/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, 2020 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright (c) 2019, Klara Inc. * Copyright (c) 2019, Allan Jude * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static kstat_t *dbuf_ksp; typedef struct dbuf_stats { /* * Various statistics about the size of the dbuf cache. */ kstat_named_t cache_count; kstat_named_t cache_size_bytes; kstat_named_t cache_size_bytes_max; /* * Statistics regarding the bounds on the dbuf cache size. */ kstat_named_t cache_target_bytes; kstat_named_t cache_lowater_bytes; kstat_named_t cache_hiwater_bytes; /* * Total number of dbuf cache evictions that have occurred. */ kstat_named_t cache_total_evicts; /* * The distribution of dbuf levels in the dbuf cache and * the total size of all dbufs at each level. */ kstat_named_t cache_levels[DN_MAX_LEVELS]; kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; /* * Statistics about the dbuf hash table. */ kstat_named_t hash_hits; kstat_named_t hash_misses; kstat_named_t hash_collisions; kstat_named_t hash_elements; kstat_named_t hash_elements_max; /* * Number of sublists containing more than one dbuf in the dbuf * hash table. Keep track of the longest hash chain. */ kstat_named_t hash_chains; kstat_named_t hash_chain_max; /* * Number of times a dbuf_create() discovers that a dbuf was * already created and in the dbuf hash table. */ kstat_named_t hash_insert_race; /* * Number of entries in the hash table dbuf and mutex arrays. */ kstat_named_t hash_table_count; kstat_named_t hash_mutex_count; /* * Statistics about the size of the metadata dbuf cache. */ kstat_named_t metadata_cache_count; kstat_named_t metadata_cache_size_bytes; kstat_named_t metadata_cache_size_bytes_max; /* * For diagnostic purposes, this is incremented whenever we can't add * something to the metadata cache because it's full, and instead put * the data in the regular dbuf cache. */ kstat_named_t metadata_cache_overflow; } dbuf_stats_t; dbuf_stats_t dbuf_stats = { { "cache_count", KSTAT_DATA_UINT64 }, { "cache_size_bytes", KSTAT_DATA_UINT64 }, { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, { "cache_target_bytes", KSTAT_DATA_UINT64 }, { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, { "cache_total_evicts", KSTAT_DATA_UINT64 }, { { "cache_levels_N", KSTAT_DATA_UINT64 } }, { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, { "hash_hits", KSTAT_DATA_UINT64 }, { "hash_misses", KSTAT_DATA_UINT64 }, { "hash_collisions", KSTAT_DATA_UINT64 }, { "hash_elements", KSTAT_DATA_UINT64 }, { "hash_elements_max", KSTAT_DATA_UINT64 }, { "hash_chains", KSTAT_DATA_UINT64 }, { "hash_chain_max", KSTAT_DATA_UINT64 }, { "hash_insert_race", KSTAT_DATA_UINT64 }, { "hash_table_count", KSTAT_DATA_UINT64 }, { "hash_mutex_count", KSTAT_DATA_UINT64 }, { "metadata_cache_count", KSTAT_DATA_UINT64 }, { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, { "metadata_cache_overflow", KSTAT_DATA_UINT64 } }; struct { wmsum_t cache_count; wmsum_t cache_total_evicts; wmsum_t cache_levels[DN_MAX_LEVELS]; wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; wmsum_t hash_hits; wmsum_t hash_misses; wmsum_t hash_collisions; wmsum_t hash_chains; wmsum_t hash_insert_race; wmsum_t metadata_cache_count; wmsum_t metadata_cache_overflow; } dbuf_sums; #define DBUF_STAT_INCR(stat, val) \ wmsum_add(&dbuf_sums.stat, val); #define DBUF_STAT_DECR(stat, val) \ DBUF_STAT_INCR(stat, -(val)); #define DBUF_STAT_BUMP(stat) \ DBUF_STAT_INCR(stat, 1); #define DBUF_STAT_BUMPDOWN(stat) \ DBUF_STAT_INCR(stat, -1); #define DBUF_STAT_MAX(stat, v) { \ uint64_t _m; \ while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ continue; \ } static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags); /* * Global data structures and functions for the dbuf cache. */ static kmem_cache_t *dbuf_kmem_cache; static taskq_t *dbu_evict_taskq; static kthread_t *dbuf_cache_evict_thread; static kmutex_t dbuf_evict_lock; static kcondvar_t dbuf_evict_cv; static boolean_t dbuf_evict_thread_exit; /* * There are two dbuf caches; each dbuf can only be in one of them at a time. * * 1. Cache of metadata dbufs, to help make read-heavy administrative commands * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs * that represent the metadata that describes filesystems/snapshots/ * bookmarks/properties/etc. We only evict from this cache when we export a * pool, to short-circuit as much I/O as possible for all administrative * commands that need the metadata. There is no eviction policy for this * cache, because we try to only include types in it which would occupy a * very small amount of space per object but create a large impact on the * performance of these commands. Instead, after it reaches a maximum size * (which should only happen on very small memory systems with a very large * number of filesystem objects), we stop taking new dbufs into the * metadata cache, instead putting them in the normal dbuf cache. * * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that * are not currently held but have been recently released. These dbufs * are not eligible for arc eviction until they are aged out of the cache. * Dbufs that are aged out of the cache will be immediately destroyed and * become eligible for arc eviction. * * Dbufs are added to these caches once the last hold is released. If a dbuf is * later accessed and still exists in the dbuf cache, then it will be removed * from the cache and later re-added to the head of the cache. * * If a given dbuf meets the requirements for the metadata cache, it will go * there, otherwise it will be considered for the generic LRU dbuf cache. The * caches and the refcounts tracking their sizes are stored in an array indexed * by those caches' matching enum values (from dbuf_cached_state_t). */ typedef struct dbuf_cache { multilist_t cache; zfs_refcount_t size ____cacheline_aligned; } dbuf_cache_t; dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; /* Size limits for the caches */ static uint64_t dbuf_cache_max_bytes = UINT64_MAX; static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; /* Set the default sizes of the caches to log2 fraction of arc size */ static uint_t dbuf_cache_shift = 5; static uint_t dbuf_metadata_cache_shift = 6; /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ static uint_t dbuf_mutex_cache_shift = 0; static unsigned long dbuf_cache_target_bytes(void); static unsigned long dbuf_metadata_cache_target_bytes(void); /* * The LRU dbuf cache uses a three-stage eviction policy: * - A low water marker designates when the dbuf eviction thread * should stop evicting from the dbuf cache. * - When we reach the maximum size (aka mid water mark), we * signal the eviction thread to run. * - The high water mark indicates when the eviction thread * is unable to keep up with the incoming load and eviction must * happen in the context of the calling thread. * * The dbuf cache: * (max size) * low water mid water hi water * +----------------------------------------+----------+----------+ * | | | | * | | | | * | | | | * | | | | * +----------------------------------------+----------+----------+ * stop signal evict * evicting eviction directly * thread * * The high and low water marks indicate the operating range for the eviction * thread. The low water mark is, by default, 90% of the total size of the * cache and the high water mark is at 110% (both of these percentages can be * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, * respectively). The eviction thread will try to ensure that the cache remains * within this range by waking up every second and checking if the cache is * above the low water mark. The thread can also be woken up by callers adding * elements into the cache if the cache is larger than the mid water (i.e max * cache size). Once the eviction thread is woken up and eviction is required, * it will continue evicting buffers until it's able to reduce the cache size * to the low water mark. If the cache size continues to grow and hits the high * water mark, then callers adding elements to the cache will begin to evict * directly from the cache until the cache is no longer above the high water * mark. */ /* * The percentage above and below the maximum cache size. */ static uint_t dbuf_cache_hiwater_pct = 10; static uint_t dbuf_cache_lowater_pct = 10; static int dbuf_cons(void *vdb, void *unused, int kmflag) { (void) unused, (void) kmflag; dmu_buf_impl_t *db = vdb; memset(db, 0, sizeof (dmu_buf_impl_t)); mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL); cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); multilist_link_init(&db->db_cache_link); zfs_refcount_create(&db->db_holds); return (0); } static void dbuf_dest(void *vdb, void *unused) { (void) unused; dmu_buf_impl_t *db = vdb; mutex_destroy(&db->db_mtx); rw_destroy(&db->db_rwlock); cv_destroy(&db->db_changed); ASSERT(!multilist_link_active(&db->db_cache_link)); zfs_refcount_destroy(&db->db_holds); } /* * dbuf hash table routines */ static dbuf_hash_table_t dbuf_hash_table; /* * We use Cityhash for this. It's fast, and has good hash properties without * requiring any large static buffers. */ static uint64_t dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) { return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); } #define DTRACE_SET_STATE(db, why) \ DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ const char *, why) #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ ((dbuf)->db.db_object == (obj) && \ (dbuf)->db_objset == (os) && \ (dbuf)->db_level == (level) && \ (dbuf)->db_blkid == (blkid)) dmu_buf_impl_t * dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid, uint64_t *hash_out) { dbuf_hash_table_t *h = &dbuf_hash_table; uint64_t hv; uint64_t idx; dmu_buf_impl_t *db; hv = dbuf_hash(os, obj, level, blkid); idx = hv & h->hash_table_mask; mutex_enter(DBUF_HASH_MUTEX(h, idx)); for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { if (DBUF_EQUAL(db, os, obj, level, blkid)) { mutex_enter(&db->db_mtx); if (db->db_state != DB_EVICTING) { mutex_exit(DBUF_HASH_MUTEX(h, idx)); return (db); } mutex_exit(&db->db_mtx); } } mutex_exit(DBUF_HASH_MUTEX(h, idx)); if (hash_out != NULL) *hash_out = hv; return (NULL); } static dmu_buf_impl_t * dbuf_find_bonus(objset_t *os, uint64_t object) { dnode_t *dn; dmu_buf_impl_t *db = NULL; if (dnode_hold(os, object, FTAG, &dn) == 0) { rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_bonus != NULL) { db = dn->dn_bonus; mutex_enter(&db->db_mtx); } rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); } return (db); } /* * Insert an entry into the hash table. If there is already an element * equal to elem in the hash table, then the already existing element * will be returned and the new element will not be inserted. * Otherwise returns NULL. */ static dmu_buf_impl_t * dbuf_hash_insert(dmu_buf_impl_t *db) { dbuf_hash_table_t *h = &dbuf_hash_table; objset_t *os = db->db_objset; uint64_t obj = db->db.db_object; int level = db->db_level; uint64_t blkid, idx; dmu_buf_impl_t *dbf; uint32_t i; blkid = db->db_blkid; ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash); idx = db->db_hash & h->hash_table_mask; mutex_enter(DBUF_HASH_MUTEX(h, idx)); for (dbf = h->hash_table[idx], i = 0; dbf != NULL; dbf = dbf->db_hash_next, i++) { if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { mutex_enter(&dbf->db_mtx); if (dbf->db_state != DB_EVICTING) { mutex_exit(DBUF_HASH_MUTEX(h, idx)); return (dbf); } mutex_exit(&dbf->db_mtx); } } if (i > 0) { DBUF_STAT_BUMP(hash_collisions); if (i == 1) DBUF_STAT_BUMP(hash_chains); DBUF_STAT_MAX(hash_chain_max, i); } mutex_enter(&db->db_mtx); db->db_hash_next = h->hash_table[idx]; h->hash_table[idx] = db; mutex_exit(DBUF_HASH_MUTEX(h, idx)); uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64); DBUF_STAT_MAX(hash_elements_max, he); return (NULL); } /* * This returns whether this dbuf should be stored in the metadata cache, which * is based on whether it's from one of the dnode types that store data related * to traversing dataset hierarchies. */ static boolean_t dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) { DB_DNODE_ENTER(db); dmu_object_type_t type = DB_DNODE(db)->dn_type; DB_DNODE_EXIT(db); /* Check if this dbuf is one of the types we care about */ if (DMU_OT_IS_METADATA_CACHED(type)) { /* If we hit this, then we set something up wrong in dmu_ot */ ASSERT(DMU_OT_IS_METADATA(type)); /* * Sanity check for small-memory systems: don't allocate too * much memory for this purpose. */ if (zfs_refcount_count( &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > dbuf_metadata_cache_target_bytes()) { DBUF_STAT_BUMP(metadata_cache_overflow); return (B_FALSE); } return (B_TRUE); } return (B_FALSE); } /* * Remove an entry from the hash table. It must be in the EVICTING state. */ static void dbuf_hash_remove(dmu_buf_impl_t *db) { dbuf_hash_table_t *h = &dbuf_hash_table; uint64_t idx; dmu_buf_impl_t *dbf, **dbp; ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level, db->db_blkid), ==, db->db_hash); idx = db->db_hash & h->hash_table_mask; /* * We mustn't hold db_mtx to maintain lock ordering: * DBUF_HASH_MUTEX > db_mtx. */ ASSERT(zfs_refcount_is_zero(&db->db_holds)); ASSERT(db->db_state == DB_EVICTING); ASSERT(!MUTEX_HELD(&db->db_mtx)); mutex_enter(DBUF_HASH_MUTEX(h, idx)); dbp = &h->hash_table[idx]; while ((dbf = *dbp) != db) { dbp = &dbf->db_hash_next; ASSERT(dbf != NULL); } *dbp = db->db_hash_next; db->db_hash_next = NULL; if (h->hash_table[idx] && h->hash_table[idx]->db_hash_next == NULL) DBUF_STAT_BUMPDOWN(hash_chains); mutex_exit(DBUF_HASH_MUTEX(h, idx)); atomic_dec_64(&dbuf_stats.hash_elements.value.ui64); } typedef enum { DBVU_EVICTING, DBVU_NOT_EVICTING } dbvu_verify_type_t; static void dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) { #ifdef ZFS_DEBUG int64_t holds; if (db->db_user == NULL) return; /* Only data blocks support the attachment of user data. */ ASSERT(db->db_level == 0); /* Clients must resolve a dbuf before attaching user data. */ ASSERT(db->db.db_data != NULL); ASSERT3U(db->db_state, ==, DB_CACHED); holds = zfs_refcount_count(&db->db_holds); if (verify_type == DBVU_EVICTING) { /* * Immediate eviction occurs when holds == dirtycnt. * For normal eviction buffers, holds is zero on * eviction, except when dbuf_fix_old_data() calls * dbuf_clear_data(). However, the hold count can grow * during eviction even though db_mtx is held (see * dmu_bonus_hold() for an example), so we can only * test the generic invariant that holds >= dirtycnt. */ ASSERT3U(holds, >=, db->db_dirtycnt); } else { if (db->db_user_immediate_evict == TRUE) ASSERT3U(holds, >=, db->db_dirtycnt); else ASSERT3U(holds, >, 0); } #endif } static void dbuf_evict_user(dmu_buf_impl_t *db) { dmu_buf_user_t *dbu = db->db_user; ASSERT(MUTEX_HELD(&db->db_mtx)); if (dbu == NULL) return; dbuf_verify_user(db, DBVU_EVICTING); db->db_user = NULL; #ifdef ZFS_DEBUG if (dbu->dbu_clear_on_evict_dbufp != NULL) *dbu->dbu_clear_on_evict_dbufp = NULL; #endif /* * There are two eviction callbacks - one that we call synchronously * and one that we invoke via a taskq. The async one is useful for * avoiding lock order reversals and limiting stack depth. * * Note that if we have a sync callback but no async callback, * it's likely that the sync callback will free the structure * containing the dbu. In that case we need to take care to not * dereference dbu after calling the sync evict func. */ boolean_t has_async = (dbu->dbu_evict_func_async != NULL); if (dbu->dbu_evict_func_sync != NULL) dbu->dbu_evict_func_sync(dbu); if (has_async) { taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, dbu, 0, &dbu->dbu_tqent); } } boolean_t dbuf_is_metadata(dmu_buf_impl_t *db) { /* * Consider indirect blocks and spill blocks to be meta data. */ if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { return (B_TRUE); } else { boolean_t is_metadata; DB_DNODE_ENTER(db); is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); DB_DNODE_EXIT(db); return (is_metadata); } } /* * We want to exclude buffers that are on a special allocation class from * L2ARC. */ boolean_t dbuf_is_l2cacheable(dmu_buf_impl_t *db) { if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL || (db->db_objset->os_secondary_cache == ZFS_CACHE_METADATA && dbuf_is_metadata(db))) { if (l2arc_exclude_special == 0) return (B_TRUE); blkptr_t *bp = db->db_blkptr; if (bp == NULL || BP_IS_HOLE(bp)) return (B_FALSE); uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; vdev_t *vd = NULL; if (vdev < rvd->vdev_children) vd = rvd->vdev_child[vdev]; if (vd == NULL) return (B_TRUE); if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) return (B_TRUE); } return (B_FALSE); } static inline boolean_t dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) { if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL || (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA && (level > 0 || DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) { if (l2arc_exclude_special == 0) return (B_TRUE); if (bp == NULL || BP_IS_HOLE(bp)) return (B_FALSE); uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; vdev_t *vd = NULL; if (vdev < rvd->vdev_children) vd = rvd->vdev_child[vdev]; if (vd == NULL) return (B_TRUE); if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) return (B_TRUE); } return (B_FALSE); } /* * This function *must* return indices evenly distributed between all * sublists of the multilist. This is needed due to how the dbuf eviction * code is laid out; dbuf_evict_thread() assumes dbufs are evenly * distributed between all sublists and uses this assumption when * deciding which sublist to evict from and how much to evict from it. */ static unsigned int dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) { dmu_buf_impl_t *db = obj; /* * The assumption here, is the hash value for a given * dmu_buf_impl_t will remain constant throughout it's lifetime * (i.e. it's objset, object, level and blkid fields don't change). * Thus, we don't need to store the dbuf's sublist index * on insertion, as this index can be recalculated on removal. * * Also, the low order bits of the hash value are thought to be * distributed evenly. Otherwise, in the case that the multilist * has a power of two number of sublists, each sublists' usage * would not be evenly distributed. In this context full 64bit * division would be a waste of time, so limit it to 32 bits. */ return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, db->db_level, db->db_blkid) % multilist_get_num_sublists(ml)); } /* * The target size of the dbuf cache can grow with the ARC target, * unless limited by the tunable dbuf_cache_max_bytes. */ static inline unsigned long dbuf_cache_target_bytes(void) { return (MIN(dbuf_cache_max_bytes, arc_target_bytes() >> dbuf_cache_shift)); } /* * The target size of the dbuf metadata cache can grow with the ARC target, * unless limited by the tunable dbuf_metadata_cache_max_bytes. */ static inline unsigned long dbuf_metadata_cache_target_bytes(void) { return (MIN(dbuf_metadata_cache_max_bytes, arc_target_bytes() >> dbuf_metadata_cache_shift)); } static inline uint64_t dbuf_cache_hiwater_bytes(void) { uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); return (dbuf_cache_target + (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); } static inline uint64_t dbuf_cache_lowater_bytes(void) { uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); return (dbuf_cache_target - (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); } static inline boolean_t dbuf_cache_above_lowater(void) { return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > dbuf_cache_lowater_bytes()); } /* * Evict the oldest eligible dbuf from the dbuf cache. */ static void dbuf_evict_one(void) { int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); multilist_sublist_t *mls = multilist_sublist_lock( &dbuf_caches[DB_DBUF_CACHE].cache, idx); ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); dmu_buf_impl_t *db = multilist_sublist_tail(mls); while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { db = multilist_sublist_prev(mls, db); } DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, multilist_sublist_t *, mls); if (db != NULL) { multilist_sublist_remove(mls, db); multilist_sublist_unlock(mls); (void) zfs_refcount_remove_many( &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db); DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); DBUF_STAT_BUMPDOWN(cache_count); DBUF_STAT_DECR(cache_levels_bytes[db->db_level], db->db.db_size); ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); db->db_caching_status = DB_NO_CACHE; dbuf_destroy(db); DBUF_STAT_BUMP(cache_total_evicts); } else { multilist_sublist_unlock(mls); } } /* * The dbuf evict thread is responsible for aging out dbufs from the * cache. Once the cache has reached it's maximum size, dbufs are removed * and destroyed. The eviction thread will continue running until the size * of the dbuf cache is at or below the maximum size. Once the dbuf is aged * out of the cache it is destroyed and becomes eligible for arc eviction. */ static __attribute__((noreturn)) void dbuf_evict_thread(void *unused) { (void) unused; callb_cpr_t cpr; CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); mutex_enter(&dbuf_evict_lock); while (!dbuf_evict_thread_exit) { while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { CALLB_CPR_SAFE_BEGIN(&cpr); (void) cv_timedwait_idle_hires(&dbuf_evict_cv, &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); } mutex_exit(&dbuf_evict_lock); /* * Keep evicting as long as we're above the low water mark * for the cache. We do this without holding the locks to * minimize lock contention. */ while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { dbuf_evict_one(); } mutex_enter(&dbuf_evict_lock); } dbuf_evict_thread_exit = B_FALSE; cv_broadcast(&dbuf_evict_cv); CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ thread_exit(); } /* * Wake up the dbuf eviction thread if the dbuf cache is at its max size. * If the dbuf cache is at its high water mark, then evict a dbuf from the * dbuf cache using the caller's context. */ static void dbuf_evict_notify(uint64_t size) { /* * We check if we should evict without holding the dbuf_evict_lock, * because it's OK to occasionally make the wrong decision here, * and grabbing the lock results in massive lock contention. */ if (size > dbuf_cache_target_bytes()) { if (size > dbuf_cache_hiwater_bytes()) dbuf_evict_one(); cv_signal(&dbuf_evict_cv); } } static int dbuf_kstat_update(kstat_t *ksp, int rw) { dbuf_stats_t *ds = ksp->ks_data; dbuf_hash_table_t *h = &dbuf_hash_table; if (rw == KSTAT_WRITE) return (SET_ERROR(EACCES)); ds->cache_count.value.ui64 = wmsum_value(&dbuf_sums.cache_count); ds->cache_size_bytes.value.ui64 = zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); ds->cache_total_evicts.value.ui64 = wmsum_value(&dbuf_sums.cache_total_evicts); for (int i = 0; i < DN_MAX_LEVELS; i++) { ds->cache_levels[i].value.ui64 = wmsum_value(&dbuf_sums.cache_levels[i]); ds->cache_levels_bytes[i].value.ui64 = wmsum_value(&dbuf_sums.cache_levels_bytes[i]); } ds->hash_hits.value.ui64 = wmsum_value(&dbuf_sums.hash_hits); ds->hash_misses.value.ui64 = wmsum_value(&dbuf_sums.hash_misses); ds->hash_collisions.value.ui64 = wmsum_value(&dbuf_sums.hash_collisions); ds->hash_chains.value.ui64 = wmsum_value(&dbuf_sums.hash_chains); ds->hash_insert_race.value.ui64 = wmsum_value(&dbuf_sums.hash_insert_race); ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; ds->metadata_cache_count.value.ui64 = wmsum_value(&dbuf_sums.metadata_cache_count); ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( &dbuf_caches[DB_DBUF_METADATA_CACHE].size); ds->metadata_cache_overflow.value.ui64 = wmsum_value(&dbuf_sums.metadata_cache_overflow); return (0); } void dbuf_init(void) { uint64_t hmsize, hsize = 1ULL << 16; dbuf_hash_table_t *h = &dbuf_hash_table; /* * The hash table is big enough to fill one eighth of physical memory * with an average block size of zfs_arc_average_blocksize (default 8K). * By default, the table will take up * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). */ while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) hsize <<= 1; h->hash_table = NULL; while (h->hash_table == NULL) { h->hash_table_mask = hsize - 1; h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); if (h->hash_table == NULL) hsize >>= 1; ASSERT3U(hsize, >=, 1ULL << 10); } /* * The hash table buckets are protected by an array of mutexes where * each mutex is reponsible for protecting 128 buckets. A minimum * array size of 8192 is targeted to avoid contention. */ if (dbuf_mutex_cache_shift == 0) hmsize = MAX(hsize >> 7, 1ULL << 13); else hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); h->hash_mutexes = NULL; while (h->hash_mutexes == NULL) { h->hash_mutex_mask = hmsize - 1; h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), KM_SLEEP); if (h->hash_mutexes == NULL) hmsize >>= 1; } dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", sizeof (dmu_buf_impl_t), 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); for (int i = 0; i < hmsize; i++) mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); dbuf_stats_init(h); /* * All entries are queued via taskq_dispatch_ent(), so min/maxalloc * configuration is not required. */ dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { multilist_create(&dbuf_caches[dcs].cache, sizeof (dmu_buf_impl_t), offsetof(dmu_buf_impl_t, db_cache_link), dbuf_cache_multilist_index_func); zfs_refcount_create(&dbuf_caches[dcs].size); } dbuf_evict_thread_exit = B_FALSE; mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, NULL, 0, &p0, TS_RUN, minclsyspri); wmsum_init(&dbuf_sums.cache_count, 0); wmsum_init(&dbuf_sums.cache_total_evicts, 0); for (int i = 0; i < DN_MAX_LEVELS; i++) { wmsum_init(&dbuf_sums.cache_levels[i], 0); wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); } wmsum_init(&dbuf_sums.hash_hits, 0); wmsum_init(&dbuf_sums.hash_misses, 0); wmsum_init(&dbuf_sums.hash_collisions, 0); wmsum_init(&dbuf_sums.hash_chains, 0); wmsum_init(&dbuf_sums.hash_insert_race, 0); wmsum_init(&dbuf_sums.metadata_cache_count, 0); wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (dbuf_ksp != NULL) { for (int i = 0; i < DN_MAX_LEVELS; i++) { snprintf(dbuf_stats.cache_levels[i].name, KSTAT_STRLEN, "cache_level_%d", i); dbuf_stats.cache_levels[i].data_type = KSTAT_DATA_UINT64; snprintf(dbuf_stats.cache_levels_bytes[i].name, KSTAT_STRLEN, "cache_level_%d_bytes", i); dbuf_stats.cache_levels_bytes[i].data_type = KSTAT_DATA_UINT64; } dbuf_ksp->ks_data = &dbuf_stats; dbuf_ksp->ks_update = dbuf_kstat_update; kstat_install(dbuf_ksp); } } void dbuf_fini(void) { dbuf_hash_table_t *h = &dbuf_hash_table; dbuf_stats_destroy(); for (int i = 0; i < (h->hash_mutex_mask + 1); i++) mutex_destroy(&h->hash_mutexes[i]); vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * sizeof (kmutex_t)); kmem_cache_destroy(dbuf_kmem_cache); taskq_destroy(dbu_evict_taskq); mutex_enter(&dbuf_evict_lock); dbuf_evict_thread_exit = B_TRUE; while (dbuf_evict_thread_exit) { cv_signal(&dbuf_evict_cv); cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); } mutex_exit(&dbuf_evict_lock); mutex_destroy(&dbuf_evict_lock); cv_destroy(&dbuf_evict_cv); for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { zfs_refcount_destroy(&dbuf_caches[dcs].size); multilist_destroy(&dbuf_caches[dcs].cache); } if (dbuf_ksp != NULL) { kstat_delete(dbuf_ksp); dbuf_ksp = NULL; } wmsum_fini(&dbuf_sums.cache_count); wmsum_fini(&dbuf_sums.cache_total_evicts); for (int i = 0; i < DN_MAX_LEVELS; i++) { wmsum_fini(&dbuf_sums.cache_levels[i]); wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); } wmsum_fini(&dbuf_sums.hash_hits); wmsum_fini(&dbuf_sums.hash_misses); wmsum_fini(&dbuf_sums.hash_collisions); wmsum_fini(&dbuf_sums.hash_chains); wmsum_fini(&dbuf_sums.hash_insert_race); wmsum_fini(&dbuf_sums.metadata_cache_count); wmsum_fini(&dbuf_sums.metadata_cache_overflow); } /* * Other stuff. */ #ifdef ZFS_DEBUG static void dbuf_verify(dmu_buf_impl_t *db) { dnode_t *dn; dbuf_dirty_record_t *dr; uint32_t txg_prev; ASSERT(MUTEX_HELD(&db->db_mtx)); if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) return; ASSERT(db->db_objset != NULL); DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (dn == NULL) { ASSERT(db->db_parent == NULL); ASSERT(db->db_blkptr == NULL); } else { ASSERT3U(db->db.db_object, ==, dn->dn_object); ASSERT3P(db->db_objset, ==, dn->dn_objset); ASSERT3U(db->db_level, <, dn->dn_nlevels); ASSERT(db->db_blkid == DMU_BONUS_BLKID || db->db_blkid == DMU_SPILL_BLKID || !avl_is_empty(&dn->dn_dbufs)); } if (db->db_blkid == DMU_BONUS_BLKID) { ASSERT(dn != NULL); ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); } else if (db->db_blkid == DMU_SPILL_BLKID) { ASSERT(dn != NULL); ASSERT0(db->db.db_offset); } else { ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); } if ((dr = list_head(&db->db_dirty_records)) != NULL) { ASSERT(dr->dr_dbuf == db); txg_prev = dr->dr_txg; for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; dr = list_next(&db->db_dirty_records, dr)) { ASSERT(dr->dr_dbuf == db); ASSERT(txg_prev > dr->dr_txg); txg_prev = dr->dr_txg; } } /* * We can't assert that db_size matches dn_datablksz because it * can be momentarily different when another thread is doing * dnode_set_blksz(). */ if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { dr = db->db_data_pending; /* * It should only be modified in syncing context, so * make sure we only have one copy of the data. */ ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); } /* verify db->db_blkptr */ if (db->db_blkptr) { if (db->db_parent == dn->dn_dbuf) { /* db is pointed to by the dnode */ /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) ASSERT(db->db_parent == NULL); else ASSERT(db->db_parent != NULL); if (db->db_blkid != DMU_SPILL_BLKID) ASSERT3P(db->db_blkptr, ==, &dn->dn_phys->dn_blkptr[db->db_blkid]); } else { /* db is pointed to by an indirect block */ int epb __maybe_unused = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); ASSERT3U(db->db_parent->db.db_object, ==, db->db.db_object); /* * dnode_grow_indblksz() can make this fail if we don't * have the parent's rwlock. XXX indblksz no longer * grows. safe to do this now? */ if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { ASSERT3P(db->db_blkptr, ==, ((blkptr_t *)db->db_parent->db.db_data + db->db_blkid % epb)); } } } if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && (db->db_buf == NULL || db->db_buf->b_data) && db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) { /* * If the blkptr isn't set but they have nonzero data, * it had better be dirty, otherwise we'll lose that * data when we evict this buffer. * * There is an exception to this rule for indirect blocks; in * this case, if the indirect block is a hole, we fill in a few * fields on each of the child blocks (importantly, birth time) * to prevent hole birth times from being lost when you * partially fill in a hole. */ if (db->db_dirtycnt == 0) { if (db->db_level == 0) { uint64_t *buf = db->db.db_data; int i; for (i = 0; i < db->db.db_size >> 3; i++) { ASSERT(buf[i] == 0); } } else { blkptr_t *bps = db->db.db_data; ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, db->db.db_size); /* * We want to verify that all the blkptrs in the * indirect block are holes, but we may have * automatically set up a few fields for them. * We iterate through each blkptr and verify * they only have those fields set. */ for (int i = 0; i < db->db.db_size / sizeof (blkptr_t); i++) { blkptr_t *bp = &bps[i]; ASSERT(ZIO_CHECKSUM_IS_ZERO( &bp->blk_cksum)); ASSERT( DVA_IS_EMPTY(&bp->blk_dva[0]) && DVA_IS_EMPTY(&bp->blk_dva[1]) && DVA_IS_EMPTY(&bp->blk_dva[2])); ASSERT0(bp->blk_fill); ASSERT0(bp->blk_pad[0]); ASSERT0(bp->blk_pad[1]); ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT(BP_IS_HOLE(bp)); ASSERT0(bp->blk_phys_birth); } } } } DB_DNODE_EXIT(db); } #endif static void dbuf_clear_data(dmu_buf_impl_t *db) { ASSERT(MUTEX_HELD(&db->db_mtx)); dbuf_evict_user(db); ASSERT3P(db->db_buf, ==, NULL); db->db.db_data = NULL; if (db->db_state != DB_NOFILL) { db->db_state = DB_UNCACHED; DTRACE_SET_STATE(db, "clear data"); } } static void dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) { ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(buf != NULL); db->db_buf = buf; ASSERT(buf->b_data != NULL); db->db.db_data = buf->b_data; } static arc_buf_t * dbuf_alloc_arcbuf(dmu_buf_impl_t *db) { spa_t *spa = db->db_objset->os_spa; return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); } /* * Loan out an arc_buf for read. Return the loaned arc_buf. */ arc_buf_t * dbuf_loan_arcbuf(dmu_buf_impl_t *db) { arc_buf_t *abuf; ASSERT(db->db_blkid != DMU_BONUS_BLKID); mutex_enter(&db->db_mtx); if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { int blksz = db->db.db_size; spa_t *spa = db->db_objset->os_spa; mutex_exit(&db->db_mtx); abuf = arc_loan_buf(spa, B_FALSE, blksz); memcpy(abuf->b_data, db->db.db_data, blksz); } else { abuf = db->db_buf; arc_loan_inuse_buf(abuf, db); db->db_buf = NULL; dbuf_clear_data(db); mutex_exit(&db->db_mtx); } return (abuf); } /* * Calculate which level n block references the data at the level 0 offset * provided. */ uint64_t dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) { if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { /* * The level n blkid is equal to the level 0 blkid divided by * the number of level 0s in a level n block. * * The level 0 blkid is offset >> datablkshift = * offset / 2^datablkshift. * * The number of level 0s in a level n is the number of block * pointers in an indirect block, raised to the power of level. * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). * * Thus, the level n blkid is: offset / * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) * = offset / 2^(datablkshift + level * * (indblkshift - SPA_BLKPTRSHIFT)) * = offset >> (datablkshift + level * * (indblkshift - SPA_BLKPTRSHIFT)) */ const unsigned exp = dn->dn_datablkshift + level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); if (exp >= 8 * sizeof (offset)) { /* This only happens on the highest indirection level */ ASSERT3U(level, ==, dn->dn_nlevels - 1); return (0); } ASSERT3U(exp, <, 8 * sizeof (offset)); return (offset >> exp); } else { ASSERT3U(offset, <, dn->dn_datablksz); return (0); } } /* * This function is used to lock the parent of the provided dbuf. This should be * used when modifying or reading db_blkptr. */ db_lock_type_t dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) { enum db_lock_type ret = DLT_NONE; if (db->db_parent != NULL) { rw_enter(&db->db_parent->db_rwlock, rw); ret = DLT_PARENT; } else if (dmu_objset_ds(db->db_objset) != NULL) { rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, tag); ret = DLT_OBJSET; } /* * We only return a DLT_NONE lock when it's the top-most indirect block * of the meta-dnode of the MOS. */ return (ret); } /* * We need to pass the lock type in because it's possible that the block will * move from being the topmost indirect block in a dnode (and thus, have no * parent) to not the top-most via an indirection increase. This would cause a * panic if we didn't pass the lock type in. */ void dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) { if (type == DLT_PARENT) rw_exit(&db->db_parent->db_rwlock); else if (type == DLT_OBJSET) rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); } static void dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, arc_buf_t *buf, void *vdb) { (void) zb, (void) bp; dmu_buf_impl_t *db = vdb; mutex_enter(&db->db_mtx); ASSERT3U(db->db_state, ==, DB_READ); /* * All reads are synchronous, so we must have a hold on the dbuf */ ASSERT(zfs_refcount_count(&db->db_holds) > 0); ASSERT(db->db_buf == NULL); ASSERT(db->db.db_data == NULL); if (buf == NULL) { /* i/o error */ ASSERT(zio == NULL || zio->io_error != 0); ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT3P(db->db_buf, ==, NULL); db->db_state = DB_UNCACHED; DTRACE_SET_STATE(db, "i/o error"); } else if (db->db_level == 0 && db->db_freed_in_flight) { /* freed in flight */ ASSERT(zio == NULL || zio->io_error == 0); arc_release(buf, db); memset(buf->b_data, 0, db->db.db_size); arc_buf_freeze(buf); db->db_freed_in_flight = FALSE; dbuf_set_data(db, buf); db->db_state = DB_CACHED; DTRACE_SET_STATE(db, "freed in flight"); } else { /* success */ ASSERT(zio == NULL || zio->io_error == 0); dbuf_set_data(db, buf); db->db_state = DB_CACHED; DTRACE_SET_STATE(db, "successful read"); } cv_broadcast(&db->db_changed); dbuf_rele_and_unlock(db, NULL, B_FALSE); } /* * Shortcut for performing reads on bonus dbufs. Returns * an error if we fail to verify the dnode associated with * a decrypted block. Otherwise success. */ static int dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) { int bonuslen, max_bonuslen, err; err = dbuf_read_verify_dnode_crypt(db, flags); if (err) return (err); bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(DB_DNODE_HELD(db)); ASSERT3U(bonuslen, <=, db->db.db_size); db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); if (bonuslen < max_bonuslen) memset(db->db.db_data, 0, max_bonuslen); if (bonuslen) memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen); db->db_state = DB_CACHED; DTRACE_SET_STATE(db, "bonus buffer filled"); return (0); } static void dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp) { blkptr_t *bps = db->db.db_data; uint32_t indbs = 1ULL << dn->dn_indblkshift; int n_bps = indbs >> SPA_BLKPTRSHIFT; for (int i = 0; i < n_bps; i++) { blkptr_t *bp = &bps[i]; ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs); BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ? dn->dn_datablksz : BP_GET_LSIZE(dbbp)); BP_SET_TYPE(bp, BP_GET_TYPE(dbbp)); BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1); BP_SET_BIRTH(bp, dbbp->blk_birth, 0); } } /* * Handle reads on dbufs that are holes, if necessary. This function * requires that the dbuf's mutex is held. Returns success (0) if action * was taken, ENOENT if no action was taken. */ static int dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp) { ASSERT(MUTEX_HELD(&db->db_mtx)); int is_hole = bp == NULL || BP_IS_HOLE(bp); /* * For level 0 blocks only, if the above check fails: * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() * processes the delete record and clears the bp while we are waiting * for the dn_mtx (resulting in a "no" from block_freed). */ if (!is_hole && db->db_level == 0) is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp); if (is_hole) { dbuf_set_data(db, dbuf_alloc_arcbuf(db)); memset(db->db.db_data, 0, db->db.db_size); if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) && bp->blk_birth != 0) { dbuf_handle_indirect_hole(db, dn, bp); } db->db_state = DB_CACHED; DTRACE_SET_STATE(db, "hole read satisfied"); return (0); } return (ENOENT); } /* * This function ensures that, when doing a decrypting read of a block, * we make sure we have decrypted the dnode associated with it. We must do * this so that we ensure we are fully authenticating the checksum-of-MACs * tree from the root of the objset down to this block. Indirect blocks are * always verified against their secure checksum-of-MACs assuming that the * dnode containing them is correct. Now that we are doing a decrypting read, * we can be sure that the key is loaded and verify that assumption. This is * especially important considering that we always read encrypted dnode * blocks as raw data (without verifying their MACs) to start, and * decrypt / authenticate them when we need to read an encrypted bonus buffer. */ static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags) { int err = 0; objset_t *os = db->db_objset; arc_buf_t *dnode_abuf; dnode_t *dn; zbookmark_phys_t zb; ASSERT(MUTEX_HELD(&db->db_mtx)); if ((flags & DB_RF_NO_DECRYPT) != 0 || !os->os_encrypted || os->os_raw_receive) return (0); DB_DNODE_ENTER(db); dn = DB_DNODE(db); dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL; if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) { DB_DNODE_EXIT(db); return (0); } SET_BOOKMARK(&zb, dmu_objset_id(os), DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid); err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE); /* * An error code of EACCES tells us that the key is still not * available. This is ok if we are only reading authenticated * (and therefore non-encrypted) blocks. */ if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || (db->db_blkid == DMU_BONUS_BLKID && !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) err = 0; DB_DNODE_EXIT(db); return (err); } /* * Drops db_mtx and the parent lock specified by dblt and tag before * returning. */ static int dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, uint32_t flags, db_lock_type_t dblt, const void *tag) { zbookmark_phys_t zb; uint32_t aflags = ARC_FLAG_NOWAIT; int err, zio_flags; blkptr_t bp, *bpp = NULL; ASSERT(!zfs_refcount_is_zero(&db->db_holds)); ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); ASSERT(db->db_buf == NULL); ASSERT(db->db_parent == NULL || RW_LOCK_HELD(&db->db_parent->db_rwlock)); if (db->db_blkid == DMU_BONUS_BLKID) { err = dbuf_read_bonus(db, dn, flags); goto early_unlock; } /* * If we have a pending block clone, we don't want to read the * underlying block, but the content of the block being cloned, * pointed by the dirty record, so we have the most recent data. * If there is no dirty record, then we hit a race in a sync * process when the dirty record is already removed, while the * dbuf is not yet destroyed. Such case is equivalent to uncached. */ if (db->db_state == DB_NOFILL) { dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); if (dr != NULL) { if (!dr->dt.dl.dr_brtwrite) { err = EIO; goto early_unlock; } bp = dr->dt.dl.dr_overridden_by; bpp = &bp; } } if (bpp == NULL && db->db_blkptr != NULL) { bp = *db->db_blkptr; bpp = &bp; } err = dbuf_read_hole(db, dn, bpp); if (err == 0) goto early_unlock; ASSERT(bpp != NULL); /* * Any attempt to read a redacted block should result in an error. This * will never happen under normal conditions, but can be useful for * debugging purposes. */ if (BP_IS_REDACTED(bpp)) { ASSERT(dsl_dataset_feature_is_active( db->db_objset->os_dsl_dataset, SPA_FEATURE_REDACTED_DATASETS)); err = SET_ERROR(EIO); goto early_unlock; } SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), db->db.db_object, db->db_level, db->db_blkid); /* * All bps of an encrypted os should have the encryption bit set. * If this is not true it indicates tampering and we report an error. */ if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bpp)) { spa_log_error(db->db_objset->os_spa, &zb, &bpp->blk_birth); err = SET_ERROR(EIO); goto early_unlock; } err = dbuf_read_verify_dnode_crypt(db, flags); if (err != 0) goto early_unlock; db->db_state = DB_READ; DTRACE_SET_STATE(db, "read issued"); mutex_exit(&db->db_mtx); if (!DBUF_IS_CACHEABLE(db)) aflags |= ARC_FLAG_UNCACHED; else if (dbuf_is_l2cacheable(db)) aflags |= ARC_FLAG_L2CACHE; dbuf_add_ref(db, NULL); zio_flags = (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) zio_flags |= ZIO_FLAG_RAW; /* * The zio layer will copy the provided blkptr later, but we have our * own copy so that we can release the parent's rwlock. We have to * do that so that if dbuf_read_done is called synchronously (on * an l1 cache hit) we don't acquire the db_mtx while holding the * parent's rwlock, which would be a lock ordering violation. */ dmu_buf_unlock_parent(db, dblt, tag); return (arc_read(zio, db->db_objset->os_spa, bpp, dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb)); early_unlock: mutex_exit(&db->db_mtx); dmu_buf_unlock_parent(db, dblt, tag); return (err); } /* * This is our just-in-time copy function. It makes a copy of buffers that * have been modified in a previous transaction group before we access them in * the current active group. * * This function is used in three places: when we are dirtying a buffer for the * first time in a txg, when we are freeing a range in a dnode that includes * this buffer, and when we are accessing a buffer which was received compressed * and later referenced in a WRITE_BYREF record. * * Note that when we are called from dbuf_free_range() we do not put a hold on * the buffer, we just traverse the active dbuf list for the dnode. */ static void dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) { dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(db->db.db_data != NULL); ASSERT(db->db_level == 0); ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); if (dr == NULL || (dr->dt.dl.dr_data != ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) return; /* * If the last dirty record for this dbuf has not yet synced * and its referencing the dbuf data, either: * reset the reference to point to a new copy, * or (if there a no active holders) * just null out the current db_data pointer. */ ASSERT3U(dr->dr_txg, >=, txg - 2); if (db->db_blkid == DMU_BONUS_BLKID) { dnode_t *dn = DB_DNODE(db); int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); arc_space_consume(bonuslen, ARC_SPACE_BONUS); memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { dnode_t *dn = DB_DNODE(db); int size = arc_buf_size(db->db_buf); arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); spa_t *spa = db->db_objset->os_spa; enum zio_compress compress_type = arc_get_compression(db->db_buf); uint8_t complevel = arc_get_complevel(db->db_buf); if (arc_is_encrypted(db->db_buf)) { boolean_t byteorder; uint8_t salt[ZIO_DATA_SALT_LEN]; uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t mac[ZIO_DATA_MAC_LEN]; arc_get_raw_params(db->db_buf, &byteorder, salt, iv, mac); dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), compress_type, complevel); } else if (compress_type != ZIO_COMPRESS_OFF) { ASSERT3U(type, ==, ARC_BUFC_DATA); dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, size, arc_buf_lsize(db->db_buf), compress_type, complevel); } else { dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); } memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); } else { db->db_buf = NULL; dbuf_clear_data(db); } } int dbuf_read(dmu_buf_impl_t *db, zio_t *pio, uint32_t flags) { int err = 0; boolean_t prefetch; dnode_t *dn; /* * We don't have to hold the mutex to check db_state because it * can't be freed while we have a hold on the buffer. */ ASSERT(!zfs_refcount_is_zero(&db->db_holds)); DB_DNODE_ENTER(db); dn = DB_DNODE(db); prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && (flags & DB_RF_NOPREFETCH) == 0; mutex_enter(&db->db_mtx); if (flags & DB_RF_PARTIAL_FIRST) db->db_partial_read = B_TRUE; else if (!(flags & DB_RF_PARTIAL_MORE)) db->db_partial_read = B_FALSE; if (db->db_state == DB_CACHED) { /* * Ensure that this block's dnode has been decrypted if * the caller has requested decrypted data. */ err = dbuf_read_verify_dnode_crypt(db, flags); /* * If the arc buf is compressed or encrypted and the caller * requested uncompressed data, we need to untransform it * before returning. We also call arc_untransform() on any * unauthenticated blocks, which will verify their MAC if * the key is now available. */ if (err == 0 && db->db_buf != NULL && (flags & DB_RF_NO_DECRYPT) == 0 && (arc_is_encrypted(db->db_buf) || arc_is_unauthenticated(db->db_buf) || arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { spa_t *spa = dn->dn_objset->os_spa; zbookmark_phys_t zb; SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), db->db.db_object, db->db_level, db->db_blkid); dbuf_fix_old_data(db, spa_syncing_txg(spa)); err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); dbuf_set_data(db, db->db_buf); } mutex_exit(&db->db_mtx); if (err == 0 && prefetch) { dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, B_FALSE, flags & DB_RF_HAVESTRUCT); } DB_DNODE_EXIT(db); DBUF_STAT_BUMP(hash_hits); } else if (db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL) { boolean_t need_wait = B_FALSE; db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); if (pio == NULL && (db->db_state == DB_NOFILL || (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)))) { spa_t *spa = dn->dn_objset->os_spa; pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); need_wait = B_TRUE; } err = dbuf_read_impl(db, dn, pio, flags, dblt, FTAG); /* * dbuf_read_impl has dropped db_mtx and our parent's rwlock * for us */ if (!err && prefetch) { dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, db->db_state != DB_CACHED, flags & DB_RF_HAVESTRUCT); } DB_DNODE_EXIT(db); DBUF_STAT_BUMP(hash_misses); /* * If we created a zio_root we must execute it to avoid * leaking it, even if it isn't attached to any work due * to an error in dbuf_read_impl(). */ if (need_wait) { if (err == 0) err = zio_wait(pio); else (void) zio_wait(pio); pio = NULL; } } else { /* * Another reader came in while the dbuf was in flight * between UNCACHED and CACHED. Either a writer will finish * writing the buffer (sending the dbuf to CACHED) or the * first reader's request will reach the read_done callback * and send the dbuf to CACHED. Otherwise, a failure * occurred and the dbuf went to UNCACHED. */ mutex_exit(&db->db_mtx); if (prefetch) { dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, B_TRUE, flags & DB_RF_HAVESTRUCT); } DB_DNODE_EXIT(db); DBUF_STAT_BUMP(hash_misses); /* Skip the wait per the caller's request. */ if ((flags & DB_RF_NEVERWAIT) == 0) { mutex_enter(&db->db_mtx); while (db->db_state == DB_READ || db->db_state == DB_FILL) { ASSERT(db->db_state == DB_READ || (flags & DB_RF_HAVESTRUCT) == 0); DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db, zio_t *, pio); cv_wait(&db->db_changed, &db->db_mtx); } if (db->db_state == DB_UNCACHED) err = SET_ERROR(EIO); mutex_exit(&db->db_mtx); } } if (pio && err != 0) { zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL, ZIO_FLAG_CANFAIL); zio->io_error = err; zio_nowait(zio); } return (err); } static void dbuf_noread(dmu_buf_impl_t *db) { ASSERT(!zfs_refcount_is_zero(&db->db_holds)); ASSERT(db->db_blkid != DMU_BONUS_BLKID); mutex_enter(&db->db_mtx); while (db->db_state == DB_READ || db->db_state == DB_FILL) cv_wait(&db->db_changed, &db->db_mtx); if (db->db_state == DB_UNCACHED) { ASSERT(db->db_buf == NULL); ASSERT(db->db.db_data == NULL); dbuf_set_data(db, dbuf_alloc_arcbuf(db)); db->db_state = DB_FILL; DTRACE_SET_STATE(db, "assigning filled buffer"); } else if (db->db_state == DB_NOFILL) { dbuf_clear_data(db); } else { ASSERT3U(db->db_state, ==, DB_CACHED); } mutex_exit(&db->db_mtx); } void dbuf_unoverride(dbuf_dirty_record_t *dr) { dmu_buf_impl_t *db = dr->dr_dbuf; blkptr_t *bp = &dr->dt.dl.dr_overridden_by; uint64_t txg = dr->dr_txg; ASSERT(MUTEX_HELD(&db->db_mtx)); /* * This assert is valid because dmu_sync() expects to be called by * a zilog's get_data while holding a range lock. This call only * comes from dbuf_dirty() callers who must also hold a range lock. */ ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); ASSERT(db->db_level == 0); if (db->db_blkid == DMU_BONUS_BLKID || dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) return; ASSERT(db->db_data_pending != dr); /* free this block */ if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) zio_free(db->db_objset->os_spa, txg, bp); if (dr->dt.dl.dr_brtwrite) { ASSERT0(dr->dt.dl.dr_data); dr->dt.dl.dr_data = db->db_buf; } dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; dr->dt.dl.dr_nopwrite = B_FALSE; dr->dt.dl.dr_brtwrite = B_FALSE; dr->dt.dl.dr_has_raw_params = B_FALSE; /* * Release the already-written buffer, so we leave it in * a consistent dirty state. Note that all callers are * modifying the buffer, so they will immediately do * another (redundant) arc_release(). Therefore, leave * the buf thawed to save the effort of freezing & * immediately re-thawing it. */ if (dr->dt.dl.dr_data) arc_release(dr->dt.dl.dr_data, db); } /* * Evict (if its unreferenced) or clear (if its referenced) any level-0 * data blocks in the free range, so that any future readers will find * empty blocks. */ void dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, dmu_tx_t *tx) { dmu_buf_impl_t *db_search; dmu_buf_impl_t *db, *db_next; uint64_t txg = tx->tx_txg; avl_index_t where; dbuf_dirty_record_t *dr; if (end_blkid > dn->dn_maxblkid && !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) end_blkid = dn->dn_maxblkid; dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, (u_longlong_t)end_blkid); db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); db_search->db_level = 0; db_search->db_blkid = start_blkid; db_search->db_state = DB_SEARCH; mutex_enter(&dn->dn_dbufs_mtx); db = avl_find(&dn->dn_dbufs, db_search, &where); ASSERT3P(db, ==, NULL); db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); for (; db != NULL; db = db_next) { db_next = AVL_NEXT(&dn->dn_dbufs, db); ASSERT(db->db_blkid != DMU_BONUS_BLKID); if (db->db_level != 0 || db->db_blkid > end_blkid) { break; } ASSERT3U(db->db_blkid, >=, start_blkid); /* found a level 0 buffer in the range */ mutex_enter(&db->db_mtx); if (dbuf_undirty(db, tx)) { /* mutex has been dropped and dbuf destroyed */ continue; } if (db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL || db->db_state == DB_EVICTING) { ASSERT(db->db.db_data == NULL); mutex_exit(&db->db_mtx); continue; } if (db->db_state == DB_READ || db->db_state == DB_FILL) { /* will be handled in dbuf_read_done or dbuf_rele */ db->db_freed_in_flight = TRUE; mutex_exit(&db->db_mtx); continue; } if (zfs_refcount_count(&db->db_holds) == 0) { ASSERT(db->db_buf); dbuf_destroy(db); continue; } /* The dbuf is referenced */ dr = list_head(&db->db_dirty_records); if (dr != NULL) { if (dr->dr_txg == txg) { /* * This buffer is "in-use", re-adjust the file * size to reflect that this buffer may * contain new data when we sync. */ if (db->db_blkid != DMU_SPILL_BLKID && db->db_blkid > dn->dn_maxblkid) dn->dn_maxblkid = db->db_blkid; dbuf_unoverride(dr); } else { /* * This dbuf is not dirty in the open context. * Either uncache it (if its not referenced in * the open context) or reset its contents to * empty. */ dbuf_fix_old_data(db, txg); } } /* clear the contents if its cached */ if (db->db_state == DB_CACHED) { ASSERT(db->db.db_data != NULL); arc_release(db->db_buf, db); rw_enter(&db->db_rwlock, RW_WRITER); memset(db->db.db_data, 0, db->db.db_size); rw_exit(&db->db_rwlock); arc_buf_freeze(db->db_buf); } mutex_exit(&db->db_mtx); } mutex_exit(&dn->dn_dbufs_mtx); kmem_free(db_search, sizeof (dmu_buf_impl_t)); } void dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) { arc_buf_t *buf, *old_buf; dbuf_dirty_record_t *dr; int osize = db->db.db_size; arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); dnode_t *dn; ASSERT(db->db_blkid != DMU_BONUS_BLKID); DB_DNODE_ENTER(db); dn = DB_DNODE(db); /* * XXX we should be doing a dbuf_read, checking the return * value and returning that up to our callers */ dmu_buf_will_dirty(&db->db, tx); /* create the data buffer for the new block */ buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); /* copy old block data to the new block */ old_buf = db->db_buf; memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); /* zero the remainder */ if (size > osize) memset((uint8_t *)buf->b_data + osize, 0, size - osize); mutex_enter(&db->db_mtx); dbuf_set_data(db, buf); arc_buf_destroy(old_buf, db); db->db.db_size = size; dr = list_head(&db->db_dirty_records); /* dirty record added by dmu_buf_will_dirty() */ VERIFY(dr != NULL); if (db->db_level == 0) dr->dt.dl.dr_data = buf; ASSERT3U(dr->dr_txg, ==, tx->tx_txg); ASSERT3U(dr->dr_accounted, ==, osize); dr->dr_accounted = size; mutex_exit(&db->db_mtx); dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); DB_DNODE_EXIT(db); } void dbuf_release_bp(dmu_buf_impl_t *db) { objset_t *os __maybe_unused = db->db_objset; ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); ASSERT(arc_released(os->os_phys_buf) || list_link_active(&os->os_dsl_dataset->ds_synced_link)); ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); (void) arc_release(db->db_buf, db); } /* * We already have a dirty record for this TXG, and we are being * dirtied again. */ static void dbuf_redirty(dbuf_dirty_record_t *dr) { dmu_buf_impl_t *db = dr->dr_dbuf; ASSERT(MUTEX_HELD(&db->db_mtx)); if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { /* * If this buffer has already been written out, * we now need to reset its state. */ dbuf_unoverride(dr); if (db->db.db_object != DMU_META_DNODE_OBJECT && db->db_state != DB_NOFILL) { /* Already released on initial dirty, so just thaw. */ ASSERT(arc_released(db->db_buf)); arc_buf_thaw(db->db_buf); } } } dbuf_dirty_record_t * dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) { rw_enter(&dn->dn_struct_rwlock, RW_READER); IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); ASSERT(dn->dn_maxblkid >= blkid); dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); list_link_init(&dr->dr_dirty_node); list_link_init(&dr->dr_dbuf_node); dr->dr_dnode = dn; dr->dr_txg = tx->tx_txg; dr->dt.dll.dr_blkid = blkid; dr->dr_accounted = dn->dn_datablksz; /* * There should not be any dbuf for the block that we're dirtying. * Otherwise the buffer contents could be inconsistent between the * dbuf and the lightweight dirty record. */ ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid, NULL)); mutex_enter(&dn->dn_mtx); int txgoff = tx->tx_txg & TXG_MASK; if (dn->dn_free_ranges[txgoff] != NULL) { range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); } if (dn->dn_nlevels == 1) { ASSERT3U(blkid, <, dn->dn_nblkptr); list_insert_tail(&dn->dn_dirty_records[txgoff], dr); mutex_exit(&dn->dn_mtx); rw_exit(&dn->dn_struct_rwlock); dnode_setdirty(dn, tx); } else { mutex_exit(&dn->dn_mtx); int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 1, blkid >> epbs, FTAG); rw_exit(&dn->dn_struct_rwlock); if (parent_db == NULL) { kmem_free(dr, sizeof (*dr)); return (NULL); } int err = dbuf_read(parent_db, NULL, (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); if (err != 0) { dbuf_rele(parent_db, FTAG); kmem_free(dr, sizeof (*dr)); return (NULL); } dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); dbuf_rele(parent_db, FTAG); mutex_enter(&parent_dr->dt.di.dr_mtx); ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); list_insert_tail(&parent_dr->dt.di.dr_children, dr); mutex_exit(&parent_dr->dt.di.dr_mtx); dr->dr_parent = parent_dr; } dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); return (dr); } dbuf_dirty_record_t * dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) { dnode_t *dn; objset_t *os; dbuf_dirty_record_t *dr, *dr_next, *dr_head; int txgoff = tx->tx_txg & TXG_MASK; boolean_t drop_struct_rwlock = B_FALSE; ASSERT(tx->tx_txg != 0); ASSERT(!zfs_refcount_is_zero(&db->db_holds)); DMU_TX_DIRTY_BUF(tx, db); DB_DNODE_ENTER(db); dn = DB_DNODE(db); /* * Shouldn't dirty a regular buffer in syncing context. Private * objects may be dirtied in syncing context, but only if they * were already pre-dirtied in open context. */ #ifdef ZFS_DEBUG if (dn->dn_objset->os_dsl_dataset != NULL) { rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); } ASSERT(!dmu_tx_is_syncing(tx) || BP_IS_HOLE(dn->dn_objset->os_rootbp) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_objset->os_dsl_dataset == NULL); if (dn->dn_objset->os_dsl_dataset != NULL) rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); #endif /* * We make this assert for private objects as well, but after we * check if we're already dirty. They are allowed to re-dirty * in syncing context. */ ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); mutex_enter(&db->db_mtx); /* * XXX make this true for indirects too? The problem is that * transactions created with dmu_tx_create_assigned() from * syncing context don't bother holding ahead. */ ASSERT(db->db_level != 0 || db->db_state == DB_CACHED || db->db_state == DB_FILL || db->db_state == DB_NOFILL); mutex_enter(&dn->dn_mtx); dnode_set_dirtyctx(dn, tx, db); if (tx->tx_txg > dn->dn_dirty_txg) dn->dn_dirty_txg = tx->tx_txg; mutex_exit(&dn->dn_mtx); if (db->db_blkid == DMU_SPILL_BLKID) dn->dn_have_spill = B_TRUE; /* * If this buffer is already dirty, we're done. */ dr_head = list_head(&db->db_dirty_records); ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || db->db.db_object == DMU_META_DNODE_OBJECT); dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); if (dr_next && dr_next->dr_txg == tx->tx_txg) { DB_DNODE_EXIT(db); dbuf_redirty(dr_next); mutex_exit(&db->db_mtx); return (dr_next); } /* * Only valid if not already dirty. */ ASSERT(dn->dn_object == 0 || dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); ASSERT3U(dn->dn_nlevels, >, db->db_level); /* * We should only be dirtying in syncing context if it's the * mos or we're initializing the os or it's a special object. * However, we are allowed to dirty in syncing context provided * we already dirtied it in open context. Hence we must make * this assertion only if we're not already dirty. */ os = dn->dn_objset; VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); #ifdef ZFS_DEBUG if (dn->dn_objset->os_dsl_dataset != NULL) rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); if (dn->dn_objset->os_dsl_dataset != NULL) rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); #endif ASSERT(db->db.db_size != 0); dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { dmu_objset_willuse_space(os, db->db.db_size, tx); } /* * If this buffer is dirty in an old transaction group we need * to make a copy of it so that the changes we make in this * transaction group won't leak out when we sync the older txg. */ dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); list_link_init(&dr->dr_dirty_node); list_link_init(&dr->dr_dbuf_node); dr->dr_dnode = dn; if (db->db_level == 0) { void *data_old = db->db_buf; if (db->db_state != DB_NOFILL) { if (db->db_blkid == DMU_BONUS_BLKID) { dbuf_fix_old_data(db, tx->tx_txg); data_old = db->db.db_data; } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { /* * Release the data buffer from the cache so * that we can modify it without impacting * possible other users of this cached data * block. Note that indirect blocks and * private objects are not released until the * syncing state (since they are only modified * then). */ arc_release(db->db_buf, db); dbuf_fix_old_data(db, tx->tx_txg); data_old = db->db_buf; } ASSERT(data_old != NULL); } dr->dt.dl.dr_data = data_old; } else { mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); list_create(&dr->dt.di.dr_children, sizeof (dbuf_dirty_record_t), offsetof(dbuf_dirty_record_t, dr_dirty_node)); } if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { dr->dr_accounted = db->db.db_size; } dr->dr_dbuf = db; dr->dr_txg = tx->tx_txg; list_insert_before(&db->db_dirty_records, dr_next, dr); /* * We could have been freed_in_flight between the dbuf_noread * and dbuf_dirty. We win, as though the dbuf_noread() had * happened after the free. */ if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && db->db_blkid != DMU_SPILL_BLKID) { mutex_enter(&dn->dn_mtx); if (dn->dn_free_ranges[txgoff] != NULL) { range_tree_clear(dn->dn_free_ranges[txgoff], db->db_blkid, 1); } mutex_exit(&dn->dn_mtx); db->db_freed_in_flight = FALSE; } /* * This buffer is now part of this txg */ dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); db->db_dirtycnt += 1; ASSERT3U(db->db_dirtycnt, <=, 3); mutex_exit(&db->db_mtx); if (db->db_blkid == DMU_BONUS_BLKID || db->db_blkid == DMU_SPILL_BLKID) { mutex_enter(&dn->dn_mtx); ASSERT(!list_link_active(&dr->dr_dirty_node)); list_insert_tail(&dn->dn_dirty_records[txgoff], dr); mutex_exit(&dn->dn_mtx); dnode_setdirty(dn, tx); DB_DNODE_EXIT(db); return (dr); } if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { rw_enter(&dn->dn_struct_rwlock, RW_READER); drop_struct_rwlock = B_TRUE; } /* * If we are overwriting a dedup BP, then unless it is snapshotted, * when we get to syncing context we will need to decrement its * refcount in the DDT. Prefetch the relevant DDT block so that * syncing context won't have to wait for the i/o. */ if (db->db_blkptr != NULL) { db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); ddt_prefetch(os->os_spa, db->db_blkptr); dmu_buf_unlock_parent(db, dblt, FTAG); } /* * We need to hold the dn_struct_rwlock to make this assertion, * because it protects dn_phys / dn_next_nlevels from changing. */ ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || dn->dn_phys->dn_nlevels > db->db_level || dn->dn_next_nlevels[txgoff] > db->db_level || dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); if (db->db_level == 0) { ASSERT(!db->db_objset->os_raw_receive || dn->dn_maxblkid >= db->db_blkid); dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_rwlock, B_FALSE); ASSERT(dn->dn_maxblkid >= db->db_blkid); } if (db->db_level+1 < dn->dn_nlevels) { dmu_buf_impl_t *parent = db->db_parent; dbuf_dirty_record_t *di; int parent_held = FALSE; if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; parent = dbuf_hold_level(dn, db->db_level + 1, db->db_blkid >> epbs, FTAG); ASSERT(parent != NULL); parent_held = TRUE; } if (drop_struct_rwlock) rw_exit(&dn->dn_struct_rwlock); ASSERT3U(db->db_level + 1, ==, parent->db_level); di = dbuf_dirty(parent, tx); if (parent_held) dbuf_rele(parent, FTAG); mutex_enter(&db->db_mtx); /* * Since we've dropped the mutex, it's possible that * dbuf_undirty() might have changed this out from under us. */ if (list_head(&db->db_dirty_records) == dr || dn->dn_object == DMU_META_DNODE_OBJECT) { mutex_enter(&di->dt.di.dr_mtx); ASSERT3U(di->dr_txg, ==, tx->tx_txg); ASSERT(!list_link_active(&dr->dr_dirty_node)); list_insert_tail(&di->dt.di.dr_children, dr); mutex_exit(&di->dt.di.dr_mtx); dr->dr_parent = di; } mutex_exit(&db->db_mtx); } else { ASSERT(db->db_level + 1 == dn->dn_nlevels); ASSERT(db->db_blkid < dn->dn_nblkptr); ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); mutex_enter(&dn->dn_mtx); ASSERT(!list_link_active(&dr->dr_dirty_node)); list_insert_tail(&dn->dn_dirty_records[txgoff], dr); mutex_exit(&dn->dn_mtx); if (drop_struct_rwlock) rw_exit(&dn->dn_struct_rwlock); } dnode_setdirty(dn, tx); DB_DNODE_EXIT(db); return (dr); } static void dbuf_undirty_bonus(dbuf_dirty_record_t *dr) { dmu_buf_impl_t *db = dr->dr_dbuf; if (dr->dt.dl.dr_data != db->db.db_data) { struct dnode *dn = dr->dr_dnode; int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); kmem_free(dr->dt.dl.dr_data, max_bonuslen); arc_space_return(max_bonuslen, ARC_SPACE_BONUS); } db->db_data_pending = NULL; ASSERT(list_next(&db->db_dirty_records, dr) == NULL); list_remove(&db->db_dirty_records, dr); if (dr->dr_dbuf->db_level != 0) { mutex_destroy(&dr->dt.di.dr_mtx); list_destroy(&dr->dt.di.dr_children); } kmem_free(dr, sizeof (dbuf_dirty_record_t)); ASSERT3U(db->db_dirtycnt, >, 0); db->db_dirtycnt -= 1; } /* * Undirty a buffer in the transaction group referenced by the given * transaction. Return whether this evicted the dbuf. */ boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) { uint64_t txg = tx->tx_txg; boolean_t brtwrite; ASSERT(txg != 0); /* * Due to our use of dn_nlevels below, this can only be called * in open context, unless we are operating on the MOS. * From syncing context, dn_nlevels may be different from the * dn_nlevels used when dbuf was dirtied. */ ASSERT(db->db_objset == dmu_objset_pool(db->db_objset)->dp_meta_objset || txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT0(db->db_level); ASSERT(MUTEX_HELD(&db->db_mtx)); /* * If this buffer is not dirty, we're done. */ dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); if (dr == NULL) return (B_FALSE); ASSERT(dr->dr_dbuf == db); brtwrite = dr->dt.dl.dr_brtwrite; if (brtwrite) { /* * We are freeing a block that we cloned in the same * transaction group. */ brt_pending_remove(dmu_objset_spa(db->db_objset), &dr->dt.dl.dr_overridden_by, tx); } dnode_t *dn = dr->dr_dnode; dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); ASSERT(db->db.db_size != 0); dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), dr->dr_accounted, txg); list_remove(&db->db_dirty_records, dr); /* * Note that there are three places in dbuf_dirty() * where this dirty record may be put on a list. * Make sure to do a list_remove corresponding to * every one of those list_insert calls. */ if (dr->dr_parent) { mutex_enter(&dr->dr_parent->dt.di.dr_mtx); list_remove(&dr->dr_parent->dt.di.dr_children, dr); mutex_exit(&dr->dr_parent->dt.di.dr_mtx); } else if (db->db_blkid == DMU_SPILL_BLKID || db->db_level + 1 == dn->dn_nlevels) { ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); mutex_enter(&dn->dn_mtx); list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); mutex_exit(&dn->dn_mtx); } if (db->db_state != DB_NOFILL && !brtwrite) { dbuf_unoverride(dr); ASSERT(db->db_buf != NULL); ASSERT(dr->dt.dl.dr_data != NULL); if (dr->dt.dl.dr_data != db->db_buf) arc_buf_destroy(dr->dt.dl.dr_data, db); } kmem_free(dr, sizeof (dbuf_dirty_record_t)); ASSERT(db->db_dirtycnt > 0); db->db_dirtycnt -= 1; if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { ASSERT(db->db_state == DB_NOFILL || brtwrite || arc_released(db->db_buf)); dbuf_destroy(db); return (B_TRUE); } return (B_FALSE); } static void dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; boolean_t undirty = B_FALSE; ASSERT(tx->tx_txg != 0); ASSERT(!zfs_refcount_is_zero(&db->db_holds)); /* * Quick check for dirtiness. For already dirty blocks, this * reduces runtime of this function by >90%, and overall performance * by 50% for some workloads (e.g. file deletion with indirect blocks * cached). */ mutex_enter(&db->db_mtx); if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) { dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); /* * It's possible that it is already dirty but not cached, * because there are some calls to dbuf_dirty() that don't * go through dmu_buf_will_dirty(). */ if (dr != NULL) { if (dr->dt.dl.dr_brtwrite) { /* * Block cloning: If we are dirtying a cloned * block, we cannot simply redirty it, because * this dr has no data associated with it. * We will go through a full undirtying below, * before dirtying it again. */ undirty = B_TRUE; } else { /* This dbuf is already dirty and cached. */ dbuf_redirty(dr); mutex_exit(&db->db_mtx); return; } } } mutex_exit(&db->db_mtx); DB_DNODE_ENTER(db); if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) flags |= DB_RF_HAVESTRUCT; DB_DNODE_EXIT(db); /* * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we * want to make sure dbuf_read() will read the pending cloned block and * not the uderlying block that is being replaced. dbuf_undirty() will * do dbuf_unoverride(), so we will end up with cloned block content, * without overridden BP. */ (void) dbuf_read(db, NULL, flags); if (undirty) { mutex_enter(&db->db_mtx); VERIFY(!dbuf_undirty(db, tx)); mutex_exit(&db->db_mtx); } (void) dbuf_dirty(db, tx); } void dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) { dmu_buf_will_dirty_impl(db_fake, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); } boolean_t dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dbuf_dirty_record_t *dr; mutex_enter(&db->db_mtx); dr = dbuf_find_dirty_eq(db, tx->tx_txg); mutex_exit(&db->db_mtx); return (dr != NULL); } void dmu_buf_will_clone(dmu_buf_t *db_fake, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; /* * Block cloning: We are going to clone into this block, so undirty * modifications done to this block so far in this txg. This includes * writes and clones into this block. */ mutex_enter(&db->db_mtx); DBUF_VERIFY(db); VERIFY(!dbuf_undirty(db, tx)); ASSERT3P(dbuf_find_dirty_eq(db, tx->tx_txg), ==, NULL); if (db->db_buf != NULL) { arc_buf_destroy(db->db_buf, db); db->db_buf = NULL; dbuf_clear_data(db); } db->db_state = DB_NOFILL; DTRACE_SET_STATE(db, "allocating NOFILL buffer for clone"); DBUF_VERIFY(db); mutex_exit(&db->db_mtx); dbuf_noread(db); (void) dbuf_dirty(db, tx); } void dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; mutex_enter(&db->db_mtx); db->db_state = DB_NOFILL; DTRACE_SET_STATE(db, "allocating NOFILL buffer"); mutex_exit(&db->db_mtx); dbuf_noread(db); (void) dbuf_dirty(db, tx); } void dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT(tx->tx_txg != 0); ASSERT(db->db_level == 0); ASSERT(!zfs_refcount_is_zero(&db->db_holds)); ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); mutex_enter(&db->db_mtx); if (db->db_state == DB_NOFILL) { /* * Block cloning: We will be completely overwriting a block * cloned in this transaction group, so let's undirty the * pending clone and mark the block as uncached. This will be * as if the clone was never done. But if the fill can fail * we should have a way to return back to the cloned data. */ if (canfail && dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) { mutex_exit(&db->db_mtx); dmu_buf_will_dirty(db_fake, tx); return; } VERIFY(!dbuf_undirty(db, tx)); db->db_state = DB_UNCACHED; } mutex_exit(&db->db_mtx); dbuf_noread(db); (void) dbuf_dirty(db, tx); } /* * This function is effectively the same as dmu_buf_will_dirty(), but * indicates the caller expects raw encrypted data in the db, and provides * the crypt params (byteorder, salt, iv, mac) which should be stored in the * blkptr_t when this dbuf is written. This is only used for blocks of * dnodes, during raw receive. */ void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dbuf_dirty_record_t *dr; /* * dr_has_raw_params is only processed for blocks of dnodes * (see dbuf_sync_dnode_leaf_crypt()). */ ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); ASSERT3U(db->db_level, ==, 0); ASSERT(db->db_objset->os_raw_receive); dmu_buf_will_dirty_impl(db_fake, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); dr = dbuf_find_dirty_eq(db, tx->tx_txg); ASSERT3P(dr, !=, NULL); dr->dt.dl.dr_has_raw_params = B_TRUE; dr->dt.dl.dr_byteorder = byteorder; memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); } static void dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) { struct dirty_leaf *dl; dbuf_dirty_record_t *dr; dr = list_head(&db->db_dirty_records); ASSERT3P(dr, !=, NULL); ASSERT3U(dr->dr_txg, ==, tx->tx_txg); dl = &dr->dt.dl; dl->dr_overridden_by = *bp; dl->dr_override_state = DR_OVERRIDDEN; dl->dr_overridden_by.blk_birth = dr->dr_txg; } boolean_t dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed) { (void) tx; dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; mutex_enter(&db->db_mtx); DBUF_VERIFY(db); if (db->db_state == DB_FILL) { if (db->db_level == 0 && db->db_freed_in_flight) { ASSERT(db->db_blkid != DMU_BONUS_BLKID); /* we were freed while filling */ /* XXX dbuf_undirty? */ memset(db->db.db_data, 0, db->db.db_size); db->db_freed_in_flight = FALSE; db->db_state = DB_CACHED; DTRACE_SET_STATE(db, "fill done handling freed in flight"); failed = B_FALSE; } else if (failed) { VERIFY(!dbuf_undirty(db, tx)); db->db_buf = NULL; dbuf_clear_data(db); DTRACE_SET_STATE(db, "fill failed"); } else { db->db_state = DB_CACHED; DTRACE_SET_STATE(db, "fill done"); } cv_broadcast(&db->db_changed); } else { db->db_state = DB_CACHED; failed = B_FALSE; } mutex_exit(&db->db_mtx); return (failed); } void dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, bp_embedded_type_t etype, enum zio_compress comp, int uncompressed_size, int compressed_size, int byteorder, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; struct dirty_leaf *dl; dmu_object_type_t type; dbuf_dirty_record_t *dr; if (etype == BP_EMBEDDED_TYPE_DATA) { ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), SPA_FEATURE_EMBEDDED_DATA)); } DB_DNODE_ENTER(db); type = DB_DNODE(db)->dn_type; DB_DNODE_EXIT(db); ASSERT0(db->db_level); ASSERT(db->db_blkid != DMU_BONUS_BLKID); dmu_buf_will_not_fill(dbuf, tx); dr = list_head(&db->db_dirty_records); ASSERT3P(dr, !=, NULL); ASSERT3U(dr->dr_txg, ==, tx->tx_txg); dl = &dr->dt.dl; encode_embedded_bp_compressed(&dl->dr_overridden_by, data, comp, uncompressed_size, compressed_size); BPE_SET_ETYPE(&dl->dr_overridden_by, etype); BP_SET_TYPE(&dl->dr_overridden_by, type); BP_SET_LEVEL(&dl->dr_overridden_by, 0); BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); dl->dr_override_state = DR_OVERRIDDEN; dl->dr_overridden_by.blk_birth = dr->dr_txg; } void dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; dmu_object_type_t type; ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, SPA_FEATURE_REDACTED_DATASETS)); DB_DNODE_ENTER(db); type = DB_DNODE(db)->dn_type; DB_DNODE_EXIT(db); ASSERT0(db->db_level); dmu_buf_will_not_fill(dbuf, tx); blkptr_t bp = { { { {0} } } }; BP_SET_TYPE(&bp, type); BP_SET_LEVEL(&bp, 0); BP_SET_BIRTH(&bp, tx->tx_txg, 0); BP_SET_REDACTED(&bp); BPE_SET_LSIZE(&bp, dbuf->db_size); dbuf_override_impl(db, &bp, tx); } /* * Directly assign a provided arc buf to a given dbuf if it's not referenced * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. */ void dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) { ASSERT(!zfs_refcount_is_zero(&db->db_holds)); ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT(db->db_level == 0); ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); ASSERT(buf != NULL); ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); ASSERT(tx->tx_txg != 0); arc_return_buf(buf, db); ASSERT(arc_released(buf)); mutex_enter(&db->db_mtx); while (db->db_state == DB_READ || db->db_state == DB_FILL) cv_wait(&db->db_changed, &db->db_mtx); ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); if (db->db_state == DB_CACHED && zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { /* * In practice, we will never have a case where we have an * encrypted arc buffer while additional holds exist on the * dbuf. We don't handle this here so we simply assert that * fact instead. */ ASSERT(!arc_is_encrypted(buf)); mutex_exit(&db->db_mtx); (void) dbuf_dirty(db, tx); memcpy(db->db.db_data, buf->b_data, db->db.db_size); arc_buf_destroy(buf, db); return; } if (db->db_state == DB_CACHED) { dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); ASSERT(db->db_buf != NULL); if (dr != NULL && dr->dr_txg == tx->tx_txg) { ASSERT(dr->dt.dl.dr_data == db->db_buf); if (!arc_released(db->db_buf)) { ASSERT(dr->dt.dl.dr_override_state == DR_OVERRIDDEN); arc_release(db->db_buf, db); } dr->dt.dl.dr_data = buf; arc_buf_destroy(db->db_buf, db); } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { arc_release(db->db_buf, db); arc_buf_destroy(db->db_buf, db); } db->db_buf = NULL; } else if (db->db_state == DB_NOFILL) { /* * We will be completely replacing the cloned block. In case * it was cloned in this transaction group, let's undirty the * pending clone and mark the block as uncached. This will be * as if the clone was never done. */ VERIFY(!dbuf_undirty(db, tx)); db->db_state = DB_UNCACHED; } ASSERT(db->db_buf == NULL); dbuf_set_data(db, buf); db->db_state = DB_FILL; DTRACE_SET_STATE(db, "filling assigned arcbuf"); mutex_exit(&db->db_mtx); (void) dbuf_dirty(db, tx); dmu_buf_fill_done(&db->db, tx, B_FALSE); } void dbuf_destroy(dmu_buf_impl_t *db) { dnode_t *dn; dmu_buf_impl_t *parent = db->db_parent; dmu_buf_impl_t *dndb; ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(zfs_refcount_is_zero(&db->db_holds)); if (db->db_buf != NULL) { arc_buf_destroy(db->db_buf, db); db->db_buf = NULL; } if (db->db_blkid == DMU_BONUS_BLKID) { int slots = DB_DNODE(db)->dn_num_slots; int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); if (db->db.db_data != NULL) { kmem_free(db->db.db_data, bonuslen); arc_space_return(bonuslen, ARC_SPACE_BONUS); db->db_state = DB_UNCACHED; DTRACE_SET_STATE(db, "buffer cleared"); } } dbuf_clear_data(db); if (multilist_link_active(&db->db_cache_link)) { ASSERT(db->db_caching_status == DB_DBUF_CACHE || db->db_caching_status == DB_DBUF_METADATA_CACHE); multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); (void) zfs_refcount_remove_many( &dbuf_caches[db->db_caching_status].size, db->db.db_size, db); if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { DBUF_STAT_BUMPDOWN(metadata_cache_count); } else { DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); DBUF_STAT_BUMPDOWN(cache_count); DBUF_STAT_DECR(cache_levels_bytes[db->db_level], db->db.db_size); } db->db_caching_status = DB_NO_CACHE; } ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); ASSERT(db->db_data_pending == NULL); ASSERT(list_is_empty(&db->db_dirty_records)); db->db_state = DB_EVICTING; DTRACE_SET_STATE(db, "buffer eviction started"); db->db_blkptr = NULL; /* * Now that db_state is DB_EVICTING, nobody else can find this via * the hash table. We can now drop db_mtx, which allows us to * acquire the dn_dbufs_mtx. */ mutex_exit(&db->db_mtx); DB_DNODE_ENTER(db); dn = DB_DNODE(db); dndb = dn->dn_dbuf; if (db->db_blkid != DMU_BONUS_BLKID) { boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); if (needlock) mutex_enter_nested(&dn->dn_dbufs_mtx, NESTED_SINGLE); avl_remove(&dn->dn_dbufs, db); membar_producer(); DB_DNODE_EXIT(db); if (needlock) mutex_exit(&dn->dn_dbufs_mtx); /* * Decrementing the dbuf count means that the hold corresponding * to the removed dbuf is no longer discounted in dnode_move(), * so the dnode cannot be moved until after we release the hold. * The membar_producer() ensures visibility of the decremented * value in dnode_move(), since DB_DNODE_EXIT doesn't actually * release any lock. */ mutex_enter(&dn->dn_mtx); dnode_rele_and_unlock(dn, db, B_TRUE); db->db_dnode_handle = NULL; dbuf_hash_remove(db); } else { DB_DNODE_EXIT(db); } ASSERT(zfs_refcount_is_zero(&db->db_holds)); db->db_parent = NULL; ASSERT(db->db_buf == NULL); ASSERT(db->db.db_data == NULL); ASSERT(db->db_hash_next == NULL); ASSERT(db->db_blkptr == NULL); ASSERT(db->db_data_pending == NULL); ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); ASSERT(!multilist_link_active(&db->db_cache_link)); /* * If this dbuf is referenced from an indirect dbuf, * decrement the ref count on the indirect dbuf. */ if (parent && parent != dndb) { mutex_enter(&parent->db_mtx); dbuf_rele_and_unlock(parent, db, B_TRUE); } kmem_cache_free(dbuf_kmem_cache, db); arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); } /* * Note: While bpp will always be updated if the function returns success, * parentp will not be updated if the dnode does not have dn_dbuf filled in; * this happens when the dnode is the meta-dnode, or {user|group|project}used * object. */ __attribute__((always_inline)) static inline int dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, dmu_buf_impl_t **parentp, blkptr_t **bpp) { *parentp = NULL; *bpp = NULL; ASSERT(blkid != DMU_BONUS_BLKID); if (blkid == DMU_SPILL_BLKID) { mutex_enter(&dn->dn_mtx); if (dn->dn_have_spill && (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) *bpp = DN_SPILL_BLKPTR(dn->dn_phys); else *bpp = NULL; dbuf_add_ref(dn->dn_dbuf, NULL); *parentp = dn->dn_dbuf; mutex_exit(&dn->dn_mtx); return (0); } int nlevels = (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT3U(level * epbs, <, 64); ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); /* * This assertion shouldn't trip as long as the max indirect block size * is less than 1M. The reason for this is that up to that point, * the number of levels required to address an entire object with blocks * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 * (i.e. we can address the entire object), objects will all use at most * N-1 levels and the assertion won't overflow. However, once epbs is * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be * enough to address an entire object, so objects will have 5 levels, * but then this assertion will overflow. * * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we * need to redo this logic to handle overflows. */ ASSERT(level >= nlevels || ((nlevels - level - 1) * epbs) + highbit64(dn->dn_phys->dn_nblkptr) <= 64); if (level >= nlevels || blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << ((nlevels - level - 1) * epbs)) || (fail_sparse && blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { /* the buffer has no parent yet */ return (SET_ERROR(ENOENT)); } else if (level < nlevels-1) { /* this block is referenced from an indirect block */ int err; err = dbuf_hold_impl(dn, level + 1, blkid >> epbs, fail_sparse, FALSE, NULL, parentp); if (err) return (err); err = dbuf_read(*parentp, NULL, (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); if (err) { dbuf_rele(*parentp, NULL); *parentp = NULL; return (err); } rw_enter(&(*parentp)->db_rwlock, RW_READER); *bpp = ((blkptr_t *)(*parentp)->db.db_data) + (blkid & ((1ULL << epbs) - 1)); if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) ASSERT(BP_IS_HOLE(*bpp)); rw_exit(&(*parentp)->db_rwlock); return (0); } else { /* the block is referenced from the dnode */ ASSERT3U(level, ==, nlevels-1); ASSERT(dn->dn_phys->dn_nblkptr == 0 || blkid < dn->dn_phys->dn_nblkptr); if (dn->dn_dbuf) { dbuf_add_ref(dn->dn_dbuf, NULL); *parentp = dn->dn_dbuf; } *bpp = &dn->dn_phys->dn_blkptr[blkid]; return (0); } } static dmu_buf_impl_t * dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash) { objset_t *os = dn->dn_objset; dmu_buf_impl_t *db, *odb; ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); ASSERT(dn->dn_type != DMU_OT_NONE); db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), offsetof(dbuf_dirty_record_t, dr_dbuf_node)); db->db_objset = os; db->db.db_object = dn->dn_object; db->db_level = level; db->db_blkid = blkid; db->db_dirtycnt = 0; db->db_dnode_handle = dn->dn_handle; db->db_parent = parent; db->db_blkptr = blkptr; db->db_hash = hash; db->db_user = NULL; db->db_user_immediate_evict = FALSE; db->db_freed_in_flight = FALSE; db->db_pending_evict = FALSE; if (blkid == DMU_BONUS_BLKID) { ASSERT3P(parent, ==, dn->dn_dbuf); db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - (dn->dn_nblkptr-1) * sizeof (blkptr_t); ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); db->db.db_offset = DMU_BONUS_BLKID; db->db_state = DB_UNCACHED; DTRACE_SET_STATE(db, "bonus buffer created"); db->db_caching_status = DB_NO_CACHE; /* the bonus dbuf is not placed in the hash table */ arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); return (db); } else if (blkid == DMU_SPILL_BLKID) { db->db.db_size = (blkptr != NULL) ? BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; db->db.db_offset = 0; } else { int blocksize = db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; db->db.db_size = blocksize; db->db.db_offset = db->db_blkid * blocksize; } /* * Hold the dn_dbufs_mtx while we get the new dbuf * in the hash table *and* added to the dbufs list. * This prevents a possible deadlock with someone * trying to look up this dbuf before it's added to the * dn_dbufs list. */ mutex_enter(&dn->dn_dbufs_mtx); db->db_state = DB_EVICTING; /* not worth logging this state change */ if ((odb = dbuf_hash_insert(db)) != NULL) { /* someone else inserted it first */ mutex_exit(&dn->dn_dbufs_mtx); kmem_cache_free(dbuf_kmem_cache, db); DBUF_STAT_BUMP(hash_insert_race); return (odb); } avl_add(&dn->dn_dbufs, db); db->db_state = DB_UNCACHED; DTRACE_SET_STATE(db, "regular buffer created"); db->db_caching_status = DB_NO_CACHE; mutex_exit(&dn->dn_dbufs_mtx); arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); if (parent && parent != dn->dn_dbuf) dbuf_add_ref(parent, db); ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || zfs_refcount_count(&dn->dn_holds) > 0); (void) zfs_refcount_add(&dn->dn_holds, db); dprintf_dbuf(db, "db=%p\n", db); return (db); } /* * This function returns a block pointer and information about the object, * given a dnode and a block. This is a publicly accessible version of * dbuf_findbp that only returns some information, rather than the * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock * should be locked as (at least) a reader. */ int dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) { dmu_buf_impl_t *dbp = NULL; blkptr_t *bp2; int err = 0; ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); if (err == 0) { ASSERT3P(bp2, !=, NULL); *bp = *bp2; if (dbp != NULL) dbuf_rele(dbp, NULL); if (datablkszsec != NULL) *datablkszsec = dn->dn_phys->dn_datablkszsec; if (indblkshift != NULL) *indblkshift = dn->dn_phys->dn_indblkshift; } return (err); } typedef struct dbuf_prefetch_arg { spa_t *dpa_spa; /* The spa to issue the prefetch in. */ zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ int dpa_curlevel; /* The current level that we're reading */ dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ void *dpa_arg; /* prefetch completion arg */ } dbuf_prefetch_arg_t; static void dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) { if (dpa->dpa_cb != NULL) { dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, dpa->dpa_zb.zb_blkid, io_done); } kmem_free(dpa, sizeof (*dpa)); } static void dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *iobp, arc_buf_t *abuf, void *private) { (void) zio, (void) zb, (void) iobp; dbuf_prefetch_arg_t *dpa = private; if (abuf != NULL) arc_buf_destroy(abuf, private); dbuf_prefetch_fini(dpa, B_TRUE); } /* * Actually issue the prefetch read for the block given. */ static void dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) { ASSERT(!BP_IS_REDACTED(bp) || dsl_dataset_feature_is_active( dpa->dpa_dnode->dn_objset->os_dsl_dataset, SPA_FEATURE_REDACTED_DATASETS)); if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) return (dbuf_prefetch_fini(dpa, B_FALSE)); int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; arc_flags_t aflags = dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | ARC_FLAG_NO_BUF; /* dnodes are always read as raw and then converted later */ if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && dpa->dpa_curlevel == 0) zio_flags |= ZIO_FLAG_RAW; ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); ASSERT(dpa->dpa_zio != NULL); (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, dbuf_issue_final_prefetch_done, dpa, dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); } /* * Called when an indirect block above our prefetch target is read in. This * will either read in the next indirect block down the tree or issue the actual * prefetch if the next block down is our target. */ static void dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *iobp, arc_buf_t *abuf, void *private) { (void) zb, (void) iobp; dbuf_prefetch_arg_t *dpa = private; ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); ASSERT3S(dpa->dpa_curlevel, >, 0); if (abuf == NULL) { ASSERT(zio == NULL || zio->io_error != 0); dbuf_prefetch_fini(dpa, B_TRUE); return; } ASSERT(zio == NULL || zio->io_error == 0); /* * The dpa_dnode is only valid if we are called with a NULL * zio. This indicates that the arc_read() returned without * first calling zio_read() to issue a physical read. Once * a physical read is made the dpa_dnode must be invalidated * as the locks guarding it may have been dropped. If the * dpa_dnode is still valid, then we want to add it to the dbuf * cache. To do so, we must hold the dbuf associated with the block * we just prefetched, read its contents so that we associate it * with an arc_buf_t, and then release it. */ if (zio != NULL) { ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); } else { ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); } ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); dpa->dpa_dnode = NULL; } else if (dpa->dpa_dnode != NULL) { uint64_t curblkid = dpa->dpa_zb.zb_blkid >> (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, dpa->dpa_curlevel, curblkid, FTAG); if (db == NULL) { arc_buf_destroy(abuf, private); dbuf_prefetch_fini(dpa, B_TRUE); return; } (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); dbuf_rele(db, FTAG); } dpa->dpa_curlevel--; uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); blkptr_t *bp = ((blkptr_t *)abuf->b_data) + P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode && dsl_dataset_feature_is_active( dpa->dpa_dnode->dn_objset->os_dsl_dataset, SPA_FEATURE_REDACTED_DATASETS))); if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { arc_buf_destroy(abuf, private); dbuf_prefetch_fini(dpa, B_TRUE); return; } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); dbuf_issue_final_prefetch(dpa, bp); } else { arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; zbookmark_phys_t zb; /* flag if L2ARC eligible, l2arc_noprefetch then decides */ if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) iter_aflags |= ARC_FLAG_L2CACHE; ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, dbuf_prefetch_indirect_done, dpa, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &iter_aflags, &zb); } arc_buf_destroy(abuf, private); } /* * Issue prefetch reads for the given block on the given level. If the indirect * blocks above that block are not in memory, we will read them in * asynchronously. As a result, this call never blocks waiting for a read to * complete. Note that the prefetch might fail if the dataset is encrypted and * the encryption key is unmapped before the IO completes. */ int dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, void *arg) { blkptr_t bp; int epbs, nlevels, curlevel; uint64_t curblkid; ASSERT(blkid != DMU_BONUS_BLKID); ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); if (blkid > dn->dn_maxblkid) goto no_issue; if (level == 0 && dnode_block_freed(dn, blkid)) goto no_issue; /* * This dnode hasn't been written to disk yet, so there's nothing to * prefetch. */ nlevels = dn->dn_phys->dn_nlevels; if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) goto no_issue; epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) goto no_issue; dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, NULL); if (db != NULL) { mutex_exit(&db->db_mtx); /* * This dbuf already exists. It is either CACHED, or * (we assume) about to be read or filled. */ goto no_issue; } /* * Find the closest ancestor (indirect block) of the target block * that is present in the cache. In this indirect block, we will * find the bp that is at curlevel, curblkid. */ curlevel = level; curblkid = blkid; while (curlevel < nlevels - 1) { int parent_level = curlevel + 1; uint64_t parent_blkid = curblkid >> epbs; dmu_buf_impl_t *db; if (dbuf_hold_impl(dn, parent_level, parent_blkid, FALSE, TRUE, FTAG, &db) == 0) { blkptr_t *bpp = db->db_buf->b_data; bp = bpp[P2PHASE(curblkid, 1 << epbs)]; dbuf_rele(db, FTAG); break; } curlevel = parent_level; curblkid = parent_blkid; } if (curlevel == nlevels - 1) { /* No cached indirect blocks found. */ ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); bp = dn->dn_phys->dn_blkptr[curblkid]; } ASSERT(!BP_IS_REDACTED(&bp) || dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, SPA_FEATURE_REDACTED_DATASETS)); if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) goto no_issue; ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, ZIO_FLAG_CANFAIL); dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, dn->dn_object, level, blkid); dpa->dpa_curlevel = curlevel; dpa->dpa_prio = prio; dpa->dpa_aflags = aflags; dpa->dpa_spa = dn->dn_objset->os_spa; dpa->dpa_dnode = dn; dpa->dpa_epbs = epbs; dpa->dpa_zio = pio; dpa->dpa_cb = cb; dpa->dpa_arg = arg; if (!DNODE_LEVEL_IS_CACHEABLE(dn, level)) dpa->dpa_aflags |= ARC_FLAG_UNCACHED; else if (dnode_level_is_l2cacheable(&bp, dn, level)) dpa->dpa_aflags |= ARC_FLAG_L2CACHE; /* * If we have the indirect just above us, no need to do the asynchronous * prefetch chain; we'll just run the last step ourselves. If we're at * a higher level, though, we want to issue the prefetches for all the * indirect blocks asynchronously, so we can go on with whatever we were * doing. */ if (curlevel == level) { ASSERT3U(curblkid, ==, blkid); dbuf_issue_final_prefetch(dpa, &bp); } else { arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; zbookmark_phys_t zb; /* flag if L2ARC eligible, l2arc_noprefetch then decides */ if (dnode_level_is_l2cacheable(&bp, dn, level)) iter_aflags |= ARC_FLAG_L2CACHE; SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, dn->dn_object, curlevel, curblkid); (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, &bp, dbuf_prefetch_indirect_done, dpa, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &iter_aflags, &zb); } /* * We use pio here instead of dpa_zio since it's possible that * dpa may have already been freed. */ zio_nowait(pio); return (1); no_issue: if (cb != NULL) cb(arg, level, blkid, B_FALSE); return (0); } int dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, arc_flags_t aflags) { return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); } /* * Helper function for dbuf_hold_impl() to copy a buffer. Handles * the case of encrypted, compressed and uncompressed buffers by * allocating the new buffer, respectively, with arc_alloc_raw_buf(), * arc_alloc_compressed_buf() or arc_alloc_buf().* * * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). */ noinline static void dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) { dbuf_dirty_record_t *dr = db->db_data_pending; arc_buf_t *data = dr->dt.dl.dr_data; enum zio_compress compress_type = arc_get_compression(data); uint8_t complevel = arc_get_complevel(data); if (arc_is_encrypted(data)) { boolean_t byteorder; uint8_t salt[ZIO_DATA_SALT_LEN]; uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t mac[ZIO_DATA_MAC_LEN]; arc_get_raw_params(data, &byteorder, salt, iv, mac); dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), compress_type, complevel)); } else if (compress_type != ZIO_COMPRESS_OFF) { dbuf_set_data(db, arc_alloc_compressed_buf( dn->dn_objset->os_spa, db, arc_buf_size(data), arc_buf_lsize(data), compress_type, complevel)); } else { dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); } rw_enter(&db->db_rwlock, RW_WRITER); memcpy(db->db.db_data, data->b_data, arc_buf_size(data)); rw_exit(&db->db_rwlock); } /* * Returns with db_holds incremented, and db_mtx not held. * Note: dn_struct_rwlock must be held. */ int dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse, boolean_t fail_uncached, const void *tag, dmu_buf_impl_t **dbp) { dmu_buf_impl_t *db, *parent = NULL; uint64_t hv; /* If the pool has been created, verify the tx_sync_lock is not held */ spa_t *spa = dn->dn_objset->os_spa; dsl_pool_t *dp = spa->spa_dsl_pool; if (dp != NULL) { ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); } ASSERT(blkid != DMU_BONUS_BLKID); ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); ASSERT3U(dn->dn_nlevels, >, level); *dbp = NULL; /* dbuf_find() returns with db_mtx held */ db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv); if (db == NULL) { blkptr_t *bp = NULL; int err; if (fail_uncached) return (SET_ERROR(ENOENT)); ASSERT3P(parent, ==, NULL); err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); if (fail_sparse) { if (err == 0 && bp && BP_IS_HOLE(bp)) err = SET_ERROR(ENOENT); if (err) { if (parent) dbuf_rele(parent, NULL); return (err); } } if (err && err != ENOENT) return (err); db = dbuf_create(dn, level, blkid, parent, bp, hv); } if (fail_uncached && db->db_state != DB_CACHED) { mutex_exit(&db->db_mtx); return (SET_ERROR(ENOENT)); } if (db->db_buf != NULL) { arc_buf_access(db->db_buf); ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); } ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); /* * If this buffer is currently syncing out, and we are * still referencing it from db_data, we need to make a copy * of it in case we decide we want to dirty it again in this txg. */ if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && dn->dn_object != DMU_META_DNODE_OBJECT && db->db_state == DB_CACHED && db->db_data_pending) { dbuf_dirty_record_t *dr = db->db_data_pending; if (dr->dt.dl.dr_data == db->db_buf) { ASSERT3P(db->db_buf, !=, NULL); dbuf_hold_copy(dn, db); } } if (multilist_link_active(&db->db_cache_link)) { ASSERT(zfs_refcount_is_zero(&db->db_holds)); ASSERT(db->db_caching_status == DB_DBUF_CACHE || db->db_caching_status == DB_DBUF_METADATA_CACHE); multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); (void) zfs_refcount_remove_many( &dbuf_caches[db->db_caching_status].size, db->db.db_size, db); if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { DBUF_STAT_BUMPDOWN(metadata_cache_count); } else { DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); DBUF_STAT_BUMPDOWN(cache_count); DBUF_STAT_DECR(cache_levels_bytes[db->db_level], db->db.db_size); } db->db_caching_status = DB_NO_CACHE; } (void) zfs_refcount_add(&db->db_holds, tag); DBUF_VERIFY(db); mutex_exit(&db->db_mtx); /* NOTE: we can't rele the parent until after we drop the db_mtx */ if (parent) dbuf_rele(parent, NULL); ASSERT3P(DB_DNODE(db), ==, dn); ASSERT3U(db->db_blkid, ==, blkid); ASSERT3U(db->db_level, ==, level); *dbp = db; return (0); } dmu_buf_impl_t * dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) { return (dbuf_hold_level(dn, 0, blkid, tag)); } dmu_buf_impl_t * dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) { dmu_buf_impl_t *db; int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); return (err ? NULL : db); } void dbuf_create_bonus(dnode_t *dn) { ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); ASSERT(dn->dn_bonus == NULL); dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL, dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID)); } int dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; if (db->db_blkid != DMU_SPILL_BLKID) return (SET_ERROR(ENOTSUP)); if (blksz == 0) blksz = SPA_MINBLOCKSIZE; ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); dbuf_new_size(db, blksz, tx); return (0); } void dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) { dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); } #pragma weak dmu_buf_add_ref = dbuf_add_ref void dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) { int64_t holds = zfs_refcount_add(&db->db_holds, tag); VERIFY3S(holds, >, 1); } #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref boolean_t dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, const void *tag) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dmu_buf_impl_t *found_db; boolean_t result = B_FALSE; if (blkid == DMU_BONUS_BLKID) found_db = dbuf_find_bonus(os, obj); else found_db = dbuf_find(os, obj, 0, blkid, NULL); if (found_db != NULL) { if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { (void) zfs_refcount_add(&db->db_holds, tag); result = B_TRUE; } mutex_exit(&found_db->db_mtx); } return (result); } /* * If you call dbuf_rele() you had better not be referencing the dnode handle * unless you have some other direct or indirect hold on the dnode. (An indirect * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the * dnode's parent dbuf evicting its dnode handles. */ void dbuf_rele(dmu_buf_impl_t *db, const void *tag) { mutex_enter(&db->db_mtx); dbuf_rele_and_unlock(db, tag, B_FALSE); } void dmu_buf_rele(dmu_buf_t *db, const void *tag) { dbuf_rele((dmu_buf_impl_t *)db, tag); } /* * dbuf_rele() for an already-locked dbuf. This is necessary to allow * db_dirtycnt and db_holds to be updated atomically. The 'evicting' * argument should be set if we are already in the dbuf-evicting code * path, in which case we don't want to recursively evict. This allows us to * avoid deeply nested stacks that would have a call flow similar to this: * * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() * ^ | * | | * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ * */ void dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) { int64_t holds; uint64_t size; ASSERT(MUTEX_HELD(&db->db_mtx)); DBUF_VERIFY(db); /* * Remove the reference to the dbuf before removing its hold on the * dnode so we can guarantee in dnode_move() that a referenced bonus * buffer has a corresponding dnode hold. */ holds = zfs_refcount_remove(&db->db_holds, tag); ASSERT(holds >= 0); /* * We can't freeze indirects if there is a possibility that they * may be modified in the current syncing context. */ if (db->db_buf != NULL && holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { arc_buf_freeze(db->db_buf); } if (holds == db->db_dirtycnt && db->db_level == 0 && db->db_user_immediate_evict) dbuf_evict_user(db); if (holds == 0) { if (db->db_blkid == DMU_BONUS_BLKID) { dnode_t *dn; boolean_t evict_dbuf = db->db_pending_evict; /* * If the dnode moves here, we cannot cross this * barrier until the move completes. */ DB_DNODE_ENTER(db); dn = DB_DNODE(db); atomic_dec_32(&dn->dn_dbufs_count); /* * Decrementing the dbuf count means that the bonus * buffer's dnode hold is no longer discounted in * dnode_move(). The dnode cannot move until after * the dnode_rele() below. */ DB_DNODE_EXIT(db); /* * Do not reference db after its lock is dropped. * Another thread may evict it. */ mutex_exit(&db->db_mtx); if (evict_dbuf) dnode_evict_bonus(dn); dnode_rele(dn, db); } else if (db->db_buf == NULL) { /* * This is a special case: we never associated this * dbuf with any data allocated from the ARC. */ ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); dbuf_destroy(db); } else if (arc_released(db->db_buf)) { /* * This dbuf has anonymous data associated with it. */ dbuf_destroy(db); } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) || db->db_pending_evict) { dbuf_destroy(db); } else if (!multilist_link_active(&db->db_cache_link)) { ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); dbuf_cached_state_t dcs = dbuf_include_in_metadata_cache(db) ? DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; db->db_caching_status = dcs; multilist_insert(&dbuf_caches[dcs].cache, db); uint64_t db_size = db->db.db_size; size = zfs_refcount_add_many( &dbuf_caches[dcs].size, db_size, db); uint8_t db_level = db->db_level; mutex_exit(&db->db_mtx); if (dcs == DB_DBUF_METADATA_CACHE) { DBUF_STAT_BUMP(metadata_cache_count); DBUF_STAT_MAX(metadata_cache_size_bytes_max, size); } else { DBUF_STAT_BUMP(cache_count); DBUF_STAT_MAX(cache_size_bytes_max, size); DBUF_STAT_BUMP(cache_levels[db_level]); DBUF_STAT_INCR(cache_levels_bytes[db_level], db_size); } if (dcs == DB_DBUF_CACHE && !evicting) dbuf_evict_notify(size); } } else { mutex_exit(&db->db_mtx); } } #pragma weak dmu_buf_refcount = dbuf_refcount uint64_t dbuf_refcount(dmu_buf_impl_t *db) { return (zfs_refcount_count(&db->db_holds)); } uint64_t dmu_buf_user_refcount(dmu_buf_t *db_fake) { uint64_t holds; dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; mutex_enter(&db->db_mtx); ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; mutex_exit(&db->db_mtx); return (holds); } void * dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, dmu_buf_user_t *new_user) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; mutex_enter(&db->db_mtx); dbuf_verify_user(db, DBVU_NOT_EVICTING); if (db->db_user == old_user) db->db_user = new_user; else old_user = db->db_user; dbuf_verify_user(db, DBVU_NOT_EVICTING); mutex_exit(&db->db_mtx); return (old_user); } void * dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) { return (dmu_buf_replace_user(db_fake, NULL, user)); } void * dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; db->db_user_immediate_evict = TRUE; return (dmu_buf_set_user(db_fake, user)); } void * dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) { return (dmu_buf_replace_user(db_fake, user, NULL)); } void * dmu_buf_get_user(dmu_buf_t *db_fake) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dbuf_verify_user(db, DBVU_NOT_EVICTING); return (db->db_user); } void dmu_buf_user_evict_wait(void) { taskq_wait(dbu_evict_taskq); } blkptr_t * dmu_buf_get_blkptr(dmu_buf_t *db) { dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; return (dbi->db_blkptr); } objset_t * dmu_buf_get_objset(dmu_buf_t *db) { dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; return (dbi->db_objset); } static void dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) { /* ASSERT(dmu_tx_is_syncing(tx) */ ASSERT(MUTEX_HELD(&db->db_mtx)); if (db->db_blkptr != NULL) return; if (db->db_blkid == DMU_SPILL_BLKID) { db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); BP_ZERO(db->db_blkptr); return; } if (db->db_level == dn->dn_phys->dn_nlevels-1) { /* * This buffer was allocated at a time when there was * no available blkptrs from the dnode, or it was * inappropriate to hook it in (i.e., nlevels mismatch). */ ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); ASSERT(db->db_parent == NULL); db->db_parent = dn->dn_dbuf; db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; DBUF_VERIFY(db); } else { dmu_buf_impl_t *parent = db->db_parent; int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT(dn->dn_phys->dn_nlevels > 1); if (parent == NULL) { mutex_exit(&db->db_mtx); rw_enter(&dn->dn_struct_rwlock, RW_READER); parent = dbuf_hold_level(dn, db->db_level + 1, db->db_blkid >> epbs, db); rw_exit(&dn->dn_struct_rwlock); mutex_enter(&db->db_mtx); db->db_parent = parent; } db->db_blkptr = (blkptr_t *)parent->db.db_data + (db->db_blkid & ((1ULL << epbs) - 1)); DBUF_VERIFY(db); } } static void dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) { dmu_buf_impl_t *db = dr->dr_dbuf; void *data = dr->dt.dl.dr_data; ASSERT0(db->db_level); ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(db->db_blkid == DMU_BONUS_BLKID); ASSERT(data != NULL); dnode_t *dn = dr->dr_dnode; ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); dbuf_sync_leaf_verify_bonus_dnode(dr); dbuf_undirty_bonus(dr); dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); } /* * When syncing out a blocks of dnodes, adjust the block to deal with * encryption. Normally, we make sure the block is decrypted before writing * it. If we have crypt params, then we are writing a raw (encrypted) block, * from a raw receive. In this case, set the ARC buf's crypt params so * that the BP will be filled with the correct byteorder, salt, iv, and mac. */ static void dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) { int err; dmu_buf_impl_t *db = dr->dr_dbuf; ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); ASSERT3U(db->db_level, ==, 0); if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { zbookmark_phys_t zb; /* * Unfortunately, there is currently no mechanism for * syncing context to handle decryption errors. An error * here is only possible if an attacker maliciously * changed a dnode block and updated the associated * checksums going up the block tree. */ SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), db->db.db_object, db->db_level, db->db_blkid); err = arc_untransform(db->db_buf, db->db_objset->os_spa, &zb, B_TRUE); if (err) panic("Invalid dnode block MAC"); } else if (dr->dt.dl.dr_has_raw_params) { (void) arc_release(dr->dt.dl.dr_data, db); arc_convert_to_raw(dr->dt.dl.dr_data, dmu_objset_id(db->db_objset), dr->dt.dl.dr_byteorder, DMU_OT_DNODE, dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); } } /* * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it * is critical the we not allow the compiler to inline this function in to * dbuf_sync_list() thereby drastically bloating the stack usage. */ noinline static void dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) { dmu_buf_impl_t *db = dr->dr_dbuf; dnode_t *dn = dr->dr_dnode; ASSERT(dmu_tx_is_syncing(tx)); dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); mutex_enter(&db->db_mtx); ASSERT(db->db_level > 0); DBUF_VERIFY(db); /* Read the block if it hasn't been read yet. */ if (db->db_buf == NULL) { mutex_exit(&db->db_mtx); (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); mutex_enter(&db->db_mtx); } ASSERT3U(db->db_state, ==, DB_CACHED); ASSERT(db->db_buf != NULL); /* Indirect block size must match what the dnode thinks it is. */ ASSERT3U(db->db.db_size, ==, 1<dn_phys->dn_indblkshift); dbuf_check_blkptr(dn, db); /* Provide the pending dirty record to child dbufs */ db->db_data_pending = dr; mutex_exit(&db->db_mtx); dbuf_write(dr, db->db_buf, tx); zio_t *zio = dr->dr_zio; mutex_enter(&dr->dt.di.dr_mtx); dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); ASSERT(list_head(&dr->dt.di.dr_children) == NULL); mutex_exit(&dr->dt.di.dr_mtx); zio_nowait(zio); } /* * Verify that the size of the data in our bonus buffer does not exceed * its recorded size. * * The purpose of this verification is to catch any cases in development * where the size of a phys structure (i.e space_map_phys_t) grows and, * due to incorrect feature management, older pools expect to read more * data even though they didn't actually write it to begin with. * * For a example, this would catch an error in the feature logic where we * open an older pool and we expect to write the space map histogram of * a space map with size SPACE_MAP_SIZE_V0. */ static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) { #ifdef ZFS_DEBUG dnode_t *dn = dr->dr_dnode; /* * Encrypted bonus buffers can have data past their bonuslen. * Skip the verification of these blocks. */ if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) return; uint16_t bonuslen = dn->dn_phys->dn_bonuslen; uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); ASSERT3U(bonuslen, <=, maxbonuslen); arc_buf_t *datap = dr->dt.dl.dr_data; char *datap_end = ((char *)datap) + bonuslen; char *datap_max = ((char *)datap) + maxbonuslen; /* ensure that everything is zero after our data */ for (; datap_end < datap_max; datap_end++) ASSERT(*datap_end == 0); #endif } static blkptr_t * dbuf_lightweight_bp(dbuf_dirty_record_t *dr) { /* This must be a lightweight dirty record. */ ASSERT3P(dr->dr_dbuf, ==, NULL); dnode_t *dn = dr->dr_dnode; if (dn->dn_phys->dn_nlevels == 1) { VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); } else { dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; VERIFY3U(parent_db->db_level, ==, 1); VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn); VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); blkptr_t *bp = parent_db->db.db_data; return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); } } static void dbuf_lightweight_ready(zio_t *zio) { dbuf_dirty_record_t *dr = zio->io_private; blkptr_t *bp = zio->io_bp; if (zio->io_error != 0) return; dnode_t *dn = dr->dr_dnode; blkptr_t *bp_orig = dbuf_lightweight_bp(dr); spa_t *spa = dmu_objset_spa(dn->dn_objset); int64_t delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); dnode_diduse_space(dn, delta); uint64_t blkid = dr->dt.dll.dr_blkid; mutex_enter(&dn->dn_mtx); if (blkid > dn->dn_phys->dn_maxblkid) { ASSERT0(dn->dn_objset->os_raw_receive); dn->dn_phys->dn_maxblkid = blkid; } mutex_exit(&dn->dn_mtx); if (!BP_IS_EMBEDDED(bp)) { uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; BP_SET_FILL(bp, fill); } dmu_buf_impl_t *parent_db; EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); if (dr->dr_parent == NULL) { parent_db = dn->dn_dbuf; } else { parent_db = dr->dr_parent->dr_dbuf; } rw_enter(&parent_db->db_rwlock, RW_WRITER); *bp_orig = *bp; rw_exit(&parent_db->db_rwlock); } static void dbuf_lightweight_done(zio_t *zio) { dbuf_dirty_record_t *dr = zio->io_private; VERIFY0(zio->io_error); objset_t *os = dr->dr_dnode->dn_objset; dmu_tx_t *tx = os->os_synctx; if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); } else { dsl_dataset_t *ds = os->os_dsl_dataset; (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); dsl_dataset_block_born(ds, zio->io_bp, tx); } dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, zio->io_txg); abd_free(dr->dt.dll.dr_abd); kmem_free(dr, sizeof (*dr)); } noinline static void dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) { dnode_t *dn = dr->dr_dnode; zio_t *pio; if (dn->dn_phys->dn_nlevels == 1) { pio = dn->dn_zio; } else { pio = dr->dr_parent->dr_zio; } zbookmark_phys_t zb = { .zb_objset = dmu_objset_id(dn->dn_objset), .zb_object = dn->dn_object, .zb_level = 0, .zb_blkid = dr->dt.dll.dr_blkid, }; /* * See comment in dbuf_write(). This is so that zio->io_bp_orig * will have the old BP in dbuf_lightweight_done(). */ dr->dr_bp_copy = *dbuf_lightweight_bp(dr); dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); zio_nowait(dr->dr_zio); } /* * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is * critical the we not allow the compiler to inline this function in to * dbuf_sync_list() thereby drastically bloating the stack usage. */ noinline static void dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) { arc_buf_t **datap = &dr->dt.dl.dr_data; dmu_buf_impl_t *db = dr->dr_dbuf; dnode_t *dn = dr->dr_dnode; objset_t *os; uint64_t txg = tx->tx_txg; ASSERT(dmu_tx_is_syncing(tx)); dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); mutex_enter(&db->db_mtx); /* * To be synced, we must be dirtied. But we * might have been freed after the dirty. */ if (db->db_state == DB_UNCACHED) { /* This buffer has been freed since it was dirtied */ ASSERT(db->db.db_data == NULL); } else if (db->db_state == DB_FILL) { /* This buffer was freed and is now being re-filled */ ASSERT(db->db.db_data != dr->dt.dl.dr_data); } else if (db->db_state == DB_READ) { /* * This buffer has a clone we need to write, and an in-flight * read on the BP we're about to clone. Its safe to issue the * write here because the read has already been issued and the * contents won't change. */ ASSERT(dr->dt.dl.dr_brtwrite && dr->dt.dl.dr_override_state == DR_OVERRIDDEN); } else { ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); } DBUF_VERIFY(db); if (db->db_blkid == DMU_SPILL_BLKID) { mutex_enter(&dn->dn_mtx); if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { /* * In the previous transaction group, the bonus buffer * was entirely used to store the attributes for the * dnode which overrode the dn_spill field. However, * when adding more attributes to the file a spill * block was required to hold the extra attributes. * * Make sure to clear the garbage left in the dn_spill * field from the previous attributes in the bonus * buffer. Otherwise, after writing out the spill * block to the new allocated dva, it will free * the old block pointed to by the invalid dn_spill. */ db->db_blkptr = NULL; } dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; mutex_exit(&dn->dn_mtx); } /* * If this is a bonus buffer, simply copy the bonus data into the * dnode. It will be written out when the dnode is synced (and it * will be synced, since it must have been dirty for dbuf_sync to * be called). */ if (db->db_blkid == DMU_BONUS_BLKID) { ASSERT(dr->dr_dbuf == db); dbuf_sync_bonus(dr, tx); return; } os = dn->dn_objset; /* * This function may have dropped the db_mtx lock allowing a dmu_sync * operation to sneak in. As a result, we need to ensure that we * don't check the dr_override_state until we have returned from * dbuf_check_blkptr. */ dbuf_check_blkptr(dn, db); /* * If this buffer is in the middle of an immediate write, * wait for the synchronous IO to complete. */ while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); cv_wait(&db->db_changed, &db->db_mtx); } /* * If this is a dnode block, ensure it is appropriately encrypted * or decrypted, depending on what we are writing to it this txg. */ if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) dbuf_prepare_encrypted_dnode_leaf(dr); if (*datap != NULL && *datap == db->db_buf && dn->dn_object != DMU_META_DNODE_OBJECT && zfs_refcount_count(&db->db_holds) > 1 && dr->dt.dl.dr_override_state != DR_OVERRIDDEN) { /* * If this buffer is currently "in use" (i.e., there * are active holds and db_data still references it), * then make a copy before we start the write so that * any modifications from the open txg will not leak * into this write. * * NOTE: this copy does not need to be made for * objects only modified in the syncing context (e.g. * DNONE_DNODE blocks). */ int psize = arc_buf_size(*datap); int lsize = arc_buf_lsize(*datap); arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); enum zio_compress compress_type = arc_get_compression(*datap); uint8_t complevel = arc_get_complevel(*datap); if (arc_is_encrypted(*datap)) { boolean_t byteorder; uint8_t salt[ZIO_DATA_SALT_LEN]; uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t mac[ZIO_DATA_MAC_LEN]; arc_get_raw_params(*datap, &byteorder, salt, iv, mac); *datap = arc_alloc_raw_buf(os->os_spa, db, dmu_objset_id(os), byteorder, salt, iv, mac, dn->dn_type, psize, lsize, compress_type, complevel); } else if (compress_type != ZIO_COMPRESS_OFF) { ASSERT3U(type, ==, ARC_BUFC_DATA); *datap = arc_alloc_compressed_buf(os->os_spa, db, psize, lsize, compress_type, complevel); } else { *datap = arc_alloc_buf(os->os_spa, db, type, psize); } memcpy((*datap)->b_data, db->db.db_data, psize); } db->db_data_pending = dr; mutex_exit(&db->db_mtx); dbuf_write(dr, *datap, tx); ASSERT(!list_link_active(&dr->dr_dirty_node)); if (dn->dn_object == DMU_META_DNODE_OBJECT) { list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); } else { zio_nowait(dr->dr_zio); } } void dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) { dbuf_dirty_record_t *dr; while ((dr = list_head(list))) { if (dr->dr_zio != NULL) { /* * If we find an already initialized zio then we * are processing the meta-dnode, and we have finished. * The dbufs for all dnodes are put back on the list * during processing, so that we can zio_wait() * these IOs after initiating all child IOs. */ ASSERT3U(dr->dr_dbuf->db.db_object, ==, DMU_META_DNODE_OBJECT); break; } list_remove(list, dr); if (dr->dr_dbuf == NULL) { dbuf_sync_lightweight(dr, tx); } else { if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { VERIFY3U(dr->dr_dbuf->db_level, ==, level); } if (dr->dr_dbuf->db_level > 0) dbuf_sync_indirect(dr, tx); else dbuf_sync_leaf(dr, tx); } } } static void dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) { (void) buf; dmu_buf_impl_t *db = vdb; dnode_t *dn; blkptr_t *bp = zio->io_bp; blkptr_t *bp_orig = &zio->io_bp_orig; spa_t *spa = zio->io_spa; int64_t delta; uint64_t fill = 0; int i; ASSERT3P(db->db_blkptr, !=, NULL); ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); DB_DNODE_ENTER(db); dn = DB_DNODE(db); delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); dnode_diduse_space(dn, delta - zio->io_prev_space_delta); zio->io_prev_space_delta = delta; if (bp->blk_birth != 0) { ASSERT((db->db_blkid != DMU_SPILL_BLKID && BP_GET_TYPE(bp) == dn->dn_type) || (db->db_blkid == DMU_SPILL_BLKID && BP_GET_TYPE(bp) == dn->dn_bonustype) || BP_IS_EMBEDDED(bp)); ASSERT(BP_GET_LEVEL(bp) == db->db_level); } mutex_enter(&db->db_mtx); #ifdef ZFS_DEBUG if (db->db_blkid == DMU_SPILL_BLKID) { ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); ASSERT(!(BP_IS_HOLE(bp)) && db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); } #endif if (db->db_level == 0) { mutex_enter(&dn->dn_mtx); if (db->db_blkid > dn->dn_phys->dn_maxblkid && db->db_blkid != DMU_SPILL_BLKID) { ASSERT0(db->db_objset->os_raw_receive); dn->dn_phys->dn_maxblkid = db->db_blkid; } mutex_exit(&dn->dn_mtx); if (dn->dn_type == DMU_OT_DNODE) { i = 0; while (i < db->db.db_size) { dnode_phys_t *dnp = (void *)(((char *)db->db.db_data) + i); i += DNODE_MIN_SIZE; if (dnp->dn_type != DMU_OT_NONE) { fill++; for (int j = 0; j < dnp->dn_nblkptr; j++) { (void) zfs_blkptr_verify(spa, &dnp->dn_blkptr[j], BLK_CONFIG_SKIP, BLK_VERIFY_HALT); } if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { (void) zfs_blkptr_verify(spa, DN_SPILL_BLKPTR(dnp), BLK_CONFIG_SKIP, BLK_VERIFY_HALT); } i += dnp->dn_extra_slots * DNODE_MIN_SIZE; } } } else { if (BP_IS_HOLE(bp)) { fill = 0; } else { fill = 1; } } } else { blkptr_t *ibp = db->db.db_data; ASSERT3U(db->db.db_size, ==, 1<dn_phys->dn_indblkshift); for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { if (BP_IS_HOLE(ibp)) continue; (void) zfs_blkptr_verify(spa, ibp, BLK_CONFIG_SKIP, BLK_VERIFY_HALT); fill += BP_GET_FILL(ibp); } } DB_DNODE_EXIT(db); if (!BP_IS_EMBEDDED(bp)) BP_SET_FILL(bp, fill); mutex_exit(&db->db_mtx); db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); *db->db_blkptr = *bp; dmu_buf_unlock_parent(db, dblt, FTAG); } /* * This function gets called just prior to running through the compression * stage of the zio pipeline. If we're an indirect block comprised of only * holes, then we want this indirect to be compressed away to a hole. In * order to do that we must zero out any information about the holes that * this indirect points to prior to before we try to compress it. */ static void dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) { (void) zio, (void) buf; dmu_buf_impl_t *db = vdb; dnode_t *dn; blkptr_t *bp; unsigned int epbs, i; ASSERT3U(db->db_level, >, 0); DB_DNODE_ENTER(db); dn = DB_DNODE(db); epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT3U(epbs, <, 31); /* Determine if all our children are holes */ for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { if (!BP_IS_HOLE(bp)) break; } /* * If all the children are holes, then zero them all out so that * we may get compressed away. */ if (i == 1ULL << epbs) { /* * We only found holes. Grab the rwlock to prevent * anybody from reading the blocks we're about to * zero out. */ rw_enter(&db->db_rwlock, RW_WRITER); memset(db->db.db_data, 0, db->db.db_size); rw_exit(&db->db_rwlock); } DB_DNODE_EXIT(db); } static void dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) { (void) buf; dmu_buf_impl_t *db = vdb; blkptr_t *bp_orig = &zio->io_bp_orig; blkptr_t *bp = db->db_blkptr; objset_t *os = db->db_objset; dmu_tx_t *tx = os->os_synctx; ASSERT0(zio->io_error); ASSERT(db->db_blkptr == bp); /* * For nopwrites and rewrites we ensure that the bp matches our * original and bypass all the accounting. */ if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { ASSERT(BP_EQUAL(bp, bp_orig)); } else { dsl_dataset_t *ds = os->os_dsl_dataset; (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); dsl_dataset_block_born(ds, bp, tx); } mutex_enter(&db->db_mtx); DBUF_VERIFY(db); dbuf_dirty_record_t *dr = db->db_data_pending; dnode_t *dn = dr->dr_dnode; ASSERT(!list_link_active(&dr->dr_dirty_node)); ASSERT(dr->dr_dbuf == db); ASSERT(list_next(&db->db_dirty_records, dr) == NULL); list_remove(&db->db_dirty_records, dr); #ifdef ZFS_DEBUG if (db->db_blkid == DMU_SPILL_BLKID) { ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); } #endif if (db->db_level == 0) { ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); if (dr->dt.dl.dr_data != NULL && dr->dt.dl.dr_data != db->db_buf) { arc_buf_destroy(dr->dt.dl.dr_data, db); } } else { ASSERT(list_head(&dr->dt.di.dr_children) == NULL); ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); if (!BP_IS_HOLE(db->db_blkptr)) { int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT3U(db->db_blkid, <=, dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, db->db.db_size); } mutex_destroy(&dr->dt.di.dr_mtx); list_destroy(&dr->dt.di.dr_children); } cv_broadcast(&db->db_changed); ASSERT(db->db_dirtycnt > 0); db->db_dirtycnt -= 1; db->db_data_pending = NULL; dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, zio->io_txg); kmem_free(dr, sizeof (dbuf_dirty_record_t)); } static void dbuf_write_nofill_ready(zio_t *zio) { dbuf_write_ready(zio, NULL, zio->io_private); } static void dbuf_write_nofill_done(zio_t *zio) { dbuf_write_done(zio, NULL, zio->io_private); } static void dbuf_write_override_ready(zio_t *zio) { dbuf_dirty_record_t *dr = zio->io_private; dmu_buf_impl_t *db = dr->dr_dbuf; dbuf_write_ready(zio, NULL, db); } static void dbuf_write_override_done(zio_t *zio) { dbuf_dirty_record_t *dr = zio->io_private; dmu_buf_impl_t *db = dr->dr_dbuf; blkptr_t *obp = &dr->dt.dl.dr_overridden_by; mutex_enter(&db->db_mtx); if (!BP_EQUAL(zio->io_bp, obp)) { if (!BP_IS_HOLE(obp)) dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); arc_release(dr->dt.dl.dr_data, db); } mutex_exit(&db->db_mtx); dbuf_write_done(zio, NULL, db); if (zio->io_abd != NULL) abd_free(zio->io_abd); } typedef struct dbuf_remap_impl_callback_arg { objset_t *drica_os; uint64_t drica_blk_birth; dmu_tx_t *drica_tx; } dbuf_remap_impl_callback_arg_t; static void dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, void *arg) { dbuf_remap_impl_callback_arg_t *drica = arg; objset_t *os = drica->drica_os; spa_t *spa = dmu_objset_spa(os); dmu_tx_t *tx = drica->drica_tx; ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); if (os == spa_meta_objset(spa)) { spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); } else { dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, size, drica->drica_blk_birth, tx); } } static void dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) { blkptr_t bp_copy = *bp; spa_t *spa = dmu_objset_spa(dn->dn_objset); dbuf_remap_impl_callback_arg_t drica; ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); drica.drica_os = dn->dn_objset; drica.drica_blk_birth = bp->blk_birth; drica.drica_tx = tx; if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, &drica)) { /* * If the blkptr being remapped is tracked by a livelist, * then we need to make sure the livelist reflects the update. * First, cancel out the old blkptr by appending a 'FREE' * entry. Next, add an 'ALLOC' to track the new version. This * way we avoid trying to free an inaccurate blkptr at delete. * Note that embedded blkptrs are not tracked in livelists. */ if (dn->dn_objset != spa_meta_objset(spa)) { dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && bp->blk_birth > ds->ds_dir->dd_origin_txg) { ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT(dsl_dir_is_clone(ds->ds_dir)); ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LIVELIST)); bplist_append(&ds->ds_dir->dd_pending_frees, bp); bplist_append(&ds->ds_dir->dd_pending_allocs, &bp_copy); } } /* * The db_rwlock prevents dbuf_read_impl() from * dereferencing the BP while we are changing it. To * avoid lock contention, only grab it when we are actually * changing the BP. */ if (rw != NULL) rw_enter(rw, RW_WRITER); *bp = bp_copy; if (rw != NULL) rw_exit(rw); } } /* * Remap any existing BP's to concrete vdevs, if possible. */ static void dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) { spa_t *spa = dmu_objset_spa(db->db_objset); ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) return; if (db->db_level > 0) { blkptr_t *bp = db->db.db_data; for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); } } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { dnode_phys_t *dnp = db->db.db_data; ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, DMU_OT_DNODE); for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; i += dnp[i].dn_extra_slots + 1) { for (int j = 0; j < dnp[i].dn_nblkptr; j++) { krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : &dn->dn_dbuf->db_rwlock); dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, tx); } } } } /* Issue I/O to commit a dirty buffer to disk. */ static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) { dmu_buf_impl_t *db = dr->dr_dbuf; dnode_t *dn = dr->dr_dnode; objset_t *os; dmu_buf_impl_t *parent = db->db_parent; uint64_t txg = tx->tx_txg; zbookmark_phys_t zb; zio_prop_t zp; zio_t *pio; /* parent I/O */ int wp_flag = 0; ASSERT(dmu_tx_is_syncing(tx)); os = dn->dn_objset; if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { /* * Private object buffers are released here rather than in * dbuf_dirty() since they are only modified in the syncing * context and we don't want the overhead of making multiple * copies of the data. */ if (BP_IS_HOLE(db->db_blkptr)) arc_buf_thaw(data); else dbuf_release_bp(db); dbuf_remap(dn, db, tx); } if (parent != dn->dn_dbuf) { /* Our parent is an indirect block. */ /* We have a dirty parent that has been scheduled for write. */ ASSERT(parent && parent->db_data_pending); /* Our parent's buffer is one level closer to the dnode. */ ASSERT(db->db_level == parent->db_level-1); /* * We're about to modify our parent's db_data by modifying * our block pointer, so the parent must be released. */ ASSERT(arc_released(parent->db_buf)); pio = parent->db_data_pending->dr_zio; } else { /* Our parent is the dnode itself. */ ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && db->db_blkid != DMU_SPILL_BLKID) || (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); if (db->db_blkid != DMU_SPILL_BLKID) ASSERT3P(db->db_blkptr, ==, &dn->dn_phys->dn_blkptr[db->db_blkid]); pio = dn->dn_zio; } ASSERT(db->db_level == 0 || data == db->db_buf); ASSERT3U(db->db_blkptr->blk_birth, <=, txg); ASSERT(pio); SET_BOOKMARK(&zb, os->os_dsl_dataset ? os->os_dsl_dataset->ds_object : DMU_META_OBJSET, db->db.db_object, db->db_level, db->db_blkid); if (db->db_blkid == DMU_SPILL_BLKID) wp_flag = WP_SPILL; wp_flag |= (data == NULL) ? WP_NOFILL : 0; dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); /* * We copy the blkptr now (rather than when we instantiate the dirty * record), because its value can change between open context and * syncing context. We do not need to hold dn_struct_rwlock to read * db_blkptr because we are in syncing context. */ dr->dr_bp_copy = *db->db_blkptr; if (db->db_level == 0 && dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { /* * The BP for this block has been provided by open context * (by dmu_sync() or dmu_buf_write_embedded()). */ abd_t *contents = (data != NULL) ? abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size, &zp, dbuf_write_override_ready, NULL, dbuf_write_override_done, dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); mutex_enter(&db->db_mtx); dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite, dr->dt.dl.dr_brtwrite); mutex_exit(&db->db_mtx); } else if (data == NULL) { ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); } else { ASSERT(arc_released(data)); /* * For indirect blocks, we want to setup the children * ready callback so that we can properly handle an indirect * block that only contains holes. */ arc_write_done_func_t *children_ready_cb = NULL; if (db->db_level != 0) children_ready_cb = dbuf_write_children_ready; dr->dr_zio = arc_write(pio, os->os_spa, txg, &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db), dbuf_is_l2cacheable(db), &zp, dbuf_write_ready, children_ready_cb, dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); } } EXPORT_SYMBOL(dbuf_find); EXPORT_SYMBOL(dbuf_is_metadata); EXPORT_SYMBOL(dbuf_destroy); EXPORT_SYMBOL(dbuf_loan_arcbuf); EXPORT_SYMBOL(dbuf_whichblock); EXPORT_SYMBOL(dbuf_read); EXPORT_SYMBOL(dbuf_unoverride); EXPORT_SYMBOL(dbuf_free_range); EXPORT_SYMBOL(dbuf_new_size); EXPORT_SYMBOL(dbuf_release_bp); EXPORT_SYMBOL(dbuf_dirty); EXPORT_SYMBOL(dmu_buf_set_crypt_params); EXPORT_SYMBOL(dmu_buf_will_dirty); EXPORT_SYMBOL(dmu_buf_is_dirty); EXPORT_SYMBOL(dmu_buf_will_clone); EXPORT_SYMBOL(dmu_buf_will_not_fill); EXPORT_SYMBOL(dmu_buf_will_fill); EXPORT_SYMBOL(dmu_buf_fill_done); EXPORT_SYMBOL(dmu_buf_rele); EXPORT_SYMBOL(dbuf_assign_arcbuf); EXPORT_SYMBOL(dbuf_prefetch); EXPORT_SYMBOL(dbuf_hold_impl); EXPORT_SYMBOL(dbuf_hold); EXPORT_SYMBOL(dbuf_hold_level); EXPORT_SYMBOL(dbuf_create_bonus); EXPORT_SYMBOL(dbuf_spill_set_blksz); EXPORT_SYMBOL(dbuf_rm_spill); EXPORT_SYMBOL(dbuf_add_ref); EXPORT_SYMBOL(dbuf_rele); EXPORT_SYMBOL(dbuf_rele_and_unlock); EXPORT_SYMBOL(dbuf_refcount); EXPORT_SYMBOL(dbuf_sync_list); EXPORT_SYMBOL(dmu_buf_set_user); EXPORT_SYMBOL(dmu_buf_set_user_ie); EXPORT_SYMBOL(dmu_buf_get_user); EXPORT_SYMBOL(dmu_buf_get_blkptr); ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, "Maximum size in bytes of the dbuf cache."); ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, "Maximum size in bytes of dbuf metadata cache."); ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, "Set size of dbuf cache to log2 fraction of arc size."); ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, "Set size of dbuf metadata cache to log2 fraction of arc size."); ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, "Set size of dbuf cache mutex array as log2 shift.");