mirror_zfs/module/zfs/ddt_log.c
Don Brady d4d79451cb Add DDT prune command
Requires the new 'flat' physical data which has the start
time for a class entry.

The amount to prune can be based on a target percentage of
the unique entries or based on the age (i.e., every entry
older than N days).

Sponsored-by: Klara, Inc.
Sponsored-by: iXsystems, Inc.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@klarasystems.com>
Closes #16277
2024-09-04 14:17:02 -07:00

779 lines
21 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2023, Klara Inc.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/ddt.h>
#include <sys/dmu_tx.h>
#include <sys/dmu.h>
#include <sys/ddt_impl.h>
#include <sys/dnode.h>
#include <sys/dbuf.h>
#include <sys/zap.h>
#include <sys/zio_checksum.h>
/*
* No more than this many txgs before swapping logs.
*/
uint_t zfs_dedup_log_txg_max = 8;
/*
* Max memory for the log AVL trees. If zfs_dedup_log_mem_max is zero at module
* load, it will be set to zfs_dedup_log_mem_max_percent% of total memory.
*/
uint64_t zfs_dedup_log_mem_max = 0;
uint_t zfs_dedup_log_mem_max_percent = 1;
static kmem_cache_t *ddt_log_entry_flat_cache;
static kmem_cache_t *ddt_log_entry_trad_cache;
#define DDT_LOG_ENTRY_FLAT_SIZE \
(sizeof (ddt_log_entry_t) + DDT_FLAT_PHYS_SIZE)
#define DDT_LOG_ENTRY_TRAD_SIZE \
(sizeof (ddt_log_entry_t) + DDT_TRAD_PHYS_SIZE)
#define DDT_LOG_ENTRY_SIZE(ddt) \
_DDT_PHYS_SWITCH(ddt, DDT_LOG_ENTRY_FLAT_SIZE, DDT_LOG_ENTRY_TRAD_SIZE)
void
ddt_log_init(void)
{
ddt_log_entry_flat_cache = kmem_cache_create("ddt_log_entry_flat_cache",
DDT_LOG_ENTRY_FLAT_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
ddt_log_entry_trad_cache = kmem_cache_create("ddt_log_entry_trad_cache",
DDT_LOG_ENTRY_TRAD_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
/*
* Max memory for log AVL entries. At least 1M, because we need
* something (that's ~3800 entries per tree). They can say 100% if they
* want; it just means they're at the mercy of the the txg flush limit.
*/
if (zfs_dedup_log_mem_max == 0) {
zfs_dedup_log_mem_max_percent =
MIN(zfs_dedup_log_mem_max_percent, 100);
zfs_dedup_log_mem_max = (physmem * PAGESIZE) *
zfs_dedup_log_mem_max_percent / 100;
}
zfs_dedup_log_mem_max = MAX(zfs_dedup_log_mem_max, 1*1024*1024);
}
void
ddt_log_fini(void)
{
kmem_cache_destroy(ddt_log_entry_trad_cache);
kmem_cache_destroy(ddt_log_entry_flat_cache);
}
static void
ddt_log_name(ddt_t *ddt, char *name, uint_t n)
{
snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_LOG,
zio_checksum_table[ddt->ddt_checksum].ci_name, n);
}
static void
ddt_log_update_header(ddt_t *ddt, ddt_log_t *ddl, dmu_tx_t *tx)
{
dmu_buf_t *db;
VERIFY0(dmu_bonus_hold(ddt->ddt_os, ddl->ddl_object, FTAG, &db));
dmu_buf_will_dirty(db, tx);
ddt_log_header_t *hdr = (ddt_log_header_t *)db->db_data;
DLH_SET_VERSION(hdr, 1);
DLH_SET_FLAGS(hdr, ddl->ddl_flags);
hdr->dlh_length = ddl->ddl_length;
hdr->dlh_first_txg = ddl->ddl_first_txg;
hdr->dlh_checkpoint = ddl->ddl_checkpoint;
dmu_buf_rele(db, FTAG);
}
static void
ddt_log_create_one(ddt_t *ddt, ddt_log_t *ddl, uint_t n, dmu_tx_t *tx)
{
ASSERT3U(ddt->ddt_dir_object, >, 0);
ASSERT3U(ddl->ddl_object, ==, 0);
char name[DDT_NAMELEN];
ddt_log_name(ddt, name, n);
ddl->ddl_object = dmu_object_alloc(ddt->ddt_os,
DMU_OTN_UINT64_METADATA, SPA_OLD_MAXBLOCKSIZE,
DMU_OTN_UINT64_METADATA, sizeof (ddt_log_header_t), tx);
VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, name,
sizeof (uint64_t), 1, &ddl->ddl_object, tx));
ddl->ddl_length = 0;
ddl->ddl_first_txg = tx->tx_txg;
ddt_log_update_header(ddt, ddl, tx);
}
static void
ddt_log_create(ddt_t *ddt, dmu_tx_t *tx)
{
ddt_log_create_one(ddt, ddt->ddt_log_active, 0, tx);
ddt_log_create_one(ddt, ddt->ddt_log_flushing, 1, tx);
}
static void
ddt_log_destroy_one(ddt_t *ddt, ddt_log_t *ddl, uint_t n, dmu_tx_t *tx)
{
ASSERT3U(ddt->ddt_dir_object, >, 0);
if (ddl->ddl_object == 0)
return;
ASSERT0(ddl->ddl_length);
char name[DDT_NAMELEN];
ddt_log_name(ddt, name, n);
VERIFY0(zap_remove(ddt->ddt_os, ddt->ddt_dir_object, name, tx));
VERIFY0(dmu_object_free(ddt->ddt_os, ddl->ddl_object, tx));
ddl->ddl_object = 0;
}
void
ddt_log_destroy(ddt_t *ddt, dmu_tx_t *tx)
{
ddt_log_destroy_one(ddt, ddt->ddt_log_active, 0, tx);
ddt_log_destroy_one(ddt, ddt->ddt_log_flushing, 1, tx);
}
static void
ddt_log_update_stats(ddt_t *ddt)
{
/*
* Log object stats. We count the number of live entries in the log
* tree, even if there are more than on disk, and even if the same
* entry is on both append and flush trees, because that's more what
* the user expects to see. This does mean the on-disk size is not
* really correlated with the number of entries, but I don't think
* that's reasonable to expect anyway.
*/
dmu_object_info_t doi;
uint64_t nblocks;
dmu_object_info(ddt->ddt_os, ddt->ddt_log_active->ddl_object, &doi);
nblocks = doi.doi_physical_blocks_512;
dmu_object_info(ddt->ddt_os, ddt->ddt_log_flushing->ddl_object, &doi);
nblocks += doi.doi_physical_blocks_512;
ddt_object_t *ddo = &ddt->ddt_log_stats;
ddo->ddo_count =
avl_numnodes(&ddt->ddt_log_active->ddl_tree) +
avl_numnodes(&ddt->ddt_log_flushing->ddl_tree);
ddo->ddo_mspace = ddo->ddo_count * DDT_LOG_ENTRY_SIZE(ddt);
ddo->ddo_dspace = nblocks << 9;
}
void
ddt_log_begin(ddt_t *ddt, size_t nentries, dmu_tx_t *tx, ddt_log_update_t *dlu)
{
ASSERT3U(nentries, >, 0);
ASSERT3P(dlu->dlu_dbp, ==, NULL);
if (ddt->ddt_log_active->ddl_object == 0)
ddt_log_create(ddt, tx);
/*
* We want to store as many entries as we can in a block, but never
* split an entry across block boundaries.
*/
size_t reclen = P2ALIGN_TYPED(
sizeof (ddt_log_record_t) + sizeof (ddt_log_record_entry_t) +
DDT_PHYS_SIZE(ddt), sizeof (uint64_t), size_t);
ASSERT3U(reclen, <=, UINT16_MAX);
dlu->dlu_reclen = reclen;
VERIFY0(dnode_hold(ddt->ddt_os, ddt->ddt_log_active->ddl_object, FTAG,
&dlu->dlu_dn));
dnode_set_storage_type(dlu->dlu_dn, DMU_OT_DDT_ZAP);
uint64_t nblocks = howmany(nentries,
dlu->dlu_dn->dn_datablksz / dlu->dlu_reclen);
uint64_t offset = ddt->ddt_log_active->ddl_length;
uint64_t length = nblocks * dlu->dlu_dn->dn_datablksz;
VERIFY0(dmu_buf_hold_array_by_dnode(dlu->dlu_dn, offset, length,
B_FALSE, FTAG, &dlu->dlu_ndbp, &dlu->dlu_dbp,
DMU_READ_NO_PREFETCH));
dlu->dlu_tx = tx;
dlu->dlu_block = dlu->dlu_offset = 0;
}
static ddt_log_entry_t *
ddt_log_alloc_entry(ddt_t *ddt)
{
ddt_log_entry_t *ddle;
if (ddt->ddt_flags & DDT_FLAG_FLAT) {
ddle = kmem_cache_alloc(ddt_log_entry_flat_cache, KM_SLEEP);
memset(ddle, 0, DDT_LOG_ENTRY_FLAT_SIZE);
} else {
ddle = kmem_cache_alloc(ddt_log_entry_trad_cache, KM_SLEEP);
memset(ddle, 0, DDT_LOG_ENTRY_TRAD_SIZE);
}
return (ddle);
}
static void
ddt_log_update_entry(ddt_t *ddt, ddt_log_t *ddl, ddt_lightweight_entry_t *ddlwe)
{
/* Create the log tree entry from a live or stored entry */
avl_index_t where;
ddt_log_entry_t *ddle =
avl_find(&ddl->ddl_tree, &ddlwe->ddlwe_key, &where);
if (ddle == NULL) {
ddle = ddt_log_alloc_entry(ddt);
ddle->ddle_key = ddlwe->ddlwe_key;
avl_insert(&ddl->ddl_tree, ddle, where);
}
ddle->ddle_type = ddlwe->ddlwe_type;
ddle->ddle_class = ddlwe->ddlwe_class;
memcpy(ddle->ddle_phys, &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt));
}
void
ddt_log_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, ddt_log_update_t *dlu)
{
ASSERT3U(dlu->dlu_dbp, !=, NULL);
ddt_log_update_entry(ddt, ddt->ddt_log_active, ddlwe);
ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, ddlwe);
/* Get our block */
ASSERT3U(dlu->dlu_block, <, dlu->dlu_ndbp);
dmu_buf_t *db = dlu->dlu_dbp[dlu->dlu_block];
/*
* If this would take us past the end of the block, finish it and
* move to the next one.
*/
if (db->db_size < (dlu->dlu_offset + dlu->dlu_reclen)) {
ASSERT3U(dlu->dlu_offset, >, 0);
dmu_buf_fill_done(db, dlu->dlu_tx, B_FALSE);
dlu->dlu_block++;
dlu->dlu_offset = 0;
ASSERT3U(dlu->dlu_block, <, dlu->dlu_ndbp);
db = dlu->dlu_dbp[dlu->dlu_block];
}
/*
* If this is the first time touching the block, inform the DMU that
* we will fill it, and zero it out.
*/
if (dlu->dlu_offset == 0) {
dmu_buf_will_fill(db, dlu->dlu_tx, B_FALSE);
memset(db->db_data, 0, db->db_size);
}
/* Create the log record directly in the buffer */
ddt_log_record_t *dlr = (db->db_data + dlu->dlu_offset);
DLR_SET_TYPE(dlr, DLR_ENTRY);
DLR_SET_RECLEN(dlr, dlu->dlu_reclen);
DLR_SET_ENTRY_TYPE(dlr, ddlwe->ddlwe_type);
DLR_SET_ENTRY_CLASS(dlr, ddlwe->ddlwe_class);
ddt_log_record_entry_t *dlre =
(ddt_log_record_entry_t *)&dlr->dlr_payload;
dlre->dlre_key = ddlwe->ddlwe_key;
memcpy(dlre->dlre_phys, &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt));
/* Advance offset for next record. */
dlu->dlu_offset += dlu->dlu_reclen;
}
void
ddt_log_commit(ddt_t *ddt, ddt_log_update_t *dlu)
{
ASSERT3U(dlu->dlu_dbp, !=, NULL);
ASSERT3U(dlu->dlu_block+1, ==, dlu->dlu_ndbp);
ASSERT3U(dlu->dlu_offset, >, 0);
/*
* Close out the last block. Whatever we haven't used will be zeroed,
* which matches DLR_INVALID, so we can detect this during load.
*/
dmu_buf_fill_done(dlu->dlu_dbp[dlu->dlu_block], dlu->dlu_tx, B_FALSE);
dmu_buf_rele_array(dlu->dlu_dbp, dlu->dlu_ndbp, FTAG);
ddt->ddt_log_active->ddl_length +=
dlu->dlu_ndbp * (uint64_t)dlu->dlu_dn->dn_datablksz;
dnode_rele(dlu->dlu_dn, FTAG);
ddt_log_update_header(ddt, ddt->ddt_log_active, dlu->dlu_tx);
memset(dlu, 0, sizeof (ddt_log_update_t));
ddt_log_update_stats(ddt);
}
boolean_t
ddt_log_take_first(ddt_t *ddt, ddt_log_t *ddl, ddt_lightweight_entry_t *ddlwe)
{
ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree);
if (ddle == NULL)
return (B_FALSE);
DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, ddlwe);
ddt_histogram_sub_entry(ddt, &ddt->ddt_log_histogram, ddlwe);
avl_remove(&ddl->ddl_tree, ddle);
kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ?
ddt_log_entry_flat_cache : ddt_log_entry_trad_cache, ddle);
return (B_TRUE);
}
boolean_t
ddt_log_remove_key(ddt_t *ddt, ddt_log_t *ddl, const ddt_key_t *ddk)
{
ddt_log_entry_t *ddle = avl_find(&ddl->ddl_tree, ddk, NULL);
if (ddle == NULL)
return (B_FALSE);
ddt_lightweight_entry_t ddlwe;
DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe);
ddt_histogram_sub_entry(ddt, &ddt->ddt_log_histogram, &ddlwe);
avl_remove(&ddl->ddl_tree, ddle);
kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ?
ddt_log_entry_flat_cache : ddt_log_entry_trad_cache, ddle);
return (B_TRUE);
}
boolean_t
ddt_log_find_key(ddt_t *ddt, const ddt_key_t *ddk,
ddt_lightweight_entry_t *ddlwe)
{
ddt_log_entry_t *ddle =
avl_find(&ddt->ddt_log_active->ddl_tree, ddk, NULL);
if (!ddle)
ddle = avl_find(&ddt->ddt_log_flushing->ddl_tree, ddk, NULL);
if (!ddle)
return (B_FALSE);
if (ddlwe)
DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, ddlwe);
return (B_TRUE);
}
void
ddt_log_checkpoint(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
{
ddt_log_t *ddl = ddt->ddt_log_flushing;
ASSERT3U(ddl->ddl_object, !=, 0);
#ifdef ZFS_DEBUG
/*
* There should not be any entries on the log tree before the given
* checkpoint. Assert that this is the case.
*/
ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree);
if (ddle != NULL)
VERIFY3U(ddt_key_compare(&ddle->ddle_key, &ddlwe->ddlwe_key),
>, 0);
#endif
ddl->ddl_flags |= DDL_FLAG_CHECKPOINT;
ddl->ddl_checkpoint = ddlwe->ddlwe_key;
ddt_log_update_header(ddt, ddl, tx);
ddt_log_update_stats(ddt);
}
void
ddt_log_truncate(ddt_t *ddt, dmu_tx_t *tx)
{
ddt_log_t *ddl = ddt->ddt_log_flushing;
if (ddl->ddl_object == 0)
return;
ASSERT(avl_is_empty(&ddl->ddl_tree));
/* Eject the entire object */
dmu_free_range(ddt->ddt_os, ddl->ddl_object, 0, DMU_OBJECT_END, tx);
ddl->ddl_length = 0;
ddl->ddl_flags &= ~DDL_FLAG_CHECKPOINT;
memset(&ddl->ddl_checkpoint, 0, sizeof (ddt_key_t));
ddt_log_update_header(ddt, ddl, tx);
ddt_log_update_stats(ddt);
}
boolean_t
ddt_log_swap(ddt_t *ddt, dmu_tx_t *tx)
{
/* Swap the logs. The old flushing one must be empty */
VERIFY(avl_is_empty(&ddt->ddt_log_flushing->ddl_tree));
/*
* If there are still blocks on the flushing log, truncate it first.
* This can happen if there were entries on the flushing log that were
* removed in memory via ddt_lookup(); their vestigal remains are
* on disk.
*/
if (ddt->ddt_log_flushing->ddl_length > 0)
ddt_log_truncate(ddt, tx);
/*
* Swap policy. We swap the logs (and so begin flushing) when the
* active tree grows too large, or when we haven't swapped it in
* some amount of time, or if something has requested the logs be
* flushed ASAP (see ddt_walk_init()).
*/
/*
* The log tree is too large if the memory usage of its entries is over
* half of the memory limit. This effectively gives each log tree half
* the available memory.
*/
const boolean_t too_large =
(avl_numnodes(&ddt->ddt_log_active->ddl_tree) *
DDT_LOG_ENTRY_SIZE(ddt)) >= (zfs_dedup_log_mem_max >> 1);
const boolean_t too_old =
tx->tx_txg >=
(ddt->ddt_log_active->ddl_first_txg +
MAX(1, zfs_dedup_log_txg_max));
const boolean_t force =
ddt->ddt_log_active->ddl_first_txg <= ddt->ddt_flush_force_txg;
if (!(too_large || too_old || force))
return (B_FALSE);
ddt_log_t *swap = ddt->ddt_log_active;
ddt->ddt_log_active = ddt->ddt_log_flushing;
ddt->ddt_log_flushing = swap;
ASSERT(ddt->ddt_log_active->ddl_flags & DDL_FLAG_FLUSHING);
ddt->ddt_log_active->ddl_flags &=
~(DDL_FLAG_FLUSHING | DDL_FLAG_CHECKPOINT);
ASSERT(!(ddt->ddt_log_flushing->ddl_flags & DDL_FLAG_FLUSHING));
ddt->ddt_log_flushing->ddl_flags |= DDL_FLAG_FLUSHING;
ddt->ddt_log_active->ddl_first_txg = tx->tx_txg;
ddt_log_update_header(ddt, ddt->ddt_log_active, tx);
ddt_log_update_header(ddt, ddt->ddt_log_flushing, tx);
ddt_log_update_stats(ddt);
return (B_TRUE);
}
static inline void
ddt_log_load_entry(ddt_t *ddt, ddt_log_t *ddl, ddt_log_record_t *dlr,
const ddt_key_t *checkpoint)
{
ASSERT3U(DLR_GET_TYPE(dlr), ==, DLR_ENTRY);
ddt_log_record_entry_t *dlre =
(ddt_log_record_entry_t *)dlr->dlr_payload;
if (checkpoint != NULL &&
ddt_key_compare(&dlre->dlre_key, checkpoint) <= 0) {
/* Skip pre-checkpoint entries; they're already flushed. */
return;
}
ddt_lightweight_entry_t ddlwe;
ddlwe.ddlwe_type = DLR_GET_ENTRY_TYPE(dlr);
ddlwe.ddlwe_class = DLR_GET_ENTRY_CLASS(dlr);
ddlwe.ddlwe_key = dlre->dlre_key;
memcpy(&ddlwe.ddlwe_phys, dlre->dlre_phys, DDT_PHYS_SIZE(ddt));
ddt_log_update_entry(ddt, ddl, &ddlwe);
}
static void
ddt_log_empty(ddt_t *ddt, ddt_log_t *ddl)
{
void *cookie = NULL;
ddt_log_entry_t *ddle;
IMPLY(ddt->ddt_version == UINT64_MAX, avl_is_empty(&ddl->ddl_tree));
while ((ddle =
avl_destroy_nodes(&ddl->ddl_tree, &cookie)) != NULL) {
kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ?
ddt_log_entry_flat_cache : ddt_log_entry_trad_cache, ddle);
}
ASSERT(avl_is_empty(&ddl->ddl_tree));
}
static int
ddt_log_load_one(ddt_t *ddt, uint_t n)
{
ASSERT3U(n, <, 2);
ddt_log_t *ddl = &ddt->ddt_log[n];
char name[DDT_NAMELEN];
ddt_log_name(ddt, name, n);
uint64_t obj;
int err = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, name,
sizeof (uint64_t), 1, &obj);
if (err == ENOENT)
return (0);
if (err != 0)
return (err);
dnode_t *dn;
err = dnode_hold(ddt->ddt_os, obj, FTAG, &dn);
if (err != 0)
return (err);
ddt_log_header_t hdr;
dmu_buf_t *db;
err = dmu_bonus_hold_by_dnode(dn, FTAG, &db, DMU_READ_NO_PREFETCH);
if (err != 0) {
dnode_rele(dn, FTAG);
return (err);
}
memcpy(&hdr, db->db_data, sizeof (ddt_log_header_t));
dmu_buf_rele(db, FTAG);
if (DLH_GET_VERSION(&hdr) != 1) {
dnode_rele(dn, FTAG);
zfs_dbgmsg("ddt_log_load: spa=%s ddt_log=%s "
"unknown version=%llu", spa_name(ddt->ddt_spa), name,
(u_longlong_t)DLH_GET_VERSION(&hdr));
return (SET_ERROR(EINVAL));
}
ddt_key_t *checkpoint = NULL;
if (DLH_GET_FLAGS(&hdr) & DDL_FLAG_CHECKPOINT) {
/*
* If the log has a checkpoint, then we can ignore any entries
* that have already been flushed.
*/
ASSERT(DLH_GET_FLAGS(&hdr) & DDL_FLAG_FLUSHING);
checkpoint = &hdr.dlh_checkpoint;
}
if (hdr.dlh_length > 0) {
dmu_prefetch_by_dnode(dn, 0, 0, hdr.dlh_length,
ZIO_PRIORITY_SYNC_READ);
for (uint64_t offset = 0; offset < hdr.dlh_length;
offset += dn->dn_datablksz) {
err = dmu_buf_hold_by_dnode(dn, offset, FTAG, &db,
DMU_READ_PREFETCH);
if (err != 0) {
dnode_rele(dn, FTAG);
ddt_log_empty(ddt, ddl);
return (err);
}
uint64_t boffset = 0;
while (boffset < db->db_size) {
ddt_log_record_t *dlr =
(ddt_log_record_t *)(db->db_data + boffset);
/* Partially-filled block, skip the rest */
if (DLR_GET_TYPE(dlr) == DLR_INVALID)
break;
switch (DLR_GET_TYPE(dlr)) {
case DLR_ENTRY:
ddt_log_load_entry(ddt, ddl, dlr,
checkpoint);
break;
default:
dmu_buf_rele(db, FTAG);
dnode_rele(dn, FTAG);
ddt_log_empty(ddt, ddl);
return (SET_ERROR(EINVAL));
}
boffset += DLR_GET_RECLEN(dlr);
}
dmu_buf_rele(db, FTAG);
}
}
dnode_rele(dn, FTAG);
ddl->ddl_object = obj;
ddl->ddl_flags = DLH_GET_FLAGS(&hdr);
ddl->ddl_length = hdr.dlh_length;
ddl->ddl_first_txg = hdr.dlh_first_txg;
if (ddl->ddl_flags & DDL_FLAG_FLUSHING)
ddt->ddt_log_flushing = ddl;
else
ddt->ddt_log_active = ddl;
return (0);
}
int
ddt_log_load(ddt_t *ddt)
{
int err;
if (spa_load_state(ddt->ddt_spa) == SPA_LOAD_TRYIMPORT) {
/*
* The DDT is going to be freed again in a moment, so there's
* no point loading the log; it'll just slow down import.
*/
return (0);
}
ASSERT0(ddt->ddt_log[0].ddl_object);
ASSERT0(ddt->ddt_log[1].ddl_object);
if (ddt->ddt_dir_object == 0) {
/*
* If we're configured but the containing dir doesn't exist
* yet, then the log object can't possibly exist either.
*/
ASSERT3U(ddt->ddt_version, !=, UINT64_MAX);
return (SET_ERROR(ENOENT));
}
if ((err = ddt_log_load_one(ddt, 0)) != 0)
return (err);
if ((err = ddt_log_load_one(ddt, 1)) != 0)
return (err);
VERIFY3P(ddt->ddt_log_active, !=, ddt->ddt_log_flushing);
VERIFY(!(ddt->ddt_log_active->ddl_flags & DDL_FLAG_FLUSHING));
VERIFY(!(ddt->ddt_log_active->ddl_flags & DDL_FLAG_CHECKPOINT));
VERIFY(ddt->ddt_log_flushing->ddl_flags & DDL_FLAG_FLUSHING);
/*
* We have two finalisation tasks:
*
* - rebuild the histogram. We do this at the end rather than while
* we're loading so we don't need to uncount and recount entries that
* appear multiple times in the log.
*
* - remove entries from the flushing tree that are on both trees. This
* happens when ddt_lookup() rehydrates an entry from the flushing
* tree, as ddt_log_take_key() removes the entry from the in-memory
* tree but doesn't remove it from disk.
*/
/*
* We don't technically need a config lock here, since there shouldn't
* be pool config changes during DDT load. dva_get_dsize_sync() via
* ddt_stat_generate() is expecting it though, and it won't hurt
* anything, so we take it.
*/
spa_config_enter(ddt->ddt_spa, SCL_STATE, FTAG, RW_READER);
avl_tree_t *al = &ddt->ddt_log_active->ddl_tree;
avl_tree_t *fl = &ddt->ddt_log_flushing->ddl_tree;
ddt_log_entry_t *ae = avl_first(al);
ddt_log_entry_t *fe = avl_first(fl);
while (ae != NULL || fe != NULL) {
ddt_log_entry_t *ddle;
if (ae == NULL) {
/* active exhausted, take flushing */
ddle = fe;
fe = AVL_NEXT(fl, fe);
} else if (fe == NULL) {
/* flushing exuhausted, take active */
ddle = ae;
ae = AVL_NEXT(al, ae);
} else {
/* compare active and flushing */
int c = ddt_key_compare(&ae->ddle_key, &fe->ddle_key);
if (c < 0) {
/* active behind, take and advance */
ddle = ae;
ae = AVL_NEXT(al, ae);
} else if (c > 0) {
/* flushing behind, take and advance */
ddle = fe;
fe = AVL_NEXT(fl, fe);
} else {
/* match. remove from flushing, take active */
ddle = fe;
fe = AVL_NEXT(fl, fe);
avl_remove(fl, ddle);
ddle = ae;
ae = AVL_NEXT(al, ae);
}
}
ddt_lightweight_entry_t ddlwe;
DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe);
ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, &ddlwe);
}
spa_config_exit(ddt->ddt_spa, SCL_STATE, FTAG);
ddt_log_update_stats(ddt);
return (0);
}
void
ddt_log_alloc(ddt_t *ddt)
{
ASSERT3P(ddt->ddt_log_active, ==, NULL);
ASSERT3P(ddt->ddt_log_flushing, ==, NULL);
avl_create(&ddt->ddt_log[0].ddl_tree, ddt_key_compare,
sizeof (ddt_log_entry_t), offsetof(ddt_log_entry_t, ddle_node));
avl_create(&ddt->ddt_log[1].ddl_tree, ddt_key_compare,
sizeof (ddt_log_entry_t), offsetof(ddt_log_entry_t, ddle_node));
ddt->ddt_log_active = &ddt->ddt_log[0];
ddt->ddt_log_flushing = &ddt->ddt_log[1];
ddt->ddt_log_flushing->ddl_flags |= DDL_FLAG_FLUSHING;
}
void
ddt_log_free(ddt_t *ddt)
{
ddt_log_empty(ddt, &ddt->ddt_log[0]);
ddt_log_empty(ddt, &ddt->ddt_log[1]);
avl_destroy(&ddt->ddt_log[0].ddl_tree);
avl_destroy(&ddt->ddt_log[1].ddl_tree);
}
ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_txg_max, UINT, ZMOD_RW,
"Max transactions before starting to flush dedup logs");
ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_mem_max, U64, ZMOD_RD,
"Max memory for dedup logs");
ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_mem_max_percent, UINT, ZMOD_RD,
"Max memory for dedup logs, as % of total memory");