/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2014 by Chunwei Chen. All rights reserved. * Copyright (c) 2019 by Delphix. All rights reserved. */ /* * See abd.c for a general overview of the arc buffered data (ABD). * * Linear buffers act exactly like normal buffers and are always mapped into the * kernel's virtual memory space, while scattered ABD data chunks are allocated * as physical pages and then mapped in only while they are actually being * accessed through one of the abd_* library functions. Using scattered ABDs * provides several benefits: * * (1) They avoid use of kmem_*, preventing performance problems where running * kmem_reap on very large memory systems never finishes and causes * constant TLB shootdowns. * * (2) Fragmentation is less of an issue since when we are at the limit of * allocatable space, we won't have to search around for a long free * hole in the VA space for large ARC allocations. Each chunk is mapped in * individually, so even if we are using HIGHMEM (see next point) we * wouldn't need to worry about finding a contiguous address range. * * (3) If we are not using HIGHMEM, then all physical memory is always * mapped into the kernel's address space, so we also avoid the map / * unmap costs on each ABD access. * * If we are not using HIGHMEM, scattered buffers which have only one chunk * can be treated as linear buffers, because they are contiguous in the * kernel's virtual address space. See abd_alloc_chunks() for details. */ #include #include #include #include #include #ifdef _KERNEL #include #include #else #define MAX_ORDER 1 #endif typedef struct abd_stats { kstat_named_t abdstat_struct_size; kstat_named_t abdstat_linear_cnt; kstat_named_t abdstat_linear_data_size; kstat_named_t abdstat_scatter_cnt; kstat_named_t abdstat_scatter_data_size; kstat_named_t abdstat_scatter_chunk_waste; kstat_named_t abdstat_scatter_orders[MAX_ORDER]; kstat_named_t abdstat_scatter_page_multi_chunk; kstat_named_t abdstat_scatter_page_multi_zone; kstat_named_t abdstat_scatter_page_alloc_retry; kstat_named_t abdstat_scatter_sg_table_retry; } abd_stats_t; static abd_stats_t abd_stats = { /* Amount of memory occupied by all of the abd_t struct allocations */ { "struct_size", KSTAT_DATA_UINT64 }, /* * The number of linear ABDs which are currently allocated, excluding * ABDs which don't own their data (for instance the ones which were * allocated through abd_get_offset() and abd_get_from_buf()). If an * ABD takes ownership of its buf then it will become tracked. */ { "linear_cnt", KSTAT_DATA_UINT64 }, /* Amount of data stored in all linear ABDs tracked by linear_cnt */ { "linear_data_size", KSTAT_DATA_UINT64 }, /* * The number of scatter ABDs which are currently allocated, excluding * ABDs which don't own their data (for instance the ones which were * allocated through abd_get_offset()). */ { "scatter_cnt", KSTAT_DATA_UINT64 }, /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */ { "scatter_data_size", KSTAT_DATA_UINT64 }, /* * The amount of space wasted at the end of the last chunk across all * scatter ABDs tracked by scatter_cnt. */ { "scatter_chunk_waste", KSTAT_DATA_UINT64 }, /* * The number of compound allocations of a given order. These * allocations are spread over all currently allocated ABDs, and * act as a measure of memory fragmentation. */ { { "scatter_order_N", KSTAT_DATA_UINT64 } }, /* * The number of scatter ABDs which contain multiple chunks. * ABDs are preferentially allocated from the minimum number of * contiguous multi-page chunks, a single chunk is optimal. */ { "scatter_page_multi_chunk", KSTAT_DATA_UINT64 }, /* * The number of scatter ABDs which are split across memory zones. * ABDs are preferentially allocated using pages from a single zone. */ { "scatter_page_multi_zone", KSTAT_DATA_UINT64 }, /* * The total number of retries encountered when attempting to * allocate the pages to populate the scatter ABD. */ { "scatter_page_alloc_retry", KSTAT_DATA_UINT64 }, /* * The total number of retries encountered when attempting to * allocate the sg table for an ABD. */ { "scatter_sg_table_retry", KSTAT_DATA_UINT64 }, }; #define abd_for_each_sg(abd, sg, n, i) \ for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i) unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1; /* * zfs_abd_scatter_min_size is the minimum allocation size to use scatter * ABD's. Smaller allocations will use linear ABD's which uses * zio_[data_]buf_alloc(). * * Scatter ABD's use at least one page each, so sub-page allocations waste * some space when allocated as scatter (e.g. 2KB scatter allocation wastes * half of each page). Using linear ABD's for small allocations means that * they will be put on slabs which contain many allocations. This can * improve memory efficiency, but it also makes it much harder for ARC * evictions to actually free pages, because all the buffers on one slab need * to be freed in order for the slab (and underlying pages) to be freed. * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's * possible for them to actually waste more memory than scatter (one page per * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th). * * Spill blocks are typically 512B and are heavily used on systems running * selinux with the default dnode size and the `xattr=sa` property set. * * By default we use linear allocations for 512B and 1KB, and scatter * allocations for larger (1.5KB and up). */ int zfs_abd_scatter_min_size = 512 * 3; /* * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are * just a single zero'd page. This allows us to conserve memory by * only using a single zero page for the scatterlist. */ abd_t *abd_zero_scatter = NULL; struct page; /* * abd_zero_page we will be an allocated zero'd PAGESIZE buffer, which is * assigned to set each of the pages of abd_zero_scatter. */ static struct page *abd_zero_page = NULL; static kmem_cache_t *abd_cache = NULL; static kstat_t *abd_ksp; static size_t abd_chunkcnt_for_bytes(size_t size) { return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE); } abd_t * abd_alloc_struct(size_t size) { /* * In Linux we do not use the size passed in during ABD * allocation, so we just ignore it. */ abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE); ASSERT3P(abd, !=, NULL); list_link_init(&abd->abd_gang_link); mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL); ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t)); return (abd); } void abd_free_struct(abd_t *abd) { mutex_destroy(&abd->abd_mtx); ASSERT(!list_link_active(&abd->abd_gang_link)); kmem_cache_free(abd_cache, abd); ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t)); } #ifdef _KERNEL /* * Mark zfs data pages so they can be excluded from kernel crash dumps */ #ifdef _LP64 #define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E static inline void abd_mark_zfs_page(struct page *page) { get_page(page); SetPagePrivate(page); set_page_private(page, ABD_FILE_CACHE_PAGE); } static inline void abd_unmark_zfs_page(struct page *page) { set_page_private(page, 0UL); ClearPagePrivate(page); put_page(page); } #else #define abd_mark_zfs_page(page) #define abd_unmark_zfs_page(page) #endif /* _LP64 */ #ifndef CONFIG_HIGHMEM #ifndef __GFP_RECLAIM #define __GFP_RECLAIM __GFP_WAIT #endif /* * The goal is to minimize fragmentation by preferentially populating ABDs * with higher order compound pages from a single zone. Allocation size is * progressively decreased until it can be satisfied without performing * reclaim or compaction. When necessary this function will degenerate to * allocating individual pages and allowing reclaim to satisfy allocations. */ void abd_alloc_chunks(abd_t *abd, size_t size) { struct list_head pages; struct sg_table table; struct scatterlist *sg; struct page *page, *tmp_page = NULL; gfp_t gfp = __GFP_NOWARN | GFP_NOIO; gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM; int max_order = MIN(zfs_abd_scatter_max_order, MAX_ORDER - 1); int nr_pages = abd_chunkcnt_for_bytes(size); int chunks = 0, zones = 0; size_t remaining_size; int nid = NUMA_NO_NODE; int alloc_pages = 0; INIT_LIST_HEAD(&pages); while (alloc_pages < nr_pages) { unsigned chunk_pages; int order; order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order); chunk_pages = (1U << order); page = alloc_pages_node(nid, order ? gfp_comp : gfp, order); if (page == NULL) { if (order == 0) { ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); schedule_timeout_interruptible(1); } else { max_order = MAX(0, order - 1); } continue; } list_add_tail(&page->lru, &pages); if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid)) zones++; nid = page_to_nid(page); ABDSTAT_BUMP(abdstat_scatter_orders[order]); chunks++; alloc_pages += chunk_pages; } ASSERT3S(alloc_pages, ==, nr_pages); while (sg_alloc_table(&table, chunks, gfp)) { ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); schedule_timeout_interruptible(1); } sg = table.sgl; remaining_size = size; list_for_each_entry_safe(page, tmp_page, &pages, lru) { size_t sg_size = MIN(PAGESIZE << compound_order(page), remaining_size); sg_set_page(sg, page, sg_size, 0); abd_mark_zfs_page(page); remaining_size -= sg_size; sg = sg_next(sg); list_del(&page->lru); } /* * These conditions ensure that a possible transformation to a linear * ABD would be valid. */ ASSERT(!PageHighMem(sg_page(table.sgl))); ASSERT0(ABD_SCATTER(abd).abd_offset); if (table.nents == 1) { /* * Since there is only one entry, this ABD can be represented * as a linear buffer. All single-page (4K) ABD's can be * represented this way. Some multi-page ABD's can also be * represented this way, if we were able to allocate a single * "chunk" (higher-order "page" which represents a power-of-2 * series of physically-contiguous pages). This is often the * case for 2-page (8K) ABD's. * * Representing a single-entry scatter ABD as a linear ABD * has the performance advantage of avoiding the copy (and * allocation) in abd_borrow_buf_copy / abd_return_buf_copy. * A performance increase of around 5% has been observed for * ARC-cached reads (of small blocks which can take advantage * of this). * * Note that this optimization is only possible because the * pages are always mapped into the kernel's address space. * This is not the case for highmem pages, so the * optimization can not be made there. */ abd->abd_flags |= ABD_FLAG_LINEAR; abd->abd_flags |= ABD_FLAG_LINEAR_PAGE; abd->abd_u.abd_linear.abd_sgl = table.sgl; ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl)); } else if (table.nents > 1) { ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; if (zones) { ABDSTAT_BUMP(abdstat_scatter_page_multi_zone); abd->abd_flags |= ABD_FLAG_MULTI_ZONE; } ABD_SCATTER(abd).abd_sgl = table.sgl; ABD_SCATTER(abd).abd_nents = table.nents; } } #else /* * Allocate N individual pages to construct a scatter ABD. This function * makes no attempt to request contiguous pages and requires the minimal * number of kernel interfaces. It's designed for maximum compatibility. */ void abd_alloc_chunks(abd_t *abd, size_t size) { struct scatterlist *sg = NULL; struct sg_table table; struct page *page; gfp_t gfp = __GFP_NOWARN | GFP_NOIO; int nr_pages = abd_chunkcnt_for_bytes(size); int i = 0; while (sg_alloc_table(&table, nr_pages, gfp)) { ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); schedule_timeout_interruptible(1); } ASSERT3U(table.nents, ==, nr_pages); ABD_SCATTER(abd).abd_sgl = table.sgl; ABD_SCATTER(abd).abd_nents = nr_pages; abd_for_each_sg(abd, sg, nr_pages, i) { while ((page = __page_cache_alloc(gfp)) == NULL) { ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); schedule_timeout_interruptible(1); } ABDSTAT_BUMP(abdstat_scatter_orders[0]); sg_set_page(sg, page, PAGESIZE, 0); abd_mark_zfs_page(page); } if (nr_pages > 1) { ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; } } #endif /* !CONFIG_HIGHMEM */ /* * This must be called if any of the sg_table allocation functions * are called. */ static void abd_free_sg_table(abd_t *abd) { struct sg_table table; table.sgl = ABD_SCATTER(abd).abd_sgl; table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents; sg_free_table(&table); } void abd_free_chunks(abd_t *abd) { struct scatterlist *sg = NULL; struct page *page; int nr_pages = ABD_SCATTER(abd).abd_nents; int order, i = 0; if (abd->abd_flags & ABD_FLAG_MULTI_ZONE) ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone); if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK) ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); abd_for_each_sg(abd, sg, nr_pages, i) { page = sg_page(sg); abd_unmark_zfs_page(page); order = compound_order(page); __free_pages(page, order); ASSERT3U(sg->length, <=, PAGE_SIZE << order); ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]); } abd_free_sg_table(abd); } /* * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in * the scatterlist will be set to the zero'd out buffer abd_zero_page. */ static void abd_alloc_zero_scatter(void) { struct scatterlist *sg = NULL; struct sg_table table; gfp_t gfp = __GFP_NOWARN | GFP_NOIO; gfp_t gfp_zero_page = gfp | __GFP_ZERO; int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); int i = 0; while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) { ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); schedule_timeout_interruptible(1); } abd_mark_zfs_page(abd_zero_page); while (sg_alloc_table(&table, nr_pages, gfp)) { ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); schedule_timeout_interruptible(1); } ASSERT3U(table.nents, ==, nr_pages); abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); abd_zero_scatter->abd_flags = ABD_FLAG_OWNER; ABD_SCATTER(abd_zero_scatter).abd_offset = 0; ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl; ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages; abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; abd_zero_scatter->abd_parent = NULL; abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS; zfs_refcount_create(&abd_zero_scatter->abd_children); abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) { sg_set_page(sg, abd_zero_page, PAGESIZE, 0); } ABDSTAT_BUMP(abdstat_scatter_cnt); ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE); ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); } #else /* _KERNEL */ #ifndef PAGE_SHIFT #define PAGE_SHIFT (highbit64(PAGESIZE)-1) #endif #define zfs_kmap_atomic(chunk, km) ((void *)chunk) #define zfs_kunmap_atomic(addr, km) do { (void)(addr); } while (0) #define local_irq_save(flags) do { (void)(flags); } while (0) #define local_irq_restore(flags) do { (void)(flags); } while (0) #define nth_page(pg, i) \ ((struct page *)((void *)(pg) + (i) * PAGESIZE)) struct scatterlist { struct page *page; int length; int end; }; static void sg_init_table(struct scatterlist *sg, int nr) { memset(sg, 0, nr * sizeof (struct scatterlist)); sg[nr - 1].end = 1; } /* * This must be called if any of the sg_table allocation functions * are called. */ static void abd_free_sg_table(abd_t *abd) { int nents = ABD_SCATTER(abd).abd_nents; vmem_free(ABD_SCATTER(abd).abd_sgl, nents * sizeof (struct scatterlist)); } #define for_each_sg(sgl, sg, nr, i) \ for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg)) static inline void sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len, unsigned int offset) { /* currently we don't use offset */ ASSERT(offset == 0); sg->page = page; sg->length = len; } static inline struct page * sg_page(struct scatterlist *sg) { return (sg->page); } static inline struct scatterlist * sg_next(struct scatterlist *sg) { if (sg->end) return (NULL); return (sg + 1); } void abd_alloc_chunks(abd_t *abd, size_t size) { unsigned nr_pages = abd_chunkcnt_for_bytes(size); struct scatterlist *sg; int i; ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages * sizeof (struct scatterlist), KM_SLEEP); sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages); abd_for_each_sg(abd, sg, nr_pages, i) { struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP); sg_set_page(sg, p, PAGESIZE, 0); } ABD_SCATTER(abd).abd_nents = nr_pages; } void abd_free_chunks(abd_t *abd) { int i, n = ABD_SCATTER(abd).abd_nents; struct scatterlist *sg; abd_for_each_sg(abd, sg, n, i) { for (int j = 0; j < sg->length; j += PAGESIZE) { struct page *p = nth_page(sg_page(sg), j >> PAGE_SHIFT); umem_free(p, PAGESIZE); } } abd_free_sg_table(abd); } static void abd_alloc_zero_scatter(void) { unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); struct scatterlist *sg; int i; abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP); memset(abd_zero_page, 0, PAGESIZE); abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); abd_zero_scatter->abd_flags = ABD_FLAG_OWNER; abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS; ABD_SCATTER(abd_zero_scatter).abd_offset = 0; ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages; abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; abd_zero_scatter->abd_parent = NULL; zfs_refcount_create(&abd_zero_scatter->abd_children); ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages * sizeof (struct scatterlist), KM_SLEEP); sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages); abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) { sg_set_page(sg, abd_zero_page, PAGESIZE, 0); } ABDSTAT_BUMP(abdstat_scatter_cnt); ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE); ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); } #endif /* _KERNEL */ boolean_t abd_size_alloc_linear(size_t size) { return (size < zfs_abd_scatter_min_size ? B_TRUE : B_FALSE); } void abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op) { ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); if (op == ABDSTAT_INCR) { ABDSTAT_BUMP(abdstat_scatter_cnt); ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size); ABDSTAT_INCR(abdstat_scatter_chunk_waste, P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size); } else { ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size); ABDSTAT_INCR(abdstat_scatter_chunk_waste, (int)abd->abd_size -(int)P2ROUNDUP(abd->abd_size, PAGESIZE)); } } void abd_update_linear_stats(abd_t *abd, abd_stats_op_t op) { ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); if (op == ABDSTAT_INCR) { ABDSTAT_BUMP(abdstat_linear_cnt); ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size); } else { ABDSTAT_BUMPDOWN(abdstat_linear_cnt); ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); } } void abd_verify_scatter(abd_t *abd) { size_t n; int i = 0; struct scatterlist *sg = NULL; ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0); ASSERT3U(ABD_SCATTER(abd).abd_offset, <, ABD_SCATTER(abd).abd_sgl->length); n = ABD_SCATTER(abd).abd_nents; abd_for_each_sg(abd, sg, n, i) { ASSERT3P(sg_page(sg), !=, NULL); } } static void abd_free_zero_scatter(void) { zfs_refcount_destroy(&abd_zero_scatter->abd_children); ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE); ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); abd_free_sg_table(abd_zero_scatter); abd_free_struct(abd_zero_scatter); abd_zero_scatter = NULL; ASSERT3P(abd_zero_page, !=, NULL); #if defined(_KERNEL) abd_unmark_zfs_page(abd_zero_page); __free_page(abd_zero_page); #else umem_free(abd_zero_page, PAGESIZE); #endif /* _KERNEL */ } void abd_init(void) { int i; abd_cache = kmem_cache_create("abd_t", sizeof (abd_t), 0, NULL, NULL, NULL, NULL, NULL, 0); abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED, sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (abd_ksp != NULL) { for (i = 0; i < MAX_ORDER; i++) { snprintf(abd_stats.abdstat_scatter_orders[i].name, KSTAT_STRLEN, "scatter_order_%d", i); abd_stats.abdstat_scatter_orders[i].data_type = KSTAT_DATA_UINT64; } abd_ksp->ks_data = &abd_stats; kstat_install(abd_ksp); } abd_alloc_zero_scatter(); } void abd_fini(void) { abd_free_zero_scatter(); if (abd_ksp != NULL) { kstat_delete(abd_ksp); abd_ksp = NULL; } if (abd_cache) { kmem_cache_destroy(abd_cache); abd_cache = NULL; } } void abd_free_linear_page(abd_t *abd) { /* Transform it back into a scatter ABD for freeing */ struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl; abd->abd_flags &= ~ABD_FLAG_LINEAR; abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE; ABD_SCATTER(abd).abd_nents = 1; ABD_SCATTER(abd).abd_offset = 0; ABD_SCATTER(abd).abd_sgl = sg; abd_free_chunks(abd); zfs_refcount_destroy(&abd->abd_children); abd_update_scatter_stats(abd, ABDSTAT_DECR); abd_free_struct(abd); } /* * If we're going to use this ABD for doing I/O using the block layer, the * consumer of the ABD data doesn't care if it's scattered or not, and we don't * plan to store this ABD in memory for a long period of time, we should * allocate the ABD type that requires the least data copying to do the I/O. * * On Linux the optimal thing to do would be to use abd_get_offset() and * construct a new ABD which shares the original pages thereby eliminating * the copy. But for the moment a new linear ABD is allocated until this * performance optimization can be implemented. */ abd_t * abd_alloc_for_io(size_t size, boolean_t is_metadata) { return (abd_alloc(size, is_metadata)); } abd_t * abd_get_offset_scatter(abd_t *sabd, size_t off) { abd_t *abd = NULL; int i = 0; struct scatterlist *sg = NULL; abd_verify(sabd); ASSERT3U(off, <=, sabd->abd_size); size_t new_offset = ABD_SCATTER(sabd).abd_offset + off; abd = abd_alloc_struct(0); /* * Even if this buf is filesystem metadata, we only track that * if we own the underlying data buffer, which is not true in * this case. Therefore, we don't ever use ABD_FLAG_META here. */ abd->abd_flags = 0; abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) { if (new_offset < sg->length) break; new_offset -= sg->length; } ABD_SCATTER(abd).abd_sgl = sg; ABD_SCATTER(abd).abd_offset = new_offset; ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i; return (abd); } /* * Initialize the abd_iter. */ void abd_iter_init(struct abd_iter *aiter, abd_t *abd) { ASSERT(!abd_is_gang(abd)); abd_verify(abd); aiter->iter_abd = abd; aiter->iter_mapaddr = NULL; aiter->iter_mapsize = 0; aiter->iter_pos = 0; if (abd_is_linear(abd)) { aiter->iter_offset = 0; aiter->iter_sg = NULL; } else { aiter->iter_offset = ABD_SCATTER(abd).abd_offset; aiter->iter_sg = ABD_SCATTER(abd).abd_sgl; } } /* * This is just a helper function to see if we have exhausted the * abd_iter and reached the end. */ boolean_t abd_iter_at_end(struct abd_iter *aiter) { return (aiter->iter_pos == aiter->iter_abd->abd_size); } /* * Advance the iterator by a certain amount. Cannot be called when a chunk is * in use. This can be safely called when the aiter has already exhausted, in * which case this does nothing. */ void abd_iter_advance(struct abd_iter *aiter, size_t amount) { ASSERT3P(aiter->iter_mapaddr, ==, NULL); ASSERT0(aiter->iter_mapsize); /* There's nothing left to advance to, so do nothing */ if (abd_iter_at_end(aiter)) return; aiter->iter_pos += amount; aiter->iter_offset += amount; if (!abd_is_linear(aiter->iter_abd)) { while (aiter->iter_offset >= aiter->iter_sg->length) { aiter->iter_offset -= aiter->iter_sg->length; aiter->iter_sg = sg_next(aiter->iter_sg); if (aiter->iter_sg == NULL) { ASSERT0(aiter->iter_offset); break; } } } } /* * Map the current chunk into aiter. This can be safely called when the aiter * has already exhausted, in which case this does nothing. */ void abd_iter_map(struct abd_iter *aiter) { void *paddr; size_t offset = 0; ASSERT3P(aiter->iter_mapaddr, ==, NULL); ASSERT0(aiter->iter_mapsize); /* There's nothing left to iterate over, so do nothing */ if (abd_iter_at_end(aiter)) return; if (abd_is_linear(aiter->iter_abd)) { ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset); offset = aiter->iter_offset; aiter->iter_mapsize = aiter->iter_abd->abd_size - offset; paddr = ABD_LINEAR_BUF(aiter->iter_abd); } else { offset = aiter->iter_offset; aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset, aiter->iter_abd->abd_size - aiter->iter_pos); paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg), km_table[aiter->iter_km]); } aiter->iter_mapaddr = (char *)paddr + offset; } /* * Unmap the current chunk from aiter. This can be safely called when the aiter * has already exhausted, in which case this does nothing. */ void abd_iter_unmap(struct abd_iter *aiter) { /* There's nothing left to unmap, so do nothing */ if (abd_iter_at_end(aiter)) return; if (!abd_is_linear(aiter->iter_abd)) { /* LINTED E_FUNC_SET_NOT_USED */ zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset, km_table[aiter->iter_km]); } ASSERT3P(aiter->iter_mapaddr, !=, NULL); ASSERT3U(aiter->iter_mapsize, >, 0); aiter->iter_mapaddr = NULL; aiter->iter_mapsize = 0; } #if defined(_KERNEL) /* * bio_nr_pages for ABD. * @off is the offset in @abd */ unsigned long abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off) { unsigned long pos; while (abd_is_gang(abd)) abd = abd_gang_get_offset(abd, &off); ASSERT(!abd_is_gang(abd)); if (abd_is_linear(abd)) pos = (unsigned long)abd_to_buf(abd) + off; else pos = ABD_SCATTER(abd).abd_offset + off; return ((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) - (pos >> PAGE_SHIFT); } static unsigned int bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size) { unsigned int offset, size, i; struct page *page; offset = offset_in_page(buf_ptr); for (i = 0; i < bio->bi_max_vecs; i++) { size = PAGE_SIZE - offset; if (bio_size <= 0) break; if (size > bio_size) size = bio_size; if (is_vmalloc_addr(buf_ptr)) page = vmalloc_to_page(buf_ptr); else page = virt_to_page(buf_ptr); /* * Some network related block device uses tcp_sendpage, which * doesn't behave well when using 0-count page, this is a * safety net to catch them. */ ASSERT3S(page_count(page), >, 0); if (bio_add_page(bio, page, size, offset) != size) break; buf_ptr += size; bio_size -= size; offset = 0; } return (bio_size); } /* * bio_map for gang ABD. */ static unsigned int abd_gang_bio_map_off(struct bio *bio, abd_t *abd, unsigned int io_size, size_t off) { ASSERT(abd_is_gang(abd)); for (abd_t *cabd = abd_gang_get_offset(abd, &off); cabd != NULL; cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { ASSERT3U(off, <, cabd->abd_size); int size = MIN(io_size, cabd->abd_size - off); int remainder = abd_bio_map_off(bio, cabd, size, off); io_size -= (size - remainder); if (io_size == 0 || remainder > 0) return (io_size); off = 0; } ASSERT0(io_size); return (io_size); } /* * bio_map for ABD. * @off is the offset in @abd * Remaining IO size is returned */ unsigned int abd_bio_map_off(struct bio *bio, abd_t *abd, unsigned int io_size, size_t off) { int i; struct abd_iter aiter; ASSERT3U(io_size, <=, abd->abd_size - off); if (abd_is_linear(abd)) return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size)); ASSERT(!abd_is_linear(abd)); if (abd_is_gang(abd)) return (abd_gang_bio_map_off(bio, abd, io_size, off)); abd_iter_init(&aiter, abd); abd_iter_advance(&aiter, off); for (i = 0; i < bio->bi_max_vecs; i++) { struct page *pg; size_t len, sgoff, pgoff; struct scatterlist *sg; if (io_size <= 0) break; sg = aiter.iter_sg; sgoff = aiter.iter_offset; pgoff = sgoff & (PAGESIZE - 1); len = MIN(io_size, PAGESIZE - pgoff); ASSERT(len > 0); pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT); if (bio_add_page(bio, pg, len, pgoff) != len) break; io_size -= len; abd_iter_advance(&aiter, len); } return (io_size); } /* Tunable Parameters */ module_param(zfs_abd_scatter_enabled, int, 0644); MODULE_PARM_DESC(zfs_abd_scatter_enabled, "Toggle whether ABD allocations must be linear."); module_param(zfs_abd_scatter_min_size, int, 0644); MODULE_PARM_DESC(zfs_abd_scatter_min_size, "Minimum size of scatter allocations."); /* CSTYLED */ module_param(zfs_abd_scatter_max_order, uint, 0644); MODULE_PARM_DESC(zfs_abd_scatter_max_order, "Maximum order allocation used for a scatter ABD."); #endif