/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #ifndef _SYS_ATOMIC_H #define _SYS_ATOMIC_H #include #include #ifdef __cplusplus extern "C" { #endif #if defined(__STDC__) /* * Increment target. */ extern void atomic_inc_8(volatile uint8_t *); extern void atomic_inc_uchar(volatile uchar_t *); extern void atomic_inc_16(volatile uint16_t *); extern void atomic_inc_ushort(volatile ushort_t *); extern void atomic_inc_32(volatile uint32_t *); extern void atomic_inc_uint(volatile uint_t *); extern void atomic_inc_ulong(volatile ulong_t *); #if defined(_INT64_TYPE) extern void atomic_inc_64(volatile uint64_t *); #endif /* * Decrement target */ extern void atomic_dec_8(volatile uint8_t *); extern void atomic_dec_uchar(volatile uchar_t *); extern void atomic_dec_16(volatile uint16_t *); extern void atomic_dec_ushort(volatile ushort_t *); extern void atomic_dec_32(volatile uint32_t *); extern void atomic_dec_uint(volatile uint_t *); extern void atomic_dec_ulong(volatile ulong_t *); #if defined(_INT64_TYPE) extern void atomic_dec_64(volatile uint64_t *); #endif /* * Add delta to target */ extern void atomic_add_8(volatile uint8_t *, int8_t); extern void atomic_add_char(volatile uchar_t *, signed char); extern void atomic_add_16(volatile uint16_t *, int16_t); extern void atomic_add_short(volatile ushort_t *, short); extern void atomic_add_32(volatile uint32_t *, int32_t); extern void atomic_add_int(volatile uint_t *, int); extern void atomic_add_ptr(volatile void *, ssize_t); extern void atomic_add_long(volatile ulong_t *, long); #if defined(_INT64_TYPE) extern void atomic_add_64(volatile uint64_t *, int64_t); #endif /* * Subtract delta from target */ extern void atomic_sub_8(volatile uint8_t *, int8_t); extern void atomic_sub_char(volatile uchar_t *, signed char); extern void atomic_sub_16(volatile uint16_t *, int16_t); extern void atomic_sub_short(volatile ushort_t *, short); extern void atomic_sub_32(volatile uint32_t *, int32_t); extern void atomic_sub_int(volatile uint_t *, int); extern void atomic_sub_ptr(volatile void *, ssize_t); extern void atomic_sub_long(volatile ulong_t *, long); #if defined(_INT64_TYPE) extern void atomic_sub_64(volatile uint64_t *, int64_t); #endif /* * logical OR bits with target */ extern void atomic_or_8(volatile uint8_t *, uint8_t); extern void atomic_or_uchar(volatile uchar_t *, uchar_t); extern void atomic_or_16(volatile uint16_t *, uint16_t); extern void atomic_or_ushort(volatile ushort_t *, ushort_t); extern void atomic_or_32(volatile uint32_t *, uint32_t); extern void atomic_or_uint(volatile uint_t *, uint_t); extern void atomic_or_ulong(volatile ulong_t *, ulong_t); #if defined(_INT64_TYPE) extern void atomic_or_64(volatile uint64_t *, uint64_t); #endif /* * logical AND bits with target */ extern void atomic_and_8(volatile uint8_t *, uint8_t); extern void atomic_and_uchar(volatile uchar_t *, uchar_t); extern void atomic_and_16(volatile uint16_t *, uint16_t); extern void atomic_and_ushort(volatile ushort_t *, ushort_t); extern void atomic_and_32(volatile uint32_t *, uint32_t); extern void atomic_and_uint(volatile uint_t *, uint_t); extern void atomic_and_ulong(volatile ulong_t *, ulong_t); #if defined(_INT64_TYPE) extern void atomic_and_64(volatile uint64_t *, uint64_t); #endif /* * As above, but return the new value. Note that these _nv() variants are * substantially more expensive on some platforms than the no-return-value * versions above, so don't use them unless you really need to know the * new value *atomically* (e.g. when decrementing a reference count and * checking whether it went to zero). */ /* * Increment target and return new value. */ extern uint8_t atomic_inc_8_nv(volatile uint8_t *); extern uchar_t atomic_inc_uchar_nv(volatile uchar_t *); extern uint16_t atomic_inc_16_nv(volatile uint16_t *); extern ushort_t atomic_inc_ushort_nv(volatile ushort_t *); extern uint32_t atomic_inc_32_nv(volatile uint32_t *); extern uint_t atomic_inc_uint_nv(volatile uint_t *); extern ulong_t atomic_inc_ulong_nv(volatile ulong_t *); #if defined(_INT64_TYPE) extern uint64_t atomic_inc_64_nv(volatile uint64_t *); #endif /* * Decrement target and return new value. */ extern uint8_t atomic_dec_8_nv(volatile uint8_t *); extern uchar_t atomic_dec_uchar_nv(volatile uchar_t *); extern uint16_t atomic_dec_16_nv(volatile uint16_t *); extern ushort_t atomic_dec_ushort_nv(volatile ushort_t *); extern uint32_t atomic_dec_32_nv(volatile uint32_t *); extern uint_t atomic_dec_uint_nv(volatile uint_t *); extern ulong_t atomic_dec_ulong_nv(volatile ulong_t *); #if defined(_INT64_TYPE) extern uint64_t atomic_dec_64_nv(volatile uint64_t *); #endif /* * Add delta to target */ extern uint8_t atomic_add_8_nv(volatile uint8_t *, int8_t); extern uchar_t atomic_add_char_nv(volatile uchar_t *, signed char); extern uint16_t atomic_add_16_nv(volatile uint16_t *, int16_t); extern ushort_t atomic_add_short_nv(volatile ushort_t *, short); extern uint32_t atomic_add_32_nv(volatile uint32_t *, int32_t); extern uint_t atomic_add_int_nv(volatile uint_t *, int); extern void *atomic_add_ptr_nv(volatile void *, ssize_t); extern ulong_t atomic_add_long_nv(volatile ulong_t *, long); #if defined(_INT64_TYPE) extern uint64_t atomic_add_64_nv(volatile uint64_t *, int64_t); #endif /* * Subtract delta from target */ extern uint8_t atomic_sub_8_nv(volatile uint8_t *, int8_t); extern uchar_t atomic_sub_char_nv(volatile uchar_t *, signed char); extern uint16_t atomic_sub_16_nv(volatile uint16_t *, int16_t); extern ushort_t atomic_sub_short_nv(volatile ushort_t *, short); extern uint32_t atomic_sub_32_nv(volatile uint32_t *, int32_t); extern uint_t atomic_sub_int_nv(volatile uint_t *, int); extern void *atomic_sub_ptr_nv(volatile void *, ssize_t); extern ulong_t atomic_sub_long_nv(volatile ulong_t *, long); #if defined(_INT64_TYPE) extern uint64_t atomic_sub_64_nv(volatile uint64_t *, int64_t); #endif /* * logical OR bits with target and return new value. */ extern uint8_t atomic_or_8_nv(volatile uint8_t *, uint8_t); extern uchar_t atomic_or_uchar_nv(volatile uchar_t *, uchar_t); extern uint16_t atomic_or_16_nv(volatile uint16_t *, uint16_t); extern ushort_t atomic_or_ushort_nv(volatile ushort_t *, ushort_t); extern uint32_t atomic_or_32_nv(volatile uint32_t *, uint32_t); extern uint_t atomic_or_uint_nv(volatile uint_t *, uint_t); extern ulong_t atomic_or_ulong_nv(volatile ulong_t *, ulong_t); #if defined(_INT64_TYPE) extern uint64_t atomic_or_64_nv(volatile uint64_t *, uint64_t); #endif /* * logical AND bits with target and return new value. */ extern uint8_t atomic_and_8_nv(volatile uint8_t *, uint8_t); extern uchar_t atomic_and_uchar_nv(volatile uchar_t *, uchar_t); extern uint16_t atomic_and_16_nv(volatile uint16_t *, uint16_t); extern ushort_t atomic_and_ushort_nv(volatile ushort_t *, ushort_t); extern uint32_t atomic_and_32_nv(volatile uint32_t *, uint32_t); extern uint_t atomic_and_uint_nv(volatile uint_t *, uint_t); extern ulong_t atomic_and_ulong_nv(volatile ulong_t *, ulong_t); #if defined(_INT64_TYPE) extern uint64_t atomic_and_64_nv(volatile uint64_t *, uint64_t); #endif /* * If *arg1 == arg2, set *arg1 = arg3; return old value */ extern uint8_t atomic_cas_8(volatile uint8_t *, uint8_t, uint8_t); extern uchar_t atomic_cas_uchar(volatile uchar_t *, uchar_t, uchar_t); extern uint16_t atomic_cas_16(volatile uint16_t *, uint16_t, uint16_t); extern ushort_t atomic_cas_ushort(volatile ushort_t *, ushort_t, ushort_t); extern uint32_t atomic_cas_32(volatile uint32_t *, uint32_t, uint32_t); extern uint_t atomic_cas_uint(volatile uint_t *, uint_t, uint_t); extern void *atomic_cas_ptr(volatile void *, void *, void *); extern ulong_t atomic_cas_ulong(volatile ulong_t *, ulong_t, ulong_t); #if defined(_INT64_TYPE) extern uint64_t atomic_cas_64(volatile uint64_t *, uint64_t, uint64_t); #endif /* * Swap target and return old value */ extern uint8_t atomic_swap_8(volatile uint8_t *, uint8_t); extern uchar_t atomic_swap_uchar(volatile uchar_t *, uchar_t); extern uint16_t atomic_swap_16(volatile uint16_t *, uint16_t); extern ushort_t atomic_swap_ushort(volatile ushort_t *, ushort_t); extern uint32_t atomic_swap_32(volatile uint32_t *, uint32_t); extern uint_t atomic_swap_uint(volatile uint_t *, uint_t); extern void *atomic_swap_ptr(volatile void *, void *); extern ulong_t atomic_swap_ulong(volatile ulong_t *, ulong_t); #if defined(_INT64_TYPE) extern uint64_t atomic_swap_64(volatile uint64_t *, uint64_t); #endif /* * Atomically read variable. */ #define atomic_load_char(p) (*(volatile uchar_t *)(p)) #define atomic_load_short(p) (*(volatile ushort_t *)(p)) #define atomic_load_int(p) (*(volatile uint_t *)(p)) #define atomic_load_long(p) (*(volatile ulong_t *)(p)) #define atomic_load_ptr(p) (*(volatile __typeof(*p) *)(p)) #define atomic_load_8(p) (*(volatile uint8_t *)(p)) #define atomic_load_16(p) (*(volatile uint16_t *)(p)) #define atomic_load_32(p) (*(volatile uint32_t *)(p)) #ifdef _LP64 #define atomic_load_64(p) (*(volatile uint64_t *)(p)) #elif defined(_INT64_TYPE) extern uint64_t atomic_load_64(volatile uint64_t *); #endif /* * Atomically write variable. */ #define atomic_store_char(p, v) \ (*(volatile uchar_t *)(p) = (uchar_t)(v)) #define atomic_store_short(p, v) \ (*(volatile ushort_t *)(p) = (ushort_t)(v)) #define atomic_store_int(p, v) \ (*(volatile uint_t *)(p) = (uint_t)(v)) #define atomic_store_long(p, v) \ (*(volatile ulong_t *)(p) = (ulong_t)(v)) #define atomic_store_ptr(p, v) \ (*(volatile __typeof(*p) *)(p) = (v)) #define atomic_store_8(p, v) \ (*(volatile uint8_t *)(p) = (uint8_t)(v)) #define atomic_store_16(p, v) \ (*(volatile uint16_t *)(p) = (uint16_t)(v)) #define atomic_store_32(p, v) \ (*(volatile uint32_t *)(p) = (uint32_t)(v)) #ifdef _LP64 #define atomic_store_64(p, v) \ (*(volatile uint64_t *)(p) = (uint64_t)(v)) #elif defined(_INT64_TYPE) extern void atomic_store_64(volatile uint64_t *, uint64_t); #endif /* * Perform an exclusive atomic bit set/clear on a target. * Returns 0 if bit was successfully set/cleared, or -1 * if the bit was already set/cleared. */ extern int atomic_set_long_excl(volatile ulong_t *, uint_t); extern int atomic_clear_long_excl(volatile ulong_t *, uint_t); /* * Generic memory barrier used during lock entry, placed after the * memory operation that acquires the lock to guarantee that the lock * protects its data. No stores from after the memory barrier will * reach visibility, and no loads from after the barrier will be * resolved, before the lock acquisition reaches global visibility. */ extern void membar_enter(void); /* * Generic memory barrier used during lock exit, placed before the * memory operation that releases the lock to guarantee that the lock * protects its data. All loads and stores issued before the barrier * will be resolved before the subsequent lock update reaches visibility. */ extern void membar_exit(void); /* * Arrange that all stores issued before this point in the code reach * global visibility before any stores that follow; useful in producer * modules that update a data item, then set a flag that it is available. * The memory barrier guarantees that the available flag is not visible * earlier than the updated data, i.e. it imposes store ordering. */ extern void membar_producer(void); /* * Arrange that all loads issued before this point in the code are * completed before any subsequent loads; useful in consumer modules * that check to see if data is available and read the data. * The memory barrier guarantees that the data is not sampled until * after the available flag has been seen, i.e. it imposes load ordering. */ extern void membar_consumer(void); #endif /* __STDC__ */ #ifdef __cplusplus } #endif #endif /* _SYS_ATOMIC_H */