/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2011, Lawrence Livermore National Security, LLC. * * Extended attributes (xattr) on Solaris are implemented as files * which exist in a hidden xattr directory. These extended attributes * can be accessed using the attropen() system call which opens * the extended attribute. It can then be manipulated just like * a standard file descriptor. This has a couple advantages such * as practically no size limit on the file, and the extended * attributes permissions may differ from those of the parent file. * This interface is really quite clever, but it's also completely * different than what is supported on Linux. It also comes with a * steep performance penalty when accessing small xattrs because they * are not stored with the parent file. * * Under Linux extended attributes are manipulated by the system * calls getxattr(2), setxattr(2), and listxattr(2). They consider * extended attributes to be name/value pairs where the name is a * NULL terminated string. The name must also include one of the * following namespace prefixes: * * user - No restrictions and is available to user applications. * trusted - Restricted to kernel and root (CAP_SYS_ADMIN) use. * system - Used for access control lists (system.nfs4_acl, etc). * security - Used by SELinux to store a files security context. * * The value under Linux to limited to 65536 bytes of binary data. * In practice, individual xattrs tend to be much smaller than this * and are typically less than 100 bytes. A good example of this * are the security.selinux xattrs which are less than 100 bytes and * exist for every file when xattr labeling is enabled. * * The Linux xattr implemenation has been written to take advantage of * this typical usage. When the dataset property 'xattr=sa' is set, * then xattrs will be preferentially stored as System Attributes (SA). * This allows tiny xattrs (~100 bytes) to be stored with the dnode and * up to 64k of xattrs to be stored in the spill block. If additional * xattr space is required, which is unlikely under Linux, they will * be stored using the traditional directory approach. * * This optimization results in roughly a 3x performance improvement * when accessing xattrs because it avoids the need to perform a seek * for every xattr value. When multiple xattrs are stored per-file * the performance improvements are even greater because all of the * xattrs stored in the spill block will be cached. * * However, by default SA based xattrs are disabled in the Linux port * to maximize compatibility with other implementations. If you do * enable SA based xattrs then they will not be visible on platforms * which do not support this feature. * * NOTE: One additional consequence of the xattr directory implementation * is that when an extended attribute is manipulated an inode is created. * This inode will exist in the Linux inode cache but there will be no * associated entry in the dentry cache which references it. This is * safe but it may result in some confusion. Enabling SA based xattrs * largely avoids the issue except in the overflow case. */ #include #include #include #include #include #include typedef struct xattr_filldir { size_t size; size_t offset; char *buf; struct dentry *dentry; } xattr_filldir_t; static const struct xattr_handler *zpl_xattr_handler(const char *); static int zpl_xattr_permission(xattr_filldir_t *xf, const char *name, int name_len) { static const struct xattr_handler *handler; struct dentry *d = xf->dentry; handler = zpl_xattr_handler(name); if (!handler) return (0); if (handler->list) { #if defined(HAVE_XATTR_LIST_SIMPLE) if (!handler->list(d)) return (0); #elif defined(HAVE_XATTR_LIST_DENTRY) if (!handler->list(d, NULL, 0, name, name_len, 0)) return (0); #elif defined(HAVE_XATTR_LIST_HANDLER) if (!handler->list(handler, d, NULL, 0, name, name_len)) return (0); #elif defined(HAVE_XATTR_LIST_INODE) if (!handler->list(d->d_inode, NULL, 0, name, name_len)) return (0); #endif } return (1); } /* * Determine is a given xattr name should be visible and if so copy it * in to the provided buffer (xf->buf). */ static int zpl_xattr_filldir(xattr_filldir_t *xf, const char *name, int name_len) { /* Check permissions using the per-namespace list xattr handler. */ if (!zpl_xattr_permission(xf, name, name_len)) return (0); /* When xf->buf is NULL only calculate the required size. */ if (xf->buf) { if (xf->offset + name_len + 1 > xf->size) return (-ERANGE); memcpy(xf->buf + xf->offset, name, name_len); xf->buf[xf->offset + name_len] = '\0'; } xf->offset += (name_len + 1); return (0); } /* * Read as many directory entry names as will fit in to the provided buffer, * or when no buffer is provided calculate the required buffer size. */ int zpl_xattr_readdir(struct inode *dxip, xattr_filldir_t *xf) { zap_cursor_t zc; zap_attribute_t zap; int error; zap_cursor_init(&zc, ITOZSB(dxip)->z_os, ITOZ(dxip)->z_id); while ((error = -zap_cursor_retrieve(&zc, &zap)) == 0) { if (zap.za_integer_length != 8 || zap.za_num_integers != 1) { error = -ENXIO; break; } error = zpl_xattr_filldir(xf, zap.za_name, strlen(zap.za_name)); if (error) break; zap_cursor_advance(&zc); } zap_cursor_fini(&zc); if (error == -ENOENT) error = 0; return (error); } static ssize_t zpl_xattr_list_dir(xattr_filldir_t *xf, cred_t *cr) { struct inode *ip = xf->dentry->d_inode; struct inode *dxip = NULL; int error; /* Lookup the xattr directory */ error = -zfs_lookup(ip, NULL, &dxip, LOOKUP_XATTR, cr, NULL, NULL); if (error) { if (error == -ENOENT) error = 0; return (error); } error = zpl_xattr_readdir(dxip, xf); iput(dxip); return (error); } static ssize_t zpl_xattr_list_sa(xattr_filldir_t *xf) { znode_t *zp = ITOZ(xf->dentry->d_inode); nvpair_t *nvp = NULL; int error = 0; mutex_enter(&zp->z_lock); if (zp->z_xattr_cached == NULL) error = -zfs_sa_get_xattr(zp); mutex_exit(&zp->z_lock); if (error) return (error); ASSERT(zp->z_xattr_cached); while ((nvp = nvlist_next_nvpair(zp->z_xattr_cached, nvp)) != NULL) { ASSERT3U(nvpair_type(nvp), ==, DATA_TYPE_BYTE_ARRAY); error = zpl_xattr_filldir(xf, nvpair_name(nvp), strlen(nvpair_name(nvp))); if (error) return (error); } return (0); } ssize_t zpl_xattr_list(struct dentry *dentry, char *buffer, size_t buffer_size) { znode_t *zp = ITOZ(dentry->d_inode); zfs_sb_t *zsb = ZTOZSB(zp); xattr_filldir_t xf = { buffer_size, 0, buffer, dentry }; cred_t *cr = CRED(); fstrans_cookie_t cookie; int error = 0; crhold(cr); cookie = spl_fstrans_mark(); rrm_enter_read(&(zsb)->z_teardown_lock, FTAG); rw_enter(&zp->z_xattr_lock, RW_READER); if (zsb->z_use_sa && zp->z_is_sa) { error = zpl_xattr_list_sa(&xf); if (error) goto out; } error = zpl_xattr_list_dir(&xf, cr); if (error) goto out; error = xf.offset; out: rw_exit(&zp->z_xattr_lock); rrm_exit(&(zsb)->z_teardown_lock, FTAG); spl_fstrans_unmark(cookie); crfree(cr); return (error); } static int zpl_xattr_get_dir(struct inode *ip, const char *name, void *value, size_t size, cred_t *cr) { struct inode *dxip = NULL; struct inode *xip = NULL; loff_t pos = 0; int error; /* Lookup the xattr directory */ error = -zfs_lookup(ip, NULL, &dxip, LOOKUP_XATTR, cr, NULL, NULL); if (error) goto out; /* Lookup a specific xattr name in the directory */ error = -zfs_lookup(dxip, (char *)name, &xip, 0, cr, NULL, NULL); if (error) goto out; if (!size) { error = i_size_read(xip); goto out; } if (size < i_size_read(xip)) { error = -ERANGE; goto out; } error = zpl_read_common(xip, value, size, &pos, UIO_SYSSPACE, 0, cr); out: if (xip) iput(xip); if (dxip) iput(dxip); return (error); } static int zpl_xattr_get_sa(struct inode *ip, const char *name, void *value, size_t size) { znode_t *zp = ITOZ(ip); uchar_t *nv_value; uint_t nv_size; int error = 0; ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock)); mutex_enter(&zp->z_lock); if (zp->z_xattr_cached == NULL) error = -zfs_sa_get_xattr(zp); mutex_exit(&zp->z_lock); if (error) return (error); ASSERT(zp->z_xattr_cached); error = -nvlist_lookup_byte_array(zp->z_xattr_cached, name, &nv_value, &nv_size); if (error) return (error); if (!size) return (nv_size); if (size < nv_size) return (-ERANGE); memcpy(value, nv_value, nv_size); return (nv_size); } static int __zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size, cred_t *cr) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ZTOZSB(zp); int error; ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock)); if (zsb->z_use_sa && zp->z_is_sa) { error = zpl_xattr_get_sa(ip, name, value, size); if (error != -ENOENT) goto out; } error = zpl_xattr_get_dir(ip, name, value, size, cr); out: if (error == -ENOENT) error = -ENODATA; return (error); } #define XATTR_NOENT 0x0 #define XATTR_IN_SA 0x1 #define XATTR_IN_DIR 0x2 /* check where the xattr resides */ static int __zpl_xattr_where(struct inode *ip, const char *name, int *where, cred_t *cr) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ZTOZSB(zp); int error; ASSERT(where); ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock)); *where = XATTR_NOENT; if (zsb->z_use_sa && zp->z_is_sa) { error = zpl_xattr_get_sa(ip, name, NULL, 0); if (error >= 0) *where |= XATTR_IN_SA; else if (error != -ENOENT) return (error); } error = zpl_xattr_get_dir(ip, name, NULL, 0, cr); if (error >= 0) *where |= XATTR_IN_DIR; else if (error != -ENOENT) return (error); if (*where == (XATTR_IN_SA|XATTR_IN_DIR)) cmn_err(CE_WARN, "ZFS: inode %p has xattr \"%s\"" " in both SA and dir", ip, name); if (*where == XATTR_NOENT) error = -ENODATA; else error = 0; return (error); } static int zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ZTOZSB(zp); cred_t *cr = CRED(); fstrans_cookie_t cookie; int error; crhold(cr); cookie = spl_fstrans_mark(); rrm_enter_read(&(zsb)->z_teardown_lock, FTAG); rw_enter(&zp->z_xattr_lock, RW_READER); error = __zpl_xattr_get(ip, name, value, size, cr); rw_exit(&zp->z_xattr_lock); rrm_exit(&(zsb)->z_teardown_lock, FTAG); spl_fstrans_unmark(cookie); crfree(cr); return (error); } static int zpl_xattr_set_dir(struct inode *ip, const char *name, const void *value, size_t size, int flags, cred_t *cr) { struct inode *dxip = NULL; struct inode *xip = NULL; vattr_t *vap = NULL; ssize_t wrote; int lookup_flags, error; const int xattr_mode = S_IFREG | 0644; loff_t pos = 0; /* * Lookup the xattr directory. When we're adding an entry pass * CREATE_XATTR_DIR to ensure the xattr directory is created. * When removing an entry this flag is not passed to avoid * unnecessarily creating a new xattr directory. */ lookup_flags = LOOKUP_XATTR; if (value != NULL) lookup_flags |= CREATE_XATTR_DIR; error = -zfs_lookup(ip, NULL, &dxip, lookup_flags, cr, NULL, NULL); if (error) goto out; /* Lookup a specific xattr name in the directory */ error = -zfs_lookup(dxip, (char *)name, &xip, 0, cr, NULL, NULL); if (error && (error != -ENOENT)) goto out; error = 0; /* Remove a specific name xattr when value is set to NULL. */ if (value == NULL) { if (xip) error = -zfs_remove(dxip, (char *)name, cr, 0); goto out; } /* Lookup failed create a new xattr. */ if (xip == NULL) { vap = kmem_zalloc(sizeof (vattr_t), KM_SLEEP); vap->va_mode = xattr_mode; vap->va_mask = ATTR_MODE; vap->va_uid = crgetfsuid(cr); vap->va_gid = crgetfsgid(cr); error = -zfs_create(dxip, (char *)name, vap, 0, 0644, &xip, cr, 0, NULL); if (error) goto out; } ASSERT(xip != NULL); error = -zfs_freesp(ITOZ(xip), 0, 0, xattr_mode, TRUE); if (error) goto out; wrote = zpl_write_common(xip, value, size, &pos, UIO_SYSSPACE, 0, cr); if (wrote < 0) error = wrote; out: if (vap) kmem_free(vap, sizeof (vattr_t)); if (xip) iput(xip); if (dxip) iput(dxip); if (error == -ENOENT) error = -ENODATA; ASSERT3S(error, <=, 0); return (error); } static int zpl_xattr_set_sa(struct inode *ip, const char *name, const void *value, size_t size, int flags, cred_t *cr) { znode_t *zp = ITOZ(ip); nvlist_t *nvl; size_t sa_size; int error = 0; mutex_enter(&zp->z_lock); if (zp->z_xattr_cached == NULL) error = -zfs_sa_get_xattr(zp); mutex_exit(&zp->z_lock); if (error) return (error); ASSERT(zp->z_xattr_cached); nvl = zp->z_xattr_cached; if (value == NULL) { error = -nvlist_remove(nvl, name, DATA_TYPE_BYTE_ARRAY); if (error == -ENOENT) error = zpl_xattr_set_dir(ip, name, NULL, 0, flags, cr); } else { /* Limited to 32k to keep nvpair memory allocations small */ if (size > DXATTR_MAX_ENTRY_SIZE) return (-EFBIG); /* Prevent the DXATTR SA from consuming the entire SA region */ error = -nvlist_size(nvl, &sa_size, NV_ENCODE_XDR); if (error) return (error); if (sa_size > DXATTR_MAX_SA_SIZE) return (-EFBIG); error = -nvlist_add_byte_array(nvl, name, (uchar_t *)value, size); } /* * Update the SA for additions, modifications, and removals. On * error drop the inconsistent cached version of the nvlist, it * will be reconstructed from the ARC when next accessed. */ if (error == 0) error = -zfs_sa_set_xattr(zp); if (error) { nvlist_free(nvl); zp->z_xattr_cached = NULL; } ASSERT3S(error, <=, 0); return (error); } static int zpl_xattr_set(struct inode *ip, const char *name, const void *value, size_t size, int flags) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ZTOZSB(zp); cred_t *cr = CRED(); fstrans_cookie_t cookie; int where; int error; crhold(cr); cookie = spl_fstrans_mark(); rrm_enter_read(&(zsb)->z_teardown_lock, FTAG); rw_enter(&ITOZ(ip)->z_xattr_lock, RW_WRITER); /* * Before setting the xattr check to see if it already exists. * This is done to ensure the following optional flags are honored. * * XATTR_CREATE: fail if xattr already exists * XATTR_REPLACE: fail if xattr does not exist * * We also want to know if it resides in sa or dir, so we can make * sure we don't end up with duplicate in both places. */ error = __zpl_xattr_where(ip, name, &where, cr); if (error < 0) { if (error != -ENODATA) goto out; if (flags & XATTR_REPLACE) goto out; /* The xattr to be removed already doesn't exist */ error = 0; if (value == NULL) goto out; } else { error = -EEXIST; if (flags & XATTR_CREATE) goto out; } /* Preferentially store the xattr as a SA for better performance */ if (zsb->z_use_sa && zp->z_is_sa && (zsb->z_xattr_sa || (value == NULL && where & XATTR_IN_SA))) { error = zpl_xattr_set_sa(ip, name, value, size, flags, cr); if (error == 0) { /* * Successfully put into SA, we need to clear the one * in dir. */ if (where & XATTR_IN_DIR) zpl_xattr_set_dir(ip, name, NULL, 0, 0, cr); goto out; } } error = zpl_xattr_set_dir(ip, name, value, size, flags, cr); /* * Successfully put into dir, we need to clear the one in SA. */ if (error == 0 && (where & XATTR_IN_SA)) zpl_xattr_set_sa(ip, name, NULL, 0, 0, cr); out: rw_exit(&ITOZ(ip)->z_xattr_lock); rrm_exit(&(zsb)->z_teardown_lock, FTAG); spl_fstrans_unmark(cookie); crfree(cr); ASSERT3S(error, <=, 0); return (error); } /* * Extended user attributes * * "Extended user attributes may be assigned to files and directories for * storing arbitrary additional information such as the mime type, * character set or encoding of a file. The access permissions for user * attributes are defined by the file permission bits: read permission * is required to retrieve the attribute value, and writer permission is * required to change it. * * The file permission bits of regular files and directories are * interpreted differently from the file permission bits of special * files and symbolic links. For regular files and directories the file * permission bits define access to the file's contents, while for * device special files they define access to the device described by * the special file. The file permissions of symbolic links are not * used in access checks. These differences would allow users to * consume filesystem resources in a way not controllable by disk quotas * for group or world writable special files and directories. * * For this reason, extended user attributes are allowed only for * regular files and directories, and access to extended user attributes * is restricted to the owner and to users with appropriate capabilities * for directories with the sticky bit set (see the chmod(1) manual page * for an explanation of the sticky bit)." - xattr(7) * * ZFS allows extended user attributes to be disabled administratively * by setting the 'xattr=off' property on the dataset. */ static int __zpl_xattr_user_list(struct inode *ip, char *list, size_t list_size, const char *name, size_t name_len) { return (ITOZSB(ip)->z_flags & ZSB_XATTR); } ZPL_XATTR_LIST_WRAPPER(zpl_xattr_user_list); static int __zpl_xattr_user_get(struct inode *ip, const char *name, void *value, size_t size) { char *xattr_name; int error; /* xattr_resolve_name will do this for us if this is defined */ #ifndef HAVE_XATTR_HANDLER_NAME if (strcmp(name, "") == 0) return (-EINVAL); #endif if (!(ITOZSB(ip)->z_flags & ZSB_XATTR)) return (-EOPNOTSUPP); xattr_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name); error = zpl_xattr_get(ip, xattr_name, value, size); strfree(xattr_name); return (error); } ZPL_XATTR_GET_WRAPPER(zpl_xattr_user_get); static int __zpl_xattr_user_set(struct inode *ip, const char *name, const void *value, size_t size, int flags) { char *xattr_name; int error; /* xattr_resolve_name will do this for us if this is defined */ #ifndef HAVE_XATTR_HANDLER_NAME if (strcmp(name, "") == 0) return (-EINVAL); #endif if (!(ITOZSB(ip)->z_flags & ZSB_XATTR)) return (-EOPNOTSUPP); xattr_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name); error = zpl_xattr_set(ip, xattr_name, value, size, flags); strfree(xattr_name); return (error); } ZPL_XATTR_SET_WRAPPER(zpl_xattr_user_set); xattr_handler_t zpl_xattr_user_handler = { .prefix = XATTR_USER_PREFIX, .list = zpl_xattr_user_list, .get = zpl_xattr_user_get, .set = zpl_xattr_user_set, }; /* * Trusted extended attributes * * "Trusted extended attributes are visible and accessible only to * processes that have the CAP_SYS_ADMIN capability. Attributes in this * class are used to implement mechanisms in user space (i.e., outside * the kernel) which keep information in extended attributes to which * ordinary processes should not have access." - xattr(7) */ static int __zpl_xattr_trusted_list(struct inode *ip, char *list, size_t list_size, const char *name, size_t name_len) { return (capable(CAP_SYS_ADMIN)); } ZPL_XATTR_LIST_WRAPPER(zpl_xattr_trusted_list); static int __zpl_xattr_trusted_get(struct inode *ip, const char *name, void *value, size_t size) { char *xattr_name; int error; if (!capable(CAP_SYS_ADMIN)) return (-EACCES); /* xattr_resolve_name will do this for us if this is defined */ #ifndef HAVE_XATTR_HANDLER_NAME if (strcmp(name, "") == 0) return (-EINVAL); #endif xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name); error = zpl_xattr_get(ip, xattr_name, value, size); strfree(xattr_name); return (error); } ZPL_XATTR_GET_WRAPPER(zpl_xattr_trusted_get); static int __zpl_xattr_trusted_set(struct inode *ip, const char *name, const void *value, size_t size, int flags) { char *xattr_name; int error; if (!capable(CAP_SYS_ADMIN)) return (-EACCES); /* xattr_resolve_name will do this for us if this is defined */ #ifndef HAVE_XATTR_HANDLER_NAME if (strcmp(name, "") == 0) return (-EINVAL); #endif xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name); error = zpl_xattr_set(ip, xattr_name, value, size, flags); strfree(xattr_name); return (error); } ZPL_XATTR_SET_WRAPPER(zpl_xattr_trusted_set); xattr_handler_t zpl_xattr_trusted_handler = { .prefix = XATTR_TRUSTED_PREFIX, .list = zpl_xattr_trusted_list, .get = zpl_xattr_trusted_get, .set = zpl_xattr_trusted_set, }; /* * Extended security attributes * * "The security attribute namespace is used by kernel security modules, * such as Security Enhanced Linux, and also to implement file * capabilities (see capabilities(7)). Read and write access * permissions to security attributes depend on the policy implemented * for each security attribute by the security module. When no security * module is loaded, all processes have read access to extended security * attributes, and write access is limited to processes that have the * CAP_SYS_ADMIN capability." - xattr(7) */ static int __zpl_xattr_security_list(struct inode *ip, char *list, size_t list_size, const char *name, size_t name_len) { return (1); } ZPL_XATTR_LIST_WRAPPER(zpl_xattr_security_list); static int __zpl_xattr_security_get(struct inode *ip, const char *name, void *value, size_t size) { char *xattr_name; int error; /* xattr_resolve_name will do this for us if this is defined */ #ifndef HAVE_XATTR_HANDLER_NAME if (strcmp(name, "") == 0) return (-EINVAL); #endif xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name); error = zpl_xattr_get(ip, xattr_name, value, size); strfree(xattr_name); return (error); } ZPL_XATTR_GET_WRAPPER(zpl_xattr_security_get); static int __zpl_xattr_security_set(struct inode *ip, const char *name, const void *value, size_t size, int flags) { char *xattr_name; int error; /* xattr_resolve_name will do this for us if this is defined */ #ifndef HAVE_XATTR_HANDLER_NAME if (strcmp(name, "") == 0) return (-EINVAL); #endif xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name); error = zpl_xattr_set(ip, xattr_name, value, size, flags); strfree(xattr_name); return (error); } ZPL_XATTR_SET_WRAPPER(zpl_xattr_security_set); #ifdef HAVE_CALLBACK_SECURITY_INODE_INIT_SECURITY static int __zpl_xattr_security_init(struct inode *ip, const struct xattr *xattrs, void *fs_info) { const struct xattr *xattr; int error = 0; for (xattr = xattrs; xattr->name != NULL; xattr++) { error = __zpl_xattr_security_set(ip, xattr->name, xattr->value, xattr->value_len, 0); if (error < 0) break; } return (error); } int zpl_xattr_security_init(struct inode *ip, struct inode *dip, const struct qstr *qstr) { return security_inode_init_security(ip, dip, qstr, &__zpl_xattr_security_init, NULL); } #else int zpl_xattr_security_init(struct inode *ip, struct inode *dip, const struct qstr *qstr) { int error; size_t len; void *value; char *name; error = zpl_security_inode_init_security(ip, dip, qstr, &name, &value, &len); if (error) { if (error == -EOPNOTSUPP) return (0); return (error); } error = __zpl_xattr_security_set(ip, name, value, len, 0); kfree(name); kfree(value); return (error); } #endif /* HAVE_CALLBACK_SECURITY_INODE_INIT_SECURITY */ /* * Security xattr namespace handlers. */ xattr_handler_t zpl_xattr_security_handler = { .prefix = XATTR_SECURITY_PREFIX, .list = zpl_xattr_security_list, .get = zpl_xattr_security_get, .set = zpl_xattr_security_set, }; /* * Extended system attributes * * "Extended system attributes are used by the kernel to store system * objects such as Access Control Lists. Read and write access permissions * to system attributes depend on the policy implemented for each system * attribute implemented by filesystems in the kernel." - xattr(7) */ #ifdef CONFIG_FS_POSIX_ACL int zpl_set_acl(struct inode *ip, int type, struct posix_acl *acl) { struct super_block *sb = ITOZSB(ip)->z_sb; char *name, *value = NULL; int error = 0; size_t size = 0; if (S_ISLNK(ip->i_mode)) return (-EOPNOTSUPP); switch (type) { case ACL_TYPE_ACCESS: name = XATTR_NAME_POSIX_ACL_ACCESS; if (acl) { zpl_equivmode_t mode = ip->i_mode; error = posix_acl_equiv_mode(acl, &mode); if (error < 0) { return (error); } else { /* * The mode bits will have been set by * ->zfs_setattr()->zfs_acl_chmod_setattr() * using the ZFS ACL conversion. If they * differ from the Posix ACL conversion dirty * the inode to write the Posix mode bits. */ if (ip->i_mode != mode) { ip->i_mode = mode; ip->i_ctime = current_fs_time(sb); zfs_mark_inode_dirty(ip); } if (error == 0) acl = NULL; } } break; case ACL_TYPE_DEFAULT: name = XATTR_NAME_POSIX_ACL_DEFAULT; if (!S_ISDIR(ip->i_mode)) return (acl ? -EACCES : 0); break; default: return (-EINVAL); } if (acl) { size = posix_acl_xattr_size(acl->a_count); value = kmem_alloc(size, KM_SLEEP); error = zpl_acl_to_xattr(acl, value, size); if (error < 0) { kmem_free(value, size); return (error); } } error = zpl_xattr_set(ip, name, value, size, 0); if (value) kmem_free(value, size); if (!error) { if (acl) zpl_set_cached_acl(ip, type, acl); else zpl_forget_cached_acl(ip, type); } return (error); } struct posix_acl * zpl_get_acl(struct inode *ip, int type) { struct posix_acl *acl; void *value = NULL; char *name; int size; /* * As of Linux 3.14, the kernel get_acl will check this for us. * Also as of Linux 4.7, comparing against ACL_NOT_CACHED is wrong * as the kernel get_acl will set it to temporary sentinel value. */ #ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE acl = get_cached_acl(ip, type); if (acl != ACL_NOT_CACHED) return (acl); #endif switch (type) { case ACL_TYPE_ACCESS: name = XATTR_NAME_POSIX_ACL_ACCESS; break; case ACL_TYPE_DEFAULT: name = XATTR_NAME_POSIX_ACL_DEFAULT; break; default: return (ERR_PTR(-EINVAL)); } size = zpl_xattr_get(ip, name, NULL, 0); if (size > 0) { value = kmem_alloc(size, KM_SLEEP); size = zpl_xattr_get(ip, name, value, size); } if (size > 0) { acl = zpl_acl_from_xattr(value, size); } else if (size == -ENODATA || size == -ENOSYS) { acl = NULL; } else { acl = ERR_PTR(-EIO); } if (size > 0) kmem_free(value, size); /* As of Linux 4.7, the kernel get_acl will set this for us */ #ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE if (!IS_ERR(acl)) zpl_set_cached_acl(ip, type, acl); #endif return (acl); } #if !defined(HAVE_GET_ACL) static int __zpl_check_acl(struct inode *ip, int mask) { struct posix_acl *acl; int error; acl = zpl_get_acl(ip, ACL_TYPE_ACCESS); if (IS_ERR(acl)) return (PTR_ERR(acl)); if (acl) { error = posix_acl_permission(ip, acl, mask); zpl_posix_acl_release(acl); return (error); } return (-EAGAIN); } #if defined(HAVE_CHECK_ACL_WITH_FLAGS) int zpl_check_acl(struct inode *ip, int mask, unsigned int flags) { return (__zpl_check_acl(ip, mask)); } #elif defined(HAVE_CHECK_ACL) int zpl_check_acl(struct inode *ip, int mask) { return (__zpl_check_acl(ip, mask)); } #elif defined(HAVE_PERMISSION_WITH_NAMEIDATA) int zpl_permission(struct inode *ip, int mask, struct nameidata *nd) { return (generic_permission(ip, mask, __zpl_check_acl)); } #elif defined(HAVE_PERMISSION) int zpl_permission(struct inode *ip, int mask) { return (generic_permission(ip, mask, __zpl_check_acl)); } #endif /* HAVE_CHECK_ACL | HAVE_PERMISSION */ #endif /* !HAVE_GET_ACL */ int zpl_init_acl(struct inode *ip, struct inode *dir) { struct posix_acl *acl = NULL; int error = 0; if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL) return (0); if (!S_ISLNK(ip->i_mode)) { if (ITOZSB(ip)->z_acl_type == ZFS_ACLTYPE_POSIXACL) { acl = zpl_get_acl(dir, ACL_TYPE_DEFAULT); if (IS_ERR(acl)) return (PTR_ERR(acl)); } if (!acl) { ip->i_mode &= ~current_umask(); ip->i_ctime = current_fs_time(ITOZSB(ip)->z_sb); zfs_mark_inode_dirty(ip); return (0); } } if ((ITOZSB(ip)->z_acl_type == ZFS_ACLTYPE_POSIXACL) && acl) { umode_t mode; if (S_ISDIR(ip->i_mode)) { error = zpl_set_acl(ip, ACL_TYPE_DEFAULT, acl); if (error) goto out; } mode = ip->i_mode; error = __posix_acl_create(&acl, GFP_KERNEL, &mode); if (error >= 0) { ip->i_mode = mode; zfs_mark_inode_dirty(ip); if (error > 0) error = zpl_set_acl(ip, ACL_TYPE_ACCESS, acl); } } out: zpl_posix_acl_release(acl); return (error); } int zpl_chmod_acl(struct inode *ip) { struct posix_acl *acl; int error; if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL) return (0); if (S_ISLNK(ip->i_mode)) return (-EOPNOTSUPP); acl = zpl_get_acl(ip, ACL_TYPE_ACCESS); if (IS_ERR(acl) || !acl) return (PTR_ERR(acl)); error = __posix_acl_chmod(&acl, GFP_KERNEL, ip->i_mode); if (!error) error = zpl_set_acl(ip, ACL_TYPE_ACCESS, acl); zpl_posix_acl_release(acl); return (error); } static int __zpl_xattr_acl_list_access(struct inode *ip, char *list, size_t list_size, const char *name, size_t name_len) { char *xattr_name = XATTR_NAME_POSIX_ACL_ACCESS; size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_ACCESS); if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL) return (0); if (list && xattr_size <= list_size) memcpy(list, xattr_name, xattr_size); return (xattr_size); } ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_access); static int __zpl_xattr_acl_list_default(struct inode *ip, char *list, size_t list_size, const char *name, size_t name_len) { char *xattr_name = XATTR_NAME_POSIX_ACL_DEFAULT; size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_DEFAULT); if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL) return (0); if (list && xattr_size <= list_size) memcpy(list, xattr_name, xattr_size); return (xattr_size); } ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_default); static int __zpl_xattr_acl_get_access(struct inode *ip, const char *name, void *buffer, size_t size) { struct posix_acl *acl; int type = ACL_TYPE_ACCESS; int error; /* xattr_resolve_name will do this for us if this is defined */ #ifndef HAVE_XATTR_HANDLER_NAME if (strcmp(name, "") != 0) return (-EINVAL); #endif if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL) return (-EOPNOTSUPP); acl = zpl_get_acl(ip, type); if (IS_ERR(acl)) return (PTR_ERR(acl)); if (acl == NULL) return (-ENODATA); error = zpl_acl_to_xattr(acl, buffer, size); zpl_posix_acl_release(acl); return (error); } ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_access); static int __zpl_xattr_acl_get_default(struct inode *ip, const char *name, void *buffer, size_t size) { struct posix_acl *acl; int type = ACL_TYPE_DEFAULT; int error; /* xattr_resolve_name will do this for us if this is defined */ #ifndef HAVE_XATTR_HANDLER_NAME if (strcmp(name, "") != 0) return (-EINVAL); #endif if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL) return (-EOPNOTSUPP); acl = zpl_get_acl(ip, type); if (IS_ERR(acl)) return (PTR_ERR(acl)); if (acl == NULL) return (-ENODATA); error = zpl_acl_to_xattr(acl, buffer, size); zpl_posix_acl_release(acl); return (error); } ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_default); static int __zpl_xattr_acl_set_access(struct inode *ip, const char *name, const void *value, size_t size, int flags) { struct posix_acl *acl; int type = ACL_TYPE_ACCESS; int error = 0; /* xattr_resolve_name will do this for us if this is defined */ #ifndef HAVE_XATTR_HANDLER_NAME if (strcmp(name, "") != 0) return (-EINVAL); #endif if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL) return (-EOPNOTSUPP); if (!zpl_inode_owner_or_capable(ip)) return (-EPERM); if (value) { acl = zpl_acl_from_xattr(value, size); if (IS_ERR(acl)) return (PTR_ERR(acl)); else if (acl) { error = zpl_posix_acl_valid(ip, acl); if (error) { zpl_posix_acl_release(acl); return (error); } } } else { acl = NULL; } error = zpl_set_acl(ip, type, acl); zpl_posix_acl_release(acl); return (error); } ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_access); static int __zpl_xattr_acl_set_default(struct inode *ip, const char *name, const void *value, size_t size, int flags) { struct posix_acl *acl; int type = ACL_TYPE_DEFAULT; int error = 0; /* xattr_resolve_name will do this for us if this is defined */ #ifndef HAVE_XATTR_HANDLER_NAME if (strcmp(name, "") != 0) return (-EINVAL); #endif if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL) return (-EOPNOTSUPP); if (!zpl_inode_owner_or_capable(ip)) return (-EPERM); if (value) { acl = zpl_acl_from_xattr(value, size); if (IS_ERR(acl)) return (PTR_ERR(acl)); else if (acl) { error = zpl_posix_acl_valid(ip, acl); if (error) { zpl_posix_acl_release(acl); return (error); } } } else { acl = NULL; } error = zpl_set_acl(ip, type, acl); zpl_posix_acl_release(acl); return (error); } ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_default); /* * ACL access xattr namespace handlers. * * Use .name instead of .prefix when available. xattr_resolve_name will match * whole name and reject anything that has .name only as prefix. */ xattr_handler_t zpl_xattr_acl_access_handler = { #ifdef HAVE_XATTR_HANDLER_NAME .name = XATTR_NAME_POSIX_ACL_ACCESS, #else .prefix = XATTR_NAME_POSIX_ACL_ACCESS, #endif .list = zpl_xattr_acl_list_access, .get = zpl_xattr_acl_get_access, .set = zpl_xattr_acl_set_access, #if defined(HAVE_XATTR_LIST_SIMPLE) || \ defined(HAVE_XATTR_LIST_DENTRY) || \ defined(HAVE_XATTR_LIST_HANDLER) .flags = ACL_TYPE_ACCESS, #endif }; /* * ACL default xattr namespace handlers. * * Use .name instead of .prefix when available. xattr_resolve_name will match * whole name and reject anything that has .name only as prefix. */ xattr_handler_t zpl_xattr_acl_default_handler = { #ifdef HAVE_XATTR_HANDLER_NAME .name = XATTR_NAME_POSIX_ACL_DEFAULT, #else .prefix = XATTR_NAME_POSIX_ACL_DEFAULT, #endif .list = zpl_xattr_acl_list_default, .get = zpl_xattr_acl_get_default, .set = zpl_xattr_acl_set_default, #if defined(HAVE_XATTR_LIST_SIMPLE) || \ defined(HAVE_XATTR_LIST_DENTRY) || \ defined(HAVE_XATTR_LIST_HANDLER) .flags = ACL_TYPE_DEFAULT, #endif }; #endif /* CONFIG_FS_POSIX_ACL */ xattr_handler_t *zpl_xattr_handlers[] = { &zpl_xattr_security_handler, &zpl_xattr_trusted_handler, &zpl_xattr_user_handler, #ifdef CONFIG_FS_POSIX_ACL &zpl_xattr_acl_access_handler, &zpl_xattr_acl_default_handler, #endif /* CONFIG_FS_POSIX_ACL */ NULL }; static const struct xattr_handler * zpl_xattr_handler(const char *name) { if (strncmp(name, XATTR_USER_PREFIX, XATTR_USER_PREFIX_LEN) == 0) return (&zpl_xattr_user_handler); if (strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) == 0) return (&zpl_xattr_trusted_handler); if (strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN) == 0) return (&zpl_xattr_security_handler); #ifdef CONFIG_FS_POSIX_ACL if (strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, sizeof (XATTR_NAME_POSIX_ACL_ACCESS)) == 0) return (&zpl_xattr_acl_access_handler); if (strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, sizeof (XATTR_NAME_POSIX_ACL_DEFAULT)) == 0) return (&zpl_xattr_acl_default_handler); #endif /* CONFIG_FS_POSIX_ACL */ return (NULL); } #if !defined(HAVE_POSIX_ACL_RELEASE) || defined(HAVE_POSIX_ACL_RELEASE_GPL_ONLY) struct acl_rel_struct { struct acl_rel_struct *next; struct posix_acl *acl; clock_t time; }; #define ACL_REL_GRACE (60*HZ) #define ACL_REL_WINDOW (1*HZ) #define ACL_REL_SCHED (ACL_REL_GRACE+ACL_REL_WINDOW) /* * Lockless multi-producer single-consumer fifo list. * Nodes are added to tail and removed from head. Tail pointer is our * synchronization point. It always points to the next pointer of the last * node, or head if list is empty. */ static struct acl_rel_struct *acl_rel_head = NULL; static struct acl_rel_struct **acl_rel_tail = &acl_rel_head; static void zpl_posix_acl_free(void *arg) { struct acl_rel_struct *freelist = NULL; struct acl_rel_struct *a; clock_t new_time; boolean_t refire = B_FALSE; ASSERT3P(acl_rel_head, !=, NULL); while (acl_rel_head) { a = acl_rel_head; if (ddi_get_lbolt() - a->time >= ACL_REL_GRACE) { /* * If a is the last node we need to reset tail, but we * need to use cmpxchg to make sure it is still the * last node. */ if (acl_rel_tail == &a->next) { acl_rel_head = NULL; if (cmpxchg(&acl_rel_tail, &a->next, &acl_rel_head) == &a->next) { ASSERT3P(a->next, ==, NULL); a->next = freelist; freelist = a; break; } } /* * a is not last node, make sure next pointer is set * by the adder and advance the head. */ while (ACCESS_ONCE(a->next) == NULL) cpu_relax(); acl_rel_head = a->next; a->next = freelist; freelist = a; } else { /* * a is still in grace period. We are responsible to * reschedule the free task, since adder will only do * so if list is empty. */ new_time = a->time + ACL_REL_SCHED; refire = B_TRUE; break; } } if (refire) taskq_dispatch_delay(system_taskq, zpl_posix_acl_free, NULL, TQ_SLEEP, new_time); while (freelist) { a = freelist; freelist = a->next; kfree(a->acl); kmem_free(a, sizeof (struct acl_rel_struct)); } } void zpl_posix_acl_release_impl(struct posix_acl *acl) { struct acl_rel_struct *a, **prev; a = kmem_alloc(sizeof (struct acl_rel_struct), KM_SLEEP); a->next = NULL; a->acl = acl; a->time = ddi_get_lbolt(); /* atomically points tail to us and get the previous tail */ prev = xchg(&acl_rel_tail, &a->next); ASSERT3P(*prev, ==, NULL); *prev = a; /* if it was empty before, schedule the free task */ if (prev == &acl_rel_head) taskq_dispatch_delay(system_taskq, zpl_posix_acl_free, NULL, TQ_SLEEP, ddi_get_lbolt() + ACL_REL_SCHED); } #endif