
|
sa_os_t *sa = os->os_sa;
|
|
sa_lot_t *tb, search;
|
|
avl_index_t loc;
|
|
|
|
/*
|
|
* Deterimine layout number. If SA node and header == 0 then
|
|
* force the index table to the dummy "1" empty layout.
|
|
*
|
|
* The layout number would only be zero for a newly created file
|
|
* that has not added any attributes yet, or with crypto enabled which
|
|
* doesn't write any attributes to the bonus buffer.
|
|
*/
|
|
|
|
search.lot_num = SA_LAYOUT_NUM(hdr, bonustype);
|
|
|
|
tb = avl_find(&sa->sa_layout_num_tree, &search, &loc);
|
|
|
|
/* Verify header size is consistent with layout information */
|
|
ASSERT(tb);
|
|
ASSERT((IS_SA_BONUSTYPE(bonustype) &&
|
|
SA_HDR_SIZE_MATCH_LAYOUT(hdr, tb)) || !IS_SA_BONUSTYPE(bonustype) ||
|
|
(IS_SA_BONUSTYPE(bonustype) && hdr->sa_layout_info == 0));
|
|
|
|
/*
|
|
* See if any of the already existing TOC entries can be reused?
|
|
*/
|
|
|
|
for (idx_tab = list_head(&tb->lot_idx_tab); idx_tab;
|
|
idx_tab = list_next(&tb->lot_idx_tab, idx_tab)) {
|
|
boolean_t valid_idx = B_TRUE;
|
|
int i;
|
|
|
|
if (tb->lot_var_sizes != 0 &&
|
|
idx_tab->sa_variable_lengths != NULL) {
|
|
for (i = 0; i != tb->lot_var_sizes; i++) {
|
|
if (hdr->sa_lengths[i] !=
|
|
idx_tab->sa_variable_lengths[i]) {
|
|
valid_idx = B_FALSE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (valid_idx) {
|
|
sa_idx_tab_hold(os, idx_tab);
|
|
return (idx_tab);
|
|
}
|
|
}
|
|
|
|
/* No such luck, create a new entry */
|
|
idx_tab = kmem_zalloc(sizeof (sa_idx_tab_t), KM_SLEEP);
|
|
idx_tab->sa_idx_tab =
|
|
kmem_zalloc(sizeof (uint32_t) * sa->sa_num_attrs, KM_SLEEP);
|
|
idx_tab->sa_layout = tb;
|
|
zfs_refcount_create(&idx_tab->sa_refcount);
|
|
if (tb->lot_var_sizes)
|
|
idx_tab->sa_variable_lengths = kmem_alloc(sizeof (uint16_t) *
|
|
tb->lot_var_sizes, KM_SLEEP);
|
|
|
|
sa_attr_iter(os, hdr, bonustype, sa_build_idx_tab,
|
|
tb, idx_tab);
|
|
sa_idx_tab_hold(os, idx_tab); /* one hold for consumer */
|
|
sa_idx_tab_hold(os, idx_tab); /* one for layout */
|
|
list_insert_tail(&tb->lot_idx_tab, idx_tab);
|
|
return (idx_tab);
|
|
}
|
|
|
|
void
|
|
sa_default_locator(void **dataptr, uint32_t *len, uint32_t total_len,
|
|
boolean_t start, void *userdata)
|
|
{
|
|
ASSERT(start);
|
|
|
|
*dataptr = userdata;
|
|
*len = total_len;
|
|
}
|
|
|
|
static void
|
|
sa_attr_register_sync(sa_handle_t *hdl, dmu_tx_t *tx)
|
|
{
|
|
uint64_t attr_value = 0;
|
|
sa_os_t *sa = hdl->sa_os->os_sa;
|
|
sa_attr_table_t *tb = sa->sa_attr_table;
|
|
int i;
|
|
|
|
mutex_enter(&sa->sa_lock);
|
|
|
|
if (!sa->sa_need_attr_registration || sa->sa_master_obj == 0) {
|
|
mutex_exit(&sa->sa_lock);
|
|
return;
|
|
}
|
|
|
|
if (sa->sa_reg_attr_obj == 0) {
|
|
sa->sa_reg_attr_obj = zap_create_link(hdl->sa_os,
|
|
DMU_OT_SA_ATTR_REGISTRATION,
|
|
sa->sa_master_obj, SA_REGISTRY, tx);
|
|
}
|
|
for (i = 0; i != sa->sa_num_attrs; i++) {
|
|
if (sa->sa_attr_table[i].sa_registered)
|
|
continue;
|
|
ATTR_ENCODE(attr_value, tb[i].sa_attr, tb[i].sa_length,
|
|
tb[i].sa_byteswap);
|
|
VERIFY(0 == zap_update(hdl->sa_os, sa->sa_reg_attr_obj,
|
|
tb[i].sa_name, 8, 1, &attr_value, tx));
|
|
tb[i].sa_registered = B_TRUE;
|
|
}
|
|
sa->sa_need_attr_registration = B_FALSE;
|
|
mutex_exit(&sa->sa_lock);
|
|
}
|
|
|
|
/*
|
|
* Replace all attributes with attributes specified in template.
|
|
* If dnode had a spill buffer then those attributes will be
|
|
* also be replaced, possibly with just an empty spill block
|
|
*
|
|
* This interface is intended to only be used for bulk adding of
|
|
* attributes for a new file. It will also be used by the ZPL
|
|
* when converting and old formatted znode to native SA support.
|
|
*/
|
|
int
|
|
sa_replace_all_by_template_locked(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc,
|
|
int attr_count, dmu_tx_t *tx)
|
|
{
|
|
sa_os_t *sa = hdl->sa_os->os_sa;
|
|
|
|
if (sa->sa_need_attr_registration)
|
|
sa_attr_register_sync(hdl, tx);
|
|
return (sa_build_layouts(hdl, attr_desc, attr_count, tx));
|
|
}
|
|
|
|
int
|
|
sa_replace_all_by_template(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc,
|
|
int attr_count, dmu_tx_t *tx)
|
|
{
|
|
int error;
|
|
|
|
mutex_enter(&hdl->sa_lock);
|
|
error = sa_replace_all_by_template_locked(hdl, attr_desc,
|
|
attr_count, tx);
|
|
mutex_exit(&hdl->sa_lock);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Add/remove a single attribute or replace a variable-sized attribute value
|
|
* with a value of a different size, and then rewrite the entire set
|
|
* of attributes.
|
|
* Same-length attribute value replacement (including fixed-length attributes)
|
|
* is handled more efficiently by the upper layers.
|
|
*/
|
|
static int
|
|
sa_modify_attrs(sa_handle_t *hdl, sa_attr_type_t newattr,
|
|
sa_data_op_t action, sa_data_locator_t *locator, void *datastart,
|
|
uint16_t buflen, dmu_tx_t *tx)
|
|
{
|
|
sa_os_t *sa = hdl->sa_os->os_sa;
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
|
|
dnode_t *dn;
|
|
sa_bulk_attr_t *attr_desc;
|
|
void *old_data[2];
|
|
int bonus_attr_count = 0;
|
|
int bonus_data_size = 0;
|
|
int spill_data_size = 0;
|
|
int spill_attr_count = 0;
|
|
int error;
|
|
uint16_t length, reg_length;
|
|
int i, j, k, length_idx;
|
|
sa_hdr_phys_t *hdr;
|
|
sa_idx_tab_t *idx_tab;
|
|
int attr_count;
|
|
int count;
|
|
|
|
ASSERT(MUTEX_HELD(&hdl->sa_lock));
|
|
|
|
/* First make of copy of the old data */
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
if (dn->dn_bonuslen != 0) {
|
|
bonus_data_size = hdl->sa_bonus->db_size;
|
|
old_data[0] = kmem_alloc(bonus_data_size, KM_SLEEP);
|
|
memcpy(old_data[0], hdl->sa_bonus->db_data,
|
|
hdl->sa_bonus->db_size);
|
|
bonus_attr_count = hdl->sa_bonus_tab->sa_layout->lot_attr_count;
|
|
} else {
|
|
old_data[0] = NULL;
|
|
}
|
|
DB_DNODE_EXIT(db);
|
|
|
|
/* Bring spill buffer online if it isn't currently */
|
|
|
|
if ((error = sa_get_spill(hdl)) == 0) {
|
|
spill_data_size = hdl->sa_spill->db_size;
|
|
old_data[1] = vmem_alloc(spill_data_size, KM_SLEEP);
|
|
memcpy(old_data[1], hdl->sa_spill->db_data,
|
|
hdl->sa_spill->db_size);
|
|
spill_attr_count =
|
|
hdl->sa_spill_tab->sa_layout->lot_attr_count;
|
|
} else if (error && error != ENOENT) {
|
|
if (old_data[0])
|
|
kmem_free(old_data[0], bonus_data_size);
|
|
return (error);
|
|
} else {
|
|
old_data[1] = NULL;
|
|
}
|
|
|
|
/* build descriptor of all attributes */
|
|
|
|
attr_count = bonus_attr_count + spill_attr_count;
|
|
if (action == SA_ADD)
|
|
attr_count++;
|
|
else if (action == SA_REMOVE)
|
|
attr_count--;
|
|
|
|
attr_desc = kmem_zalloc(sizeof (sa_bulk_attr_t) * attr_count, KM_SLEEP);
|
|
|
|
/*
|
|
* loop through bonus and spill buffer if it exists, and
|
|
* build up new attr_descriptor to reset the attributes
|
|
*/
|
|
k = j = 0;
|
|
count = bonus_attr_count;
|
|
hdr = SA_GET_HDR(hdl, SA_BONUS);
|
|
idx_tab = SA_IDX_TAB_GET(hdl, SA_BONUS);
|
|
for (; ; k++) {
|
|
/*
|
|
* Iterate over each attribute in layout. Fetch the
|
|
* size of variable-length attributes needing rewrite
|
|
* from sa_lengths[].
|
|
*/
|
|
for (i = 0, length_idx = 0; i != count; i++) {
|
|
sa_attr_type_t attr;
|
|
|
|
attr = idx_tab->sa_layout->lot_attrs[i];
|
|
reg_length = SA_REGISTERED_LEN(sa, attr);
|
|
if (reg_length == 0) {
|
|
length = hdr->sa_lengths[length_idx];
|
|
length_idx++;
|
|
} else {
|
|
length = reg_length;
|
|
}
|
|
if (attr == newattr) {
|
|
/*
|
|
* There is nothing to do for SA_REMOVE,
|
|
* so it is just skipped.
|
|
*/
|
|
if (action == SA_REMOVE)
|
|
continue;
|
|
|
|
/*
|
|
* Duplicate attributes are not allowed, so the
|
|
* action can not be SA_ADD here.
|
|
*/
|
|
ASSERT3S(action, ==, SA_REPLACE);
|
|
|
|
/*
|
|
* Only a variable-sized attribute can be
|
|
* replaced here, and its size must be changing.
|
|
*/
|
|
ASSERT3U(reg_length, ==, 0);
|
|
ASSERT3U(length, !=, buflen);
|
|
SA_ADD_BULK_ATTR(attr_desc, j, attr,
|
|
locator, datastart, buflen);
|
|
} else {
|
|
SA_ADD_BULK_ATTR(attr_desc, j, attr,
|
|
NULL, (void *)
|
|
(TOC_OFF(idx_tab->sa_idx_tab[attr]) +
|
|
(uintptr_t)old_data[k]), length);
|
|
}
|
|
}
|
|
if (k == 0 && hdl->sa_spill) {
|
|
hdr = SA_GET_HDR(hdl, SA_SPILL);
|
|
idx_tab = SA_IDX_TAB_GET(hdl, SA_SPILL);
|
|
count = spill_attr_count;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
if (action == SA_ADD) {
|
|
reg_length = SA_REGISTERED_LEN(sa, newattr);
|
|
IMPLY(reg_length != 0, reg_length == buflen);
|
|
SA_ADD_BULK_ATTR(attr_desc, j, newattr, locator,
|
|
datastart, buflen);
|
|
}
|
|
ASSERT3U(j, ==, attr_count);
|
|
|
|
error = sa_build_layouts(hdl, attr_desc, attr_count, tx);
|
|
|
|
if (old_data[0])
|
|
kmem_free(old_data[0], bonus_data_size);
|
|
if (old_data[1])
|
|
vmem_free(old_data[1], spill_data_size);
|
|
kmem_free(attr_desc, sizeof (sa_bulk_attr_t) * attr_count);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
sa_bulk_update_impl(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count,
|
|
dmu_tx_t *tx)
|
|
{
|
|
int error;
|
|
sa_os_t *sa = hdl->sa_os->os_sa;
|
|
dmu_object_type_t bonustype;
|
|
dmu_buf_t *saved_spill;
|
|
|
|
ASSERT(hdl);
|
|
ASSERT(MUTEX_HELD(&hdl->sa_lock));
|
|
|
|
bonustype = SA_BONUSTYPE_FROM_DB(SA_GET_DB(hdl, SA_BONUS));
|
|
saved_spill = hdl->sa_spill;
|
|
|
|
/* sync out registration table if necessary */
|
|
if (sa->sa_need_attr_registration)
|
|
sa_attr_register_sync(hdl, tx);
|
|
|
|
error = sa_attr_op(hdl, bulk, count, SA_UPDATE, tx);
|
|
if (error == 0 && !IS_SA_BONUSTYPE(bonustype) && sa->sa_update_cb)
|
|
sa->sa_update_cb(hdl, tx);
|
|
|
|
/*
|
|
* If saved_spill is NULL and current sa_spill is not NULL that
|
|
* means we increased the refcount of the spill buffer through
|
|
* sa_get_spill() or dmu_spill_hold_by_dnode(). Therefore we
|
|
* must release the hold before calling dmu_tx_commit() to avoid
|
|
* making a copy of this buffer in dbuf_sync_leaf() due to the
|
|
* reference count now being greater than 1.
|
|
*/
|
|
if (!saved_spill && hdl->sa_spill) {
|
|
if (hdl->sa_spill_tab) {
|
|
sa_idx_tab_rele(hdl->sa_os, hdl->sa_spill_tab);
|
|
hdl->sa_spill_tab = NULL;
|
|
}
|
|
|
|
dmu_buf_rele(hdl->sa_spill, NULL);
|
|
hdl->sa_spill = NULL;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* update or add new attribute
|
|
*/
|
|
int
|
|
sa_update(sa_handle_t *hdl, sa_attr_type_t type,
|
|
void *buf, uint32_t buflen, dmu_tx_t *tx)
|
|
{
|
|
int error;
|
|
sa_bulk_attr_t bulk;
|
|
|
|
VERIFY3U(buflen, <=, SA_ATTR_MAX_LEN);
|
|
|
|
bulk.sa_attr = type;
|
|
bulk.sa_data_func = NULL;
|
|
bulk.sa_length = buflen;
|
|
bulk.sa_data = buf;
|
|
|
|
mutex_enter(&hdl->sa_lock);
|
|
error = sa_bulk_update_impl(hdl, &bulk, 1, tx);
|
|
mutex_exit(&hdl->sa_lock);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Return size of an attribute
|
|
*/
|
|
|
|
int
|
|
sa_size(sa_handle_t *hdl, sa_attr_type_t attr, int *size)
|
|
{
|
|
sa_bulk_attr_t bulk;
|
|
int error;
|
|
|
|
bulk.sa_data = NULL;
|
|
bulk.sa_attr = attr;
|
|
bulk.sa_data_func = NULL;
|
|
|
|
ASSERT(hdl);
|
|
mutex_enter(&hdl->sa_lock);
|
|
if ((error = sa_attr_op(hdl, &bulk, 1, SA_LOOKUP, NULL)) != 0) {
|
|
mutex_exit(&hdl->sa_lock);
|
|
return (error);
|
|
}
|
|
*size = bulk.sa_size;
|
|
|
|
mutex_exit(&hdl->sa_lock);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sa_bulk_lookup_locked(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count)
|
|
{
|
|
ASSERT(hdl);
|
|
ASSERT(MUTEX_HELD(&hdl->sa_lock));
|
|
return (sa_lookup_impl(hdl, attrs, count));
|
|
}
|
|
|
|
int
|
|
sa_bulk_lookup(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count)
|
|
{
|
|
int error;
|
|
|
|
ASSERT(hdl);
|
|
mutex_enter(&hdl->sa_lock);
|
|
error = sa_bulk_lookup_locked(hdl, attrs, count);
|
|
mutex_exit(&hdl->sa_lock);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sa_bulk_update(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count, dmu_tx_t *tx)
|
|
{
|
|
int error;
|
|
|
|
ASSERT(hdl);
|
|
mutex_enter(&hdl->sa_lock);
|
|
error = sa_bulk_update_impl(hdl, attrs, count, tx);
|
|
mutex_exit(&hdl->sa_lock);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sa_remove(sa_handle_t *hdl, sa_attr_type_t attr, dmu_tx_t *tx)
|
|
{
|
|
int error;
|
|
|
|
mutex_enter(&hdl->sa_lock);
|
|
error = sa_modify_attrs(hdl, attr, SA_REMOVE, NULL,
|
|
NULL, 0, tx);
|
|
mutex_exit(&hdl->sa_lock);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
sa_object_info(sa_handle_t *hdl, dmu_object_info_t *doi)
|
|
{
|
|
dmu_object_info_from_db(hdl->sa_bonus, doi);
|
|
}
|
|
|
|
void
|
|
sa_object_size(sa_handle_t *hdl, uint32_t *blksize, u_longlong_t *nblocks)
|
|
{
|
|
dmu_object_size_from_db(hdl->sa_bonus,
|
|
blksize, nblocks);
|
|
}
|
|
|
|
void
|
|
sa_set_userp(sa_handle_t *hdl, void *ptr)
|
|
{
|
|
hdl->sa_userp = ptr;
|
|
}
|
|
|
|
dmu_buf_t *
|
|
sa_get_db(sa_handle_t *hdl)
|
|
{
|
|
return (hdl->sa_bonus);
|
|
}
|
|
|
|
void *
|
|
sa_get_userdata(sa_handle_t *hdl)
|
|
{
|
|
return (hdl->sa_userp);
|
|
}
|
|
|
|
void
|
|
sa_register_update_callback_locked(objset_t *os, sa_update_cb_t *func)
|
|
{
|
|
ASSERT(MUTEX_HELD(&os->os_sa->sa_lock));
|
|
os->os_sa->sa_update_cb = func;
|
|
}
|
|
|
|
void
|
|
sa_register_update_callback(objset_t *os, sa_update_cb_t *func)
|
|
{
|
|
|
|
mutex_enter(&os->os_sa->sa_lock);
|
|
sa_register_update_callback_locked(os, func);
|
|
mutex_exit(&os->os_sa->sa_lock);
|
|
}
|
|
|
|
uint64_t
|
|
sa_handle_object(sa_handle_t *hdl)
|
|
{
|
|
return (hdl->sa_bonus->db_object);
|
|
}
|
|
|
|
boolean_t
|
|
sa_enabled(objset_t *os)
|
|
{
|
|
return (os->os_sa == NULL);
|
|
}
|
|
|
|
int
|
|
sa_set_sa_object(objset_t *os, uint64_t sa_object)
|
|
{
|
|
sa_os_t *sa = os->os_sa;
|
|
|
|
if (sa->sa_master_obj)
|
|
return (1);
|
|
|
|
sa->sa_master_obj = sa_object;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sa_hdrsize(void *arg)
|
|
{
|
|
sa_hdr_phys_t *hdr = arg;
|
|
|
|
return (SA_HDR_SIZE(hdr));
|
|
}
|
|
|
|
void
|
|
sa_handle_lock(sa_handle_t *hdl)
|
|
{
|
|
ASSERT(hdl);
|
|
mutex_enter(&hdl->sa_lock);
|
|
}
|
|
|
|
void
|
|
sa_handle_unlock(sa_handle_t *hdl)
|
|
{
|
|
ASSERT(hdl);
|
|
mutex_exit(&hdl->sa_lock);
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
EXPORT_SYMBOL(sa_handle_get);
|
|
EXPORT_SYMBOL(sa_handle_get_from_db);
|
|
EXPORT_SYMBOL(sa_handle_destroy);
|
|
EXPORT_SYMBOL(sa_buf_hold);
|
|
EXPORT_SYMBOL(sa_buf_rele);
|
|
EXPORT_SYMBOL(sa_spill_rele);
|
|
EXPORT_SYMBOL(sa_lookup);
|
|
EXPORT_SYMBOL(sa_update);
|
|
EXPORT_SYMBOL(sa_remove);
|
|
EXPORT_SYMBOL(sa_bulk_lookup);
|
|
EXPORT_SYMBOL(sa_bulk_lookup_locked);
|
|
EXPORT_SYMBOL(sa_bulk_update);
|
|
EXPORT_SYMBOL(sa_size);
|
|
EXPORT_SYMBOL(sa_object_info);
|
|
EXPORT_SYMBOL(sa_object_size);
|
|
EXPORT_SYMBOL(sa_get_userdata);
|
|
EXPORT_SYMBOL(sa_set_userp);
|
|
EXPORT_SYMBOL(sa_get_db);
|
|
EXPORT_SYMBOL(sa_handle_object);
|
|
EXPORT_SYMBOL(sa_register_update_callback);
|
|
EXPORT_SYMBOL(sa_setup);
|
|
EXPORT_SYMBOL(sa_replace_all_by_template);
|
|
EXPORT_SYMBOL(sa_replace_all_by_template_locked);
|
|
EXPORT_SYMBOL(sa_enabled);
|
|
EXPORT_SYMBOL(sa_cache_init);
|
|
EXPORT_SYMBOL(sa_cache_fini);
|
|
EXPORT_SYMBOL(sa_set_sa_object);
|
|
EXPORT_SYMBOL(sa_hdrsize);
|
|
EXPORT_SYMBOL(sa_handle_lock);
|
|
EXPORT_SYMBOL(sa_handle_unlock);
|
|
EXPORT_SYMBOL(sa_lookup_uio);
|
|
EXPORT_SYMBOL(sa_add_projid);
|
|
#endif /* _KERNEL */
|