/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Based on BLAKE3 v1.3.1, https://github.com/BLAKE3-team/BLAKE3 * Copyright (c) 2019-2020 Samuel Neves and Jack O'Connor * Copyright (c) 2021-2022 Tino Reichardt */ #include #include #include #include "blake3_impl.h" /* * We need 1056 byte stack for blake3_compress_subtree_wide() * - we define this pragma to make gcc happy */ #if defined(__GNUC__) #pragma GCC diagnostic ignored "-Wframe-larger-than=" #endif /* internal used */ typedef struct { uint32_t input_cv[8]; uint64_t counter; uint8_t block[BLAKE3_BLOCK_LEN]; uint8_t block_len; uint8_t flags; } output_t; /* internal flags */ enum blake3_flags { CHUNK_START = 1 << 0, CHUNK_END = 1 << 1, PARENT = 1 << 2, ROOT = 1 << 3, KEYED_HASH = 1 << 4, DERIVE_KEY_CONTEXT = 1 << 5, DERIVE_KEY_MATERIAL = 1 << 6, }; /* internal start */ static void chunk_state_init(blake3_chunk_state_t *ctx, const uint32_t key[8], uint8_t flags) { memcpy(ctx->cv, key, BLAKE3_KEY_LEN); ctx->chunk_counter = 0; memset(ctx->buf, 0, BLAKE3_BLOCK_LEN); ctx->buf_len = 0; ctx->blocks_compressed = 0; ctx->flags = flags; } static void chunk_state_reset(blake3_chunk_state_t *ctx, const uint32_t key[8], uint64_t chunk_counter) { memcpy(ctx->cv, key, BLAKE3_KEY_LEN); ctx->chunk_counter = chunk_counter; ctx->blocks_compressed = 0; memset(ctx->buf, 0, BLAKE3_BLOCK_LEN); ctx->buf_len = 0; } static size_t chunk_state_len(const blake3_chunk_state_t *ctx) { return (BLAKE3_BLOCK_LEN * (size_t)ctx->blocks_compressed) + ((size_t)ctx->buf_len); } static size_t chunk_state_fill_buf(blake3_chunk_state_t *ctx, const uint8_t *input, size_t input_len) { size_t take = BLAKE3_BLOCK_LEN - ((size_t)ctx->buf_len); if (take > input_len) { take = input_len; } uint8_t *dest = ctx->buf + ((size_t)ctx->buf_len); memcpy(dest, input, take); ctx->buf_len += (uint8_t)take; return (take); } static uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state_t *ctx) { if (ctx->blocks_compressed == 0) { return (CHUNK_START); } else { return (0); } } static output_t make_output(const uint32_t input_cv[8], const uint8_t *block, uint8_t block_len, uint64_t counter, uint8_t flags) { output_t ret; memcpy(ret.input_cv, input_cv, 32); memcpy(ret.block, block, BLAKE3_BLOCK_LEN); ret.block_len = block_len; ret.counter = counter; ret.flags = flags; return (ret); } /* * Chaining values within a given chunk (specifically the compress_in_place * interface) are represented as words. This avoids unnecessary bytes<->words * conversion overhead in the portable implementation. However, the hash_many * interface handles both user input and parent node blocks, so it accepts * bytes. For that reason, chaining values in the CV stack are represented as * bytes. */ static void output_chaining_value(const blake3_ops_t *ops, const output_t *ctx, uint8_t cv[32]) { uint32_t cv_words[8]; memcpy(cv_words, ctx->input_cv, 32); ops->compress_in_place(cv_words, ctx->block, ctx->block_len, ctx->counter, ctx->flags); store_cv_words(cv, cv_words); } static void output_root_bytes(const blake3_ops_t *ops, const output_t *ctx, uint64_t seek, uint8_t *out, size_t out_len) { uint64_t output_block_counter = seek / 64; size_t offset_within_block = seek % 64; uint8_t wide_buf[64]; while (out_len > 0) { ops->compress_xof(ctx->input_cv, ctx->block, ctx->block_len, output_block_counter, ctx->flags | ROOT, wide_buf); size_t available_bytes = 64 - offset_within_block; size_t memcpy_len; if (out_len > available_bytes) { memcpy_len = available_bytes; } else { memcpy_len = out_len; } memcpy(out, wide_buf + offset_within_block, memcpy_len); out += memcpy_len; out_len -= memcpy_len; output_block_counter += 1; offset_within_block = 0; } } static void chunk_state_update(const blake3_ops_t *ops, blake3_chunk_state_t *ctx, const uint8_t *input, size_t input_len) { if (ctx->buf_len > 0) { size_t take = chunk_state_fill_buf(ctx, input, input_len); input += take; input_len -= take; if (input_len > 0) { ops->compress_in_place(ctx->cv, ctx->buf, BLAKE3_BLOCK_LEN, ctx->chunk_counter, ctx->flags|chunk_state_maybe_start_flag(ctx)); ctx->blocks_compressed += 1; ctx->buf_len = 0; memset(ctx->buf, 0, BLAKE3_BLOCK_LEN); } } while (input_len > BLAKE3_BLOCK_LEN) { ops->compress_in_place(ctx->cv, input, BLAKE3_BLOCK_LEN, ctx->chunk_counter, ctx->flags|chunk_state_maybe_start_flag(ctx)); ctx->blocks_compressed += 1; input += BLAKE3_BLOCK_LEN; input_len -= BLAKE3_BLOCK_LEN; } chunk_state_fill_buf(ctx, input, input_len); } static output_t chunk_state_output(const blake3_chunk_state_t *ctx) { uint8_t block_flags = ctx->flags | chunk_state_maybe_start_flag(ctx) | CHUNK_END; return (make_output(ctx->cv, ctx->buf, ctx->buf_len, ctx->chunk_counter, block_flags)); } static output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN], const uint32_t key[8], uint8_t flags) { return (make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT)); } /* * Given some input larger than one chunk, return the number of bytes that * should go in the left subtree. This is the largest power-of-2 number of * chunks that leaves at least 1 byte for the right subtree. */ static size_t left_len(size_t content_len) { /* * Subtract 1 to reserve at least one byte for the right side. * content_len * should always be greater than BLAKE3_CHUNK_LEN. */ size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN; return (round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN); } /* * Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time * on a single thread. Write out the chunk chaining values and return the * number of chunks hashed. These chunks are never the root and never empty; * those cases use a different codepath. */ static size_t compress_chunks_parallel(const blake3_ops_t *ops, const uint8_t *input, size_t input_len, const uint32_t key[8], uint64_t chunk_counter, uint8_t flags, uint8_t *out) { const uint8_t *chunks_array[MAX_SIMD_DEGREE]; size_t input_position = 0; size_t chunks_array_len = 0; while (input_len - input_position >= BLAKE3_CHUNK_LEN) { chunks_array[chunks_array_len] = &input[input_position]; input_position += BLAKE3_CHUNK_LEN; chunks_array_len += 1; } ops->hash_many(chunks_array, chunks_array_len, BLAKE3_CHUNK_LEN / BLAKE3_BLOCK_LEN, key, chunk_counter, B_TRUE, flags, CHUNK_START, CHUNK_END, out); /* * Hash the remaining partial chunk, if there is one. Note that the * empty chunk (meaning the empty message) is a different codepath. */ if (input_len > input_position) { uint64_t counter = chunk_counter + (uint64_t)chunks_array_len; blake3_chunk_state_t chunk_state; chunk_state_init(&chunk_state, key, flags); chunk_state.chunk_counter = counter; chunk_state_update(ops, &chunk_state, &input[input_position], input_len - input_position); output_t output = chunk_state_output(&chunk_state); output_chaining_value(ops, &output, &out[chunks_array_len * BLAKE3_OUT_LEN]); return (chunks_array_len + 1); } else { return (chunks_array_len); } } /* * Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time * on a single thread. Write out the parent chaining values and return the * number of parents hashed. (If there's an odd input chaining value left over, * return it as an additional output.) These parents are never the root and * never empty; those cases use a different codepath. */ static size_t compress_parents_parallel(const blake3_ops_t *ops, const uint8_t *child_chaining_values, size_t num_chaining_values, const uint32_t key[8], uint8_t flags, uint8_t *out) { const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2] = {0}; size_t parents_array_len = 0; while (num_chaining_values - (2 * parents_array_len) >= 2) { parents_array[parents_array_len] = &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN]; parents_array_len += 1; } ops->hash_many(parents_array, parents_array_len, 1, key, 0, B_FALSE, flags | PARENT, 0, 0, out); /* If there's an odd child left over, it becomes an output. */ if (num_chaining_values > 2 * parents_array_len) { memcpy(&out[parents_array_len * BLAKE3_OUT_LEN], &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN], BLAKE3_OUT_LEN); return (parents_array_len + 1); } else { return (parents_array_len); } } /* * The wide helper function returns (writes out) an array of chaining values * and returns the length of that array. The number of chaining values returned * is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer, * if the input is shorter than that many chunks. The reason for maintaining a * wide array of chaining values going back up the tree, is to allow the * implementation to hash as many parents in parallel as possible. * * As a special case when the SIMD degree is 1, this function will still return * at least 2 outputs. This guarantees that this function doesn't perform the * root compression. (If it did, it would use the wrong flags, and also we * wouldn't be able to implement exendable ouput.) Note that this function is * not used when the whole input is only 1 chunk long; that's a different * codepath. * * Why not just have the caller split the input on the first update(), instead * of implementing this special rule? Because we don't want to limit SIMD or * multi-threading parallelism for that update(). */ static size_t blake3_compress_subtree_wide(const blake3_ops_t *ops, const uint8_t *input, size_t input_len, const uint32_t key[8], uint64_t chunk_counter, uint8_t flags, uint8_t *out) { /* * Note that the single chunk case does *not* bump the SIMD degree up * to 2 when it is 1. If this implementation adds multi-threading in * the future, this gives us the option of multi-threading even the * 2-chunk case, which can help performance on smaller platforms. */ if (input_len <= (size_t)(ops->degree * BLAKE3_CHUNK_LEN)) { return (compress_chunks_parallel(ops, input, input_len, key, chunk_counter, flags, out)); } /* * With more than simd_degree chunks, we need to recurse. Start by * dividing the input into left and right subtrees. (Note that this is * only optimal as long as the SIMD degree is a power of 2. If we ever * get a SIMD degree of 3 or something, we'll need a more complicated * strategy.) */ size_t left_input_len = left_len(input_len); size_t right_input_len = input_len - left_input_len; const uint8_t *right_input = &input[left_input_len]; uint64_t right_chunk_counter = chunk_counter + (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN); /* * Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 * to account for the special case of returning 2 outputs when the * SIMD degree is 1. */ uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; size_t degree = ops->degree; if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) { /* * The special case: We always use a degree of at least two, * to make sure there are two outputs. Except, as noted above, * at the chunk level, where we allow degree=1. (Note that the * 1-chunk-input case is a different codepath.) */ degree = 2; } uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN]; /* * Recurse! If this implementation adds multi-threading support in the * future, this is where it will go. */ size_t left_n = blake3_compress_subtree_wide(ops, input, left_input_len, key, chunk_counter, flags, cv_array); size_t right_n = blake3_compress_subtree_wide(ops, right_input, right_input_len, key, right_chunk_counter, flags, right_cvs); /* * The special case again. If simd_degree=1, then we'll have left_n=1 * and right_n=1. Rather than compressing them into a single output, * return them directly, to make sure we always have at least two * outputs. */ if (left_n == 1) { memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN); return (2); } /* Otherwise, do one layer of parent node compression. */ size_t num_chaining_values = left_n + right_n; return compress_parents_parallel(ops, cv_array, num_chaining_values, key, flags, out); } /* * Hash a subtree with compress_subtree_wide(), and then condense the resulting * list of chaining values down to a single parent node. Don't compress that * last parent node, however. Instead, return its message bytes (the * concatenated chaining values of its children). This is necessary when the * first call to update() supplies a complete subtree, because the topmost * parent node of that subtree could end up being the root. It's also necessary * for extended output in the general case. * * As with compress_subtree_wide(), this function is not used on inputs of 1 * chunk or less. That's a different codepath. */ static void compress_subtree_to_parent_node(const blake3_ops_t *ops, const uint8_t *input, size_t input_len, const uint32_t key[8], uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN]) { uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; size_t num_cvs = blake3_compress_subtree_wide(ops, input, input_len, key, chunk_counter, flags, cv_array); /* * If MAX_SIMD_DEGREE is greater than 2 and there's enough input, * compress_subtree_wide() returns more than 2 chaining values. Condense * them into 2 by forming parent nodes repeatedly. */ uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2]; while (num_cvs > 2) { num_cvs = compress_parents_parallel(ops, cv_array, num_cvs, key, flags, out_array); memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN); } memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN); } static void hasher_init_base(BLAKE3_CTX *ctx, const uint32_t key[8], uint8_t flags) { memcpy(ctx->key, key, BLAKE3_KEY_LEN); chunk_state_init(&ctx->chunk, key, flags); ctx->cv_stack_len = 0; ctx->ops = blake3_get_ops(); } /* * As described in hasher_push_cv() below, we do "lazy merging", delaying * merges until right before the next CV is about to be added. This is * different from the reference implementation. Another difference is that we * aren't always merging 1 chunk at a time. Instead, each CV might represent * any power-of-two number of chunks, as long as the smaller-above-larger * stack order is maintained. Instead of the "count the trailing 0-bits" * algorithm described in the spec, we use a "count the total number of * 1-bits" variant that doesn't require us to retain the subtree size of the * CV on top of the stack. The principle is the same: each CV that should * remain in the stack is represented by a 1-bit in the total number of chunks * (or bytes) so far. */ static void hasher_merge_cv_stack(BLAKE3_CTX *ctx, uint64_t total_len) { size_t post_merge_stack_len = (size_t)popcnt(total_len); while (ctx->cv_stack_len > post_merge_stack_len) { uint8_t *parent_node = &ctx->cv_stack[(ctx->cv_stack_len - 2) * BLAKE3_OUT_LEN]; output_t output = parent_output(parent_node, ctx->key, ctx->chunk.flags); output_chaining_value(ctx->ops, &output, parent_node); ctx->cv_stack_len -= 1; } } /* * In reference_impl.rs, we merge the new CV with existing CVs from the stack * before pushing it. We can do that because we know more input is coming, so * we know none of the merges are root. * * This setting is different. We want to feed as much input as possible to * compress_subtree_wide(), without setting aside anything for the chunk_state. * If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once * as a single subtree, if at all possible. * * This leads to two problems: * 1) This 64 KiB input might be the only call that ever gets made to update. * In this case, the root node of the 64 KiB subtree would be the root node * of the whole tree, and it would need to be ROOT finalized. We can't * compress it until we know. * 2) This 64 KiB input might complete a larger tree, whose root node is * similarly going to be the the root of the whole tree. For example, maybe * we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the * node at the root of the 256 KiB subtree until we know how to finalize it. * * The second problem is solved with "lazy merging". That is, when we're about * to add a CV to the stack, we don't merge it with anything first, as the * reference impl does. Instead we do merges using the *previous* CV that was * added, which is sitting on top of the stack, and we put the new CV * (unmerged) on top of the stack afterwards. This guarantees that we never * merge the root node until finalize(). * * Solving the first problem requires an additional tool, * compress_subtree_to_parent_node(). That function always returns the top * *two* chaining values of the subtree it's compressing. We then do lazy * merging with each of them separately, so that the second CV will always * remain unmerged. (That also helps us support extendable output when we're * hashing an input all-at-once.) */ static void hasher_push_cv(BLAKE3_CTX *ctx, uint8_t new_cv[BLAKE3_OUT_LEN], uint64_t chunk_counter) { hasher_merge_cv_stack(ctx, chunk_counter); memcpy(&ctx->cv_stack[ctx->cv_stack_len * BLAKE3_OUT_LEN], new_cv, BLAKE3_OUT_LEN); ctx->cv_stack_len += 1; } void Blake3_Init(BLAKE3_CTX *ctx) { hasher_init_base(ctx, BLAKE3_IV, 0); } void Blake3_InitKeyed(BLAKE3_CTX *ctx, const uint8_t key[BLAKE3_KEY_LEN]) { uint32_t key_words[8]; load_key_words(key, key_words); hasher_init_base(ctx, key_words, KEYED_HASH); } static void Blake3_Update2(BLAKE3_CTX *ctx, const void *input, size_t input_len) { /* * Explicitly checking for zero avoids causing UB by passing a null * pointer to memcpy. This comes up in practice with things like: * std::vector v; * blake3_hasher_update(&hasher, v.data(), v.size()); */ if (input_len == 0) { return; } const uint8_t *input_bytes = (const uint8_t *)input; /* * If we have some partial chunk bytes in the internal chunk_state, we * need to finish that chunk first. */ if (chunk_state_len(&ctx->chunk) > 0) { size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&ctx->chunk); if (take > input_len) { take = input_len; } chunk_state_update(ctx->ops, &ctx->chunk, input_bytes, take); input_bytes += take; input_len -= take; /* * If we've filled the current chunk and there's more coming, * finalize this chunk and proceed. In this case we know it's * not the root. */ if (input_len > 0) { output_t output = chunk_state_output(&ctx->chunk); uint8_t chunk_cv[32]; output_chaining_value(ctx->ops, &output, chunk_cv); hasher_push_cv(ctx, chunk_cv, ctx->chunk.chunk_counter); chunk_state_reset(&ctx->chunk, ctx->key, ctx->chunk.chunk_counter + 1); } else { return; } } /* * Now the chunk_state is clear, and we have more input. If there's * more than a single chunk (so, definitely not the root chunk), hash * the largest whole subtree we can, with the full benefits of SIMD * (and maybe in the future, multi-threading) parallelism. Two * restrictions: * - The subtree has to be a power-of-2 number of chunks. Only * subtrees along the right edge can be incomplete, and we don't know * where the right edge is going to be until we get to finalize(). * - The subtree must evenly divide the total number of chunks up * until this point (if total is not 0). If the current incomplete * subtree is only waiting for 1 more chunk, we can't hash a subtree * of 4 chunks. We have to complete the current subtree first. * Because we might need to break up the input to form powers of 2, or * to evenly divide what we already have, this part runs in a loop. */ while (input_len > BLAKE3_CHUNK_LEN) { size_t subtree_len = round_down_to_power_of_2(input_len); uint64_t count_so_far = ctx->chunk.chunk_counter * BLAKE3_CHUNK_LEN; /* * Shrink the subtree_len until it evenly divides the count so * far. We know that subtree_len itself is a power of 2, so we * can use a bitmasking trick instead of an actual remainder * operation. (Note that if the caller consistently passes * power-of-2 inputs of the same size, as is hopefully * typical, this loop condition will always fail, and * subtree_len will always be the full length of the input.) * * An aside: We don't have to shrink subtree_len quite this * much. For example, if count_so_far is 1, we could pass 2 * chunks to compress_subtree_to_parent_node. Since we'll get * 2 CVs back, we'll still get the right answer in the end, * and we might get to use 2-way SIMD parallelism. The problem * with this optimization, is that it gets us stuck always * hashing 2 chunks. The total number of chunks will remain * odd, and we'll never graduate to higher degrees of * parallelism. See * https://github.com/BLAKE3-team/BLAKE3/issues/69. */ while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) { subtree_len /= 2; } /* * The shrunken subtree_len might now be 1 chunk long. If so, * hash that one chunk by itself. Otherwise, compress the * subtree into a pair of CVs. */ uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN; if (subtree_len <= BLAKE3_CHUNK_LEN) { blake3_chunk_state_t chunk_state; chunk_state_init(&chunk_state, ctx->key, ctx->chunk.flags); chunk_state.chunk_counter = ctx->chunk.chunk_counter; chunk_state_update(ctx->ops, &chunk_state, input_bytes, subtree_len); output_t output = chunk_state_output(&chunk_state); uint8_t cv[BLAKE3_OUT_LEN]; output_chaining_value(ctx->ops, &output, cv); hasher_push_cv(ctx, cv, chunk_state.chunk_counter); } else { /* * This is the high-performance happy path, though * getting here depends on the caller giving us a long * enough input. */ uint8_t cv_pair[2 * BLAKE3_OUT_LEN]; compress_subtree_to_parent_node(ctx->ops, input_bytes, subtree_len, ctx->key, ctx-> chunk.chunk_counter, ctx->chunk.flags, cv_pair); hasher_push_cv(ctx, cv_pair, ctx->chunk.chunk_counter); hasher_push_cv(ctx, &cv_pair[BLAKE3_OUT_LEN], ctx->chunk.chunk_counter + (subtree_chunks / 2)); } ctx->chunk.chunk_counter += subtree_chunks; input_bytes += subtree_len; input_len -= subtree_len; } /* * If there's any remaining input less than a full chunk, add it to * the chunk state. In that case, also do a final merge loop to make * sure the subtree stack doesn't contain any unmerged pairs. The * remaining input means we know these merges are non-root. This merge * loop isn't strictly necessary here, because hasher_push_chunk_cv * already does its own merge loop, but it simplifies * blake3_hasher_finalize below. */ if (input_len > 0) { chunk_state_update(ctx->ops, &ctx->chunk, input_bytes, input_len); hasher_merge_cv_stack(ctx, ctx->chunk.chunk_counter); } } void Blake3_Update(BLAKE3_CTX *ctx, const void *input, size_t todo) { size_t done = 0; const uint8_t *data = input; const size_t block_max = 1024 * 64; /* max feed buffer to leave the stack size small */ while (todo != 0) { size_t block = (todo >= block_max) ? block_max : todo; Blake3_Update2(ctx, data + done, block); done += block; todo -= block; } } void Blake3_Final(const BLAKE3_CTX *ctx, uint8_t *out) { Blake3_FinalSeek(ctx, 0, out, BLAKE3_OUT_LEN); } void Blake3_FinalSeek(const BLAKE3_CTX *ctx, uint64_t seek, uint8_t *out, size_t out_len) { /* * Explicitly checking for zero avoids causing UB by passing a null * pointer to memcpy. This comes up in practice with things like: * std::vector v; * blake3_hasher_finalize(&hasher, v.data(), v.size()); */ if (out_len == 0) { return; } /* If the subtree stack is empty, then the current chunk is the root. */ if (ctx->cv_stack_len == 0) { output_t output = chunk_state_output(&ctx->chunk); output_root_bytes(ctx->ops, &output, seek, out, out_len); return; } /* * If there are any bytes in the chunk state, finalize that chunk and * do a roll-up merge between that chunk hash and every subtree in the * stack. In this case, the extra merge loop at the end of * blake3_hasher_update guarantees that none of the subtrees in the * stack need to be merged with each other first. Otherwise, if there * are no bytes in the chunk state, then the top of the stack is a * chunk hash, and we start the merge from that. */ output_t output; size_t cvs_remaining; if (chunk_state_len(&ctx->chunk) > 0) { cvs_remaining = ctx->cv_stack_len; output = chunk_state_output(&ctx->chunk); } else { /* There are always at least 2 CVs in the stack in this case. */ cvs_remaining = ctx->cv_stack_len - 2; output = parent_output(&ctx->cv_stack[cvs_remaining * 32], ctx->key, ctx->chunk.flags); } while (cvs_remaining > 0) { cvs_remaining -= 1; uint8_t parent_block[BLAKE3_BLOCK_LEN]; memcpy(parent_block, &ctx->cv_stack[cvs_remaining * 32], 32); output_chaining_value(ctx->ops, &output, &parent_block[32]); output = parent_output(parent_block, ctx->key, ctx->chunk.flags); } output_root_bytes(ctx->ops, &output, seek, out, out_len); }