/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. */ /* * AES provider for the Kernel Cryptographic Framework (KCF) */ #include <sys/zfs_context.h> #include <sys/crypto/common.h> #include <sys/crypto/impl.h> #include <sys/crypto/spi.h> #include <sys/crypto/icp.h> #include <modes/modes.h> #define _AES_IMPL #include <aes/aes_impl.h> #include <modes/gcm_impl.h> /* * Mechanism info structure passed to KCF during registration. */ static const crypto_mech_info_t aes_mech_info_tab[] = { /* AES_ECB */ {SUN_CKM_AES_ECB, AES_ECB_MECH_INFO_TYPE, CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC | CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC}, /* AES_CBC */ {SUN_CKM_AES_CBC, AES_CBC_MECH_INFO_TYPE, CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC | CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC}, /* AES_CTR */ {SUN_CKM_AES_CTR, AES_CTR_MECH_INFO_TYPE, CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC | CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC}, /* AES_CCM */ {SUN_CKM_AES_CCM, AES_CCM_MECH_INFO_TYPE, CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC | CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC}, /* AES_GCM */ {SUN_CKM_AES_GCM, AES_GCM_MECH_INFO_TYPE, CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC | CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC}, /* AES_GMAC */ {SUN_CKM_AES_GMAC, AES_GMAC_MECH_INFO_TYPE, CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC | CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC | CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC}, }; static int aes_encrypt_init(crypto_ctx_t *, crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t); static int aes_decrypt_init(crypto_ctx_t *, crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t); static int aes_common_init(crypto_ctx_t *, crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t, boolean_t); static int aes_common_init_ctx(aes_ctx_t *, crypto_spi_ctx_template_t *, crypto_mechanism_t *, crypto_key_t *, int, boolean_t); static int aes_encrypt_final(crypto_ctx_t *, crypto_data_t *); static int aes_decrypt_final(crypto_ctx_t *, crypto_data_t *); static int aes_encrypt(crypto_ctx_t *, crypto_data_t *, crypto_data_t *); static int aes_encrypt_update(crypto_ctx_t *, crypto_data_t *, crypto_data_t *); static int aes_encrypt_atomic(crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t); static int aes_decrypt(crypto_ctx_t *, crypto_data_t *, crypto_data_t *); static int aes_decrypt_update(crypto_ctx_t *, crypto_data_t *, crypto_data_t *); static int aes_decrypt_atomic(crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t); static const crypto_cipher_ops_t aes_cipher_ops = { .encrypt_init = aes_encrypt_init, .encrypt = aes_encrypt, .encrypt_update = aes_encrypt_update, .encrypt_final = aes_encrypt_final, .encrypt_atomic = aes_encrypt_atomic, .decrypt_init = aes_decrypt_init, .decrypt = aes_decrypt, .decrypt_update = aes_decrypt_update, .decrypt_final = aes_decrypt_final, .decrypt_atomic = aes_decrypt_atomic }; static int aes_mac_atomic(crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t); static int aes_mac_verify_atomic(crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t); static const crypto_mac_ops_t aes_mac_ops = { .mac_init = NULL, .mac = NULL, .mac_update = NULL, .mac_final = NULL, .mac_atomic = aes_mac_atomic, .mac_verify_atomic = aes_mac_verify_atomic }; static int aes_create_ctx_template(crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t *, size_t *); static int aes_free_context(crypto_ctx_t *); static const crypto_ctx_ops_t aes_ctx_ops = { .create_ctx_template = aes_create_ctx_template, .free_context = aes_free_context }; static const crypto_ops_t aes_crypto_ops = { NULL, &aes_cipher_ops, &aes_mac_ops, &aes_ctx_ops, }; static const crypto_provider_info_t aes_prov_info = { "AES Software Provider", &aes_crypto_ops, sizeof (aes_mech_info_tab) / sizeof (crypto_mech_info_t), aes_mech_info_tab }; static crypto_kcf_provider_handle_t aes_prov_handle = 0; static crypto_data_t null_crypto_data = { CRYPTO_DATA_RAW }; int aes_mod_init(void) { /* Determine the fastest available implementation. */ aes_impl_init(); gcm_impl_init(); /* Register with KCF. If the registration fails, remove the module. */ if (crypto_register_provider(&aes_prov_info, &aes_prov_handle)) return (EACCES); return (0); } int aes_mod_fini(void) { /* Unregister from KCF if module is registered */ if (aes_prov_handle != 0) { if (crypto_unregister_provider(aes_prov_handle)) return (EBUSY); aes_prov_handle = 0; } return (0); } static int aes_check_mech_param(crypto_mechanism_t *mechanism, aes_ctx_t **ctx) { void *p = NULL; boolean_t param_required = B_TRUE; size_t param_len; void *(*alloc_fun)(int); int rv = CRYPTO_SUCCESS; switch (mechanism->cm_type) { case AES_ECB_MECH_INFO_TYPE: param_required = B_FALSE; alloc_fun = ecb_alloc_ctx; break; case AES_CBC_MECH_INFO_TYPE: param_len = AES_BLOCK_LEN; alloc_fun = cbc_alloc_ctx; break; case AES_CTR_MECH_INFO_TYPE: param_len = sizeof (CK_AES_CTR_PARAMS); alloc_fun = ctr_alloc_ctx; break; case AES_CCM_MECH_INFO_TYPE: param_len = sizeof (CK_AES_CCM_PARAMS); alloc_fun = ccm_alloc_ctx; break; case AES_GCM_MECH_INFO_TYPE: param_len = sizeof (CK_AES_GCM_PARAMS); alloc_fun = gcm_alloc_ctx; break; case AES_GMAC_MECH_INFO_TYPE: param_len = sizeof (CK_AES_GMAC_PARAMS); alloc_fun = gmac_alloc_ctx; break; default: rv = CRYPTO_MECHANISM_INVALID; return (rv); } if (param_required && mechanism->cm_param != NULL && mechanism->cm_param_len != param_len) { rv = CRYPTO_MECHANISM_PARAM_INVALID; } if (ctx != NULL) { p = (alloc_fun)(KM_SLEEP); *ctx = p; } return (rv); } /* * Initialize key schedules for AES */ static int init_keysched(crypto_key_t *key, void *newbie) { if (key->ck_length < AES_MINBITS || key->ck_length > AES_MAXBITS) { return (CRYPTO_KEY_SIZE_RANGE); } /* key length must be either 128, 192, or 256 */ if ((key->ck_length & 63) != 0) return (CRYPTO_KEY_SIZE_RANGE); aes_init_keysched(key->ck_data, key->ck_length, newbie); return (CRYPTO_SUCCESS); } static int aes_encrypt_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_spi_ctx_template_t template) { return (aes_common_init(ctx, mechanism, key, template, B_TRUE)); } static int aes_decrypt_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_spi_ctx_template_t template) { return (aes_common_init(ctx, mechanism, key, template, B_FALSE)); } /* * KCF software provider encrypt entry points. */ static int aes_common_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_spi_ctx_template_t template, boolean_t is_encrypt_init) { aes_ctx_t *aes_ctx; int rv; if ((rv = aes_check_mech_param(mechanism, &aes_ctx)) != CRYPTO_SUCCESS) return (rv); rv = aes_common_init_ctx(aes_ctx, template, mechanism, key, KM_SLEEP, is_encrypt_init); if (rv != CRYPTO_SUCCESS) { crypto_free_mode_ctx(aes_ctx); return (rv); } ctx->cc_provider_private = aes_ctx; return (CRYPTO_SUCCESS); } static void aes_copy_block64(uint8_t *in, uint64_t *out) { if (IS_P2ALIGNED(in, sizeof (uint64_t))) { /* LINTED: pointer alignment */ out[0] = *(uint64_t *)&in[0]; /* LINTED: pointer alignment */ out[1] = *(uint64_t *)&in[8]; } else { uint8_t *iv8 = (uint8_t *)&out[0]; AES_COPY_BLOCK(in, iv8); } } static int aes_encrypt(crypto_ctx_t *ctx, crypto_data_t *plaintext, crypto_data_t *ciphertext) { int ret = CRYPTO_FAILED; aes_ctx_t *aes_ctx; size_t saved_length, saved_offset, length_needed; ASSERT(ctx->cc_provider_private != NULL); aes_ctx = ctx->cc_provider_private; /* * For block ciphers, plaintext must be a multiple of AES block size. * This test is only valid for ciphers whose blocksize is a power of 2. */ if (((aes_ctx->ac_flags & (CTR_MODE|CCM_MODE|GCM_MODE|GMAC_MODE)) == 0) && (plaintext->cd_length & (AES_BLOCK_LEN - 1)) != 0) return (CRYPTO_DATA_LEN_RANGE); ASSERT(ciphertext != NULL); /* * We need to just return the length needed to store the output. * We should not destroy the context for the following case. */ switch (aes_ctx->ac_flags & (CCM_MODE|GCM_MODE|GMAC_MODE)) { case CCM_MODE: length_needed = plaintext->cd_length + aes_ctx->ac_mac_len; break; case GCM_MODE: length_needed = plaintext->cd_length + aes_ctx->ac_tag_len; break; case GMAC_MODE: if (plaintext->cd_length != 0) return (CRYPTO_ARGUMENTS_BAD); length_needed = aes_ctx->ac_tag_len; break; default: length_needed = plaintext->cd_length; } if (ciphertext->cd_length < length_needed) { ciphertext->cd_length = length_needed; return (CRYPTO_BUFFER_TOO_SMALL); } saved_length = ciphertext->cd_length; saved_offset = ciphertext->cd_offset; /* * Do an update on the specified input data. */ ret = aes_encrypt_update(ctx, plaintext, ciphertext); if (ret != CRYPTO_SUCCESS) { return (ret); } /* * For CCM mode, aes_ccm_encrypt_final() will take care of any * left-over unprocessed data, and compute the MAC */ if (aes_ctx->ac_flags & CCM_MODE) { /* * ccm_encrypt_final() will compute the MAC and append * it to existing ciphertext. So, need to adjust the left over * length value accordingly */ /* order of following 2 lines MUST not be reversed */ ciphertext->cd_offset = ciphertext->cd_length; ciphertext->cd_length = saved_length - ciphertext->cd_length; ret = ccm_encrypt_final((ccm_ctx_t *)aes_ctx, ciphertext, AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block); if (ret != CRYPTO_SUCCESS) { return (ret); } if (plaintext != ciphertext) { ciphertext->cd_length = ciphertext->cd_offset - saved_offset; } ciphertext->cd_offset = saved_offset; } else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) { /* * gcm_encrypt_final() will compute the MAC and append * it to existing ciphertext. So, need to adjust the left over * length value accordingly */ /* order of following 2 lines MUST not be reversed */ ciphertext->cd_offset = ciphertext->cd_length; ciphertext->cd_length = saved_length - ciphertext->cd_length; ret = gcm_encrypt_final((gcm_ctx_t *)aes_ctx, ciphertext, AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block, aes_xor_block); if (ret != CRYPTO_SUCCESS) { return (ret); } if (plaintext != ciphertext) { ciphertext->cd_length = ciphertext->cd_offset - saved_offset; } ciphertext->cd_offset = saved_offset; } ASSERT(aes_ctx->ac_remainder_len == 0); (void) aes_free_context(ctx); return (ret); } static int aes_decrypt(crypto_ctx_t *ctx, crypto_data_t *ciphertext, crypto_data_t *plaintext) { int ret = CRYPTO_FAILED; aes_ctx_t *aes_ctx; off_t saved_offset; size_t saved_length, length_needed; ASSERT(ctx->cc_provider_private != NULL); aes_ctx = ctx->cc_provider_private; /* * For block ciphers, plaintext must be a multiple of AES block size. * This test is only valid for ciphers whose blocksize is a power of 2. */ if (((aes_ctx->ac_flags & (CTR_MODE|CCM_MODE|GCM_MODE|GMAC_MODE)) == 0) && (ciphertext->cd_length & (AES_BLOCK_LEN - 1)) != 0) { return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE); } ASSERT(plaintext != NULL); /* * Return length needed to store the output. * Do not destroy context when plaintext buffer is too small. * * CCM: plaintext is MAC len smaller than cipher text * GCM: plaintext is TAG len smaller than cipher text * GMAC: plaintext length must be zero */ switch (aes_ctx->ac_flags & (CCM_MODE|GCM_MODE|GMAC_MODE)) { case CCM_MODE: length_needed = aes_ctx->ac_processed_data_len; break; case GCM_MODE: length_needed = ciphertext->cd_length - aes_ctx->ac_tag_len; break; case GMAC_MODE: if (plaintext->cd_length != 0) return (CRYPTO_ARGUMENTS_BAD); length_needed = 0; break; default: length_needed = ciphertext->cd_length; } if (plaintext->cd_length < length_needed) { plaintext->cd_length = length_needed; return (CRYPTO_BUFFER_TOO_SMALL); } saved_offset = plaintext->cd_offset; saved_length = plaintext->cd_length; /* * Do an update on the specified input data. */ ret = aes_decrypt_update(ctx, ciphertext, plaintext); if (ret != CRYPTO_SUCCESS) { goto cleanup; } if (aes_ctx->ac_flags & CCM_MODE) { ASSERT(aes_ctx->ac_processed_data_len == aes_ctx->ac_data_len); ASSERT(aes_ctx->ac_processed_mac_len == aes_ctx->ac_mac_len); /* order of following 2 lines MUST not be reversed */ plaintext->cd_offset = plaintext->cd_length; plaintext->cd_length = saved_length - plaintext->cd_length; ret = ccm_decrypt_final((ccm_ctx_t *)aes_ctx, plaintext, AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block, aes_xor_block); if (ret == CRYPTO_SUCCESS) { if (plaintext != ciphertext) { plaintext->cd_length = plaintext->cd_offset - saved_offset; } } else { plaintext->cd_length = saved_length; } plaintext->cd_offset = saved_offset; } else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) { /* order of following 2 lines MUST not be reversed */ plaintext->cd_offset = plaintext->cd_length; plaintext->cd_length = saved_length - plaintext->cd_length; ret = gcm_decrypt_final((gcm_ctx_t *)aes_ctx, plaintext, AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block); if (ret == CRYPTO_SUCCESS) { if (plaintext != ciphertext) { plaintext->cd_length = plaintext->cd_offset - saved_offset; } } else { plaintext->cd_length = saved_length; } plaintext->cd_offset = saved_offset; } ASSERT(aes_ctx->ac_remainder_len == 0); cleanup: (void) aes_free_context(ctx); return (ret); } static int aes_encrypt_update(crypto_ctx_t *ctx, crypto_data_t *plaintext, crypto_data_t *ciphertext) { off_t saved_offset; size_t saved_length, out_len; int ret = CRYPTO_SUCCESS; aes_ctx_t *aes_ctx; ASSERT(ctx->cc_provider_private != NULL); aes_ctx = ctx->cc_provider_private; ASSERT(ciphertext != NULL); /* compute number of bytes that will hold the ciphertext */ out_len = aes_ctx->ac_remainder_len; out_len += plaintext->cd_length; out_len &= ~(AES_BLOCK_LEN - 1); /* return length needed to store the output */ if (ciphertext->cd_length < out_len) { ciphertext->cd_length = out_len; return (CRYPTO_BUFFER_TOO_SMALL); } saved_offset = ciphertext->cd_offset; saved_length = ciphertext->cd_length; /* * Do the AES update on the specified input data. */ switch (plaintext->cd_format) { case CRYPTO_DATA_RAW: ret = crypto_update_iov(ctx->cc_provider_private, plaintext, ciphertext, aes_encrypt_contiguous_blocks); break; case CRYPTO_DATA_UIO: ret = crypto_update_uio(ctx->cc_provider_private, plaintext, ciphertext, aes_encrypt_contiguous_blocks); break; default: ret = CRYPTO_ARGUMENTS_BAD; } /* * Since AES counter mode is a stream cipher, we call * ctr_mode_final() to pick up any remaining bytes. * It is an internal function that does not destroy * the context like *normal* final routines. */ if ((aes_ctx->ac_flags & CTR_MODE) && (aes_ctx->ac_remainder_len > 0)) { ret = ctr_mode_final((ctr_ctx_t *)aes_ctx, ciphertext, aes_encrypt_block); } if (ret == CRYPTO_SUCCESS) { if (plaintext != ciphertext) ciphertext->cd_length = ciphertext->cd_offset - saved_offset; } else { ciphertext->cd_length = saved_length; } ciphertext->cd_offset = saved_offset; return (ret); } static int aes_decrypt_update(crypto_ctx_t *ctx, crypto_data_t *ciphertext, crypto_data_t *plaintext) { off_t saved_offset; size_t saved_length, out_len; int ret = CRYPTO_SUCCESS; aes_ctx_t *aes_ctx; ASSERT(ctx->cc_provider_private != NULL); aes_ctx = ctx->cc_provider_private; ASSERT(plaintext != NULL); /* * Compute number of bytes that will hold the plaintext. * This is not necessary for CCM, GCM, and GMAC since these * mechanisms never return plaintext for update operations. */ if ((aes_ctx->ac_flags & (CCM_MODE|GCM_MODE|GMAC_MODE)) == 0) { out_len = aes_ctx->ac_remainder_len; out_len += ciphertext->cd_length; out_len &= ~(AES_BLOCK_LEN - 1); /* return length needed to store the output */ if (plaintext->cd_length < out_len) { plaintext->cd_length = out_len; return (CRYPTO_BUFFER_TOO_SMALL); } } saved_offset = plaintext->cd_offset; saved_length = plaintext->cd_length; /* * Do the AES update on the specified input data. */ switch (ciphertext->cd_format) { case CRYPTO_DATA_RAW: ret = crypto_update_iov(ctx->cc_provider_private, ciphertext, plaintext, aes_decrypt_contiguous_blocks); break; case CRYPTO_DATA_UIO: ret = crypto_update_uio(ctx->cc_provider_private, ciphertext, plaintext, aes_decrypt_contiguous_blocks); break; default: ret = CRYPTO_ARGUMENTS_BAD; } /* * Since AES counter mode is a stream cipher, we call * ctr_mode_final() to pick up any remaining bytes. * It is an internal function that does not destroy * the context like *normal* final routines. */ if ((aes_ctx->ac_flags & CTR_MODE) && (aes_ctx->ac_remainder_len > 0)) { ret = ctr_mode_final((ctr_ctx_t *)aes_ctx, plaintext, aes_encrypt_block); if (ret == CRYPTO_DATA_LEN_RANGE) ret = CRYPTO_ENCRYPTED_DATA_LEN_RANGE; } if (ret == CRYPTO_SUCCESS) { if (ciphertext != plaintext) plaintext->cd_length = plaintext->cd_offset - saved_offset; } else { plaintext->cd_length = saved_length; } plaintext->cd_offset = saved_offset; return (ret); } static int aes_encrypt_final(crypto_ctx_t *ctx, crypto_data_t *data) { aes_ctx_t *aes_ctx; int ret; ASSERT(ctx->cc_provider_private != NULL); aes_ctx = ctx->cc_provider_private; if (data->cd_format != CRYPTO_DATA_RAW && data->cd_format != CRYPTO_DATA_UIO) { return (CRYPTO_ARGUMENTS_BAD); } if (aes_ctx->ac_flags & CTR_MODE) { if (aes_ctx->ac_remainder_len > 0) { ret = ctr_mode_final((ctr_ctx_t *)aes_ctx, data, aes_encrypt_block); if (ret != CRYPTO_SUCCESS) return (ret); } } else if (aes_ctx->ac_flags & CCM_MODE) { ret = ccm_encrypt_final((ccm_ctx_t *)aes_ctx, data, AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block); if (ret != CRYPTO_SUCCESS) { return (ret); } } else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) { size_t saved_offset = data->cd_offset; ret = gcm_encrypt_final((gcm_ctx_t *)aes_ctx, data, AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block, aes_xor_block); if (ret != CRYPTO_SUCCESS) { return (ret); } data->cd_length = data->cd_offset - saved_offset; data->cd_offset = saved_offset; } else { /* * There must be no unprocessed plaintext. * This happens if the length of the last data is * not a multiple of the AES block length. */ if (aes_ctx->ac_remainder_len > 0) { return (CRYPTO_DATA_LEN_RANGE); } data->cd_length = 0; } (void) aes_free_context(ctx); return (CRYPTO_SUCCESS); } static int aes_decrypt_final(crypto_ctx_t *ctx, crypto_data_t *data) { aes_ctx_t *aes_ctx; int ret; off_t saved_offset; size_t saved_length; ASSERT(ctx->cc_provider_private != NULL); aes_ctx = ctx->cc_provider_private; if (data->cd_format != CRYPTO_DATA_RAW && data->cd_format != CRYPTO_DATA_UIO) { return (CRYPTO_ARGUMENTS_BAD); } /* * There must be no unprocessed ciphertext. * This happens if the length of the last ciphertext is * not a multiple of the AES block length. */ if (aes_ctx->ac_remainder_len > 0) { if ((aes_ctx->ac_flags & CTR_MODE) == 0) return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE); else { ret = ctr_mode_final((ctr_ctx_t *)aes_ctx, data, aes_encrypt_block); if (ret == CRYPTO_DATA_LEN_RANGE) ret = CRYPTO_ENCRYPTED_DATA_LEN_RANGE; if (ret != CRYPTO_SUCCESS) return (ret); } } if (aes_ctx->ac_flags & CCM_MODE) { /* * This is where all the plaintext is returned, make sure * the plaintext buffer is big enough */ size_t pt_len = aes_ctx->ac_data_len; if (data->cd_length < pt_len) { data->cd_length = pt_len; return (CRYPTO_BUFFER_TOO_SMALL); } ASSERT(aes_ctx->ac_processed_data_len == pt_len); ASSERT(aes_ctx->ac_processed_mac_len == aes_ctx->ac_mac_len); saved_offset = data->cd_offset; saved_length = data->cd_length; ret = ccm_decrypt_final((ccm_ctx_t *)aes_ctx, data, AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block, aes_xor_block); if (ret == CRYPTO_SUCCESS) { data->cd_length = data->cd_offset - saved_offset; } else { data->cd_length = saved_length; } data->cd_offset = saved_offset; if (ret != CRYPTO_SUCCESS) { return (ret); } } else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) { /* * This is where all the plaintext is returned, make sure * the plaintext buffer is big enough */ gcm_ctx_t *ctx = (gcm_ctx_t *)aes_ctx; size_t pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len; if (data->cd_length < pt_len) { data->cd_length = pt_len; return (CRYPTO_BUFFER_TOO_SMALL); } saved_offset = data->cd_offset; saved_length = data->cd_length; ret = gcm_decrypt_final((gcm_ctx_t *)aes_ctx, data, AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block); if (ret == CRYPTO_SUCCESS) { data->cd_length = data->cd_offset - saved_offset; } else { data->cd_length = saved_length; } data->cd_offset = saved_offset; if (ret != CRYPTO_SUCCESS) { return (ret); } } if ((aes_ctx->ac_flags & (CTR_MODE|CCM_MODE|GCM_MODE|GMAC_MODE)) == 0) { data->cd_length = 0; } (void) aes_free_context(ctx); return (CRYPTO_SUCCESS); } static int aes_encrypt_atomic(crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_data_t *plaintext, crypto_data_t *ciphertext, crypto_spi_ctx_template_t template) { aes_ctx_t aes_ctx = {{{{0}}}}; off_t saved_offset; size_t saved_length; size_t length_needed; int ret; ASSERT(ciphertext != NULL); /* * CTR, CCM, GCM, and GMAC modes do not require that plaintext * be a multiple of AES block size. */ switch (mechanism->cm_type) { case AES_CTR_MECH_INFO_TYPE: case AES_CCM_MECH_INFO_TYPE: case AES_GCM_MECH_INFO_TYPE: case AES_GMAC_MECH_INFO_TYPE: break; default: if ((plaintext->cd_length & (AES_BLOCK_LEN - 1)) != 0) return (CRYPTO_DATA_LEN_RANGE); } if ((ret = aes_check_mech_param(mechanism, NULL)) != CRYPTO_SUCCESS) return (ret); ret = aes_common_init_ctx(&aes_ctx, template, mechanism, key, KM_SLEEP, B_TRUE); if (ret != CRYPTO_SUCCESS) return (ret); switch (mechanism->cm_type) { case AES_CCM_MECH_INFO_TYPE: length_needed = plaintext->cd_length + aes_ctx.ac_mac_len; break; case AES_GMAC_MECH_INFO_TYPE: if (plaintext->cd_length != 0) return (CRYPTO_ARGUMENTS_BAD); zfs_fallthrough; case AES_GCM_MECH_INFO_TYPE: length_needed = plaintext->cd_length + aes_ctx.ac_tag_len; break; default: length_needed = plaintext->cd_length; } /* return size of buffer needed to store output */ if (ciphertext->cd_length < length_needed) { ciphertext->cd_length = length_needed; ret = CRYPTO_BUFFER_TOO_SMALL; goto out; } saved_offset = ciphertext->cd_offset; saved_length = ciphertext->cd_length; /* * Do an update on the specified input data. */ switch (plaintext->cd_format) { case CRYPTO_DATA_RAW: ret = crypto_update_iov(&aes_ctx, plaintext, ciphertext, aes_encrypt_contiguous_blocks); break; case CRYPTO_DATA_UIO: ret = crypto_update_uio(&aes_ctx, plaintext, ciphertext, aes_encrypt_contiguous_blocks); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret == CRYPTO_SUCCESS) { if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) { ret = ccm_encrypt_final((ccm_ctx_t *)&aes_ctx, ciphertext, AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block); if (ret != CRYPTO_SUCCESS) goto out; ASSERT(aes_ctx.ac_remainder_len == 0); } else if (mechanism->cm_type == AES_GCM_MECH_INFO_TYPE || mechanism->cm_type == AES_GMAC_MECH_INFO_TYPE) { ret = gcm_encrypt_final((gcm_ctx_t *)&aes_ctx, ciphertext, AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block, aes_xor_block); if (ret != CRYPTO_SUCCESS) goto out; ASSERT(aes_ctx.ac_remainder_len == 0); } else if (mechanism->cm_type == AES_CTR_MECH_INFO_TYPE) { if (aes_ctx.ac_remainder_len > 0) { ret = ctr_mode_final((ctr_ctx_t *)&aes_ctx, ciphertext, aes_encrypt_block); if (ret != CRYPTO_SUCCESS) goto out; } } else { ASSERT(aes_ctx.ac_remainder_len == 0); } if (plaintext != ciphertext) { ciphertext->cd_length = ciphertext->cd_offset - saved_offset; } } else { ciphertext->cd_length = saved_length; } ciphertext->cd_offset = saved_offset; out: if (aes_ctx.ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) { memset(aes_ctx.ac_keysched, 0, aes_ctx.ac_keysched_len); kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len); } if (aes_ctx.ac_flags & (GCM_MODE|GMAC_MODE)) { gcm_clear_ctx((gcm_ctx_t *)&aes_ctx); } return (ret); } static int aes_decrypt_atomic(crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_data_t *ciphertext, crypto_data_t *plaintext, crypto_spi_ctx_template_t template) { aes_ctx_t aes_ctx = {{{{0}}}}; off_t saved_offset; size_t saved_length; size_t length_needed; int ret; ASSERT(plaintext != NULL); /* * CCM, GCM, CTR, and GMAC modes do not require that ciphertext * be a multiple of AES block size. */ switch (mechanism->cm_type) { case AES_CTR_MECH_INFO_TYPE: case AES_CCM_MECH_INFO_TYPE: case AES_GCM_MECH_INFO_TYPE: case AES_GMAC_MECH_INFO_TYPE: break; default: if ((ciphertext->cd_length & (AES_BLOCK_LEN - 1)) != 0) return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE); } if ((ret = aes_check_mech_param(mechanism, NULL)) != CRYPTO_SUCCESS) return (ret); ret = aes_common_init_ctx(&aes_ctx, template, mechanism, key, KM_SLEEP, B_FALSE); if (ret != CRYPTO_SUCCESS) return (ret); switch (mechanism->cm_type) { case AES_CCM_MECH_INFO_TYPE: length_needed = aes_ctx.ac_data_len; break; case AES_GCM_MECH_INFO_TYPE: length_needed = ciphertext->cd_length - aes_ctx.ac_tag_len; break; case AES_GMAC_MECH_INFO_TYPE: if (plaintext->cd_length != 0) return (CRYPTO_ARGUMENTS_BAD); length_needed = 0; break; default: length_needed = ciphertext->cd_length; } /* return size of buffer needed to store output */ if (plaintext->cd_length < length_needed) { plaintext->cd_length = length_needed; ret = CRYPTO_BUFFER_TOO_SMALL; goto out; } saved_offset = plaintext->cd_offset; saved_length = plaintext->cd_length; /* * Do an update on the specified input data. */ switch (ciphertext->cd_format) { case CRYPTO_DATA_RAW: ret = crypto_update_iov(&aes_ctx, ciphertext, plaintext, aes_decrypt_contiguous_blocks); break; case CRYPTO_DATA_UIO: ret = crypto_update_uio(&aes_ctx, ciphertext, plaintext, aes_decrypt_contiguous_blocks); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret == CRYPTO_SUCCESS) { if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) { ASSERT(aes_ctx.ac_processed_data_len == aes_ctx.ac_data_len); ASSERT(aes_ctx.ac_processed_mac_len == aes_ctx.ac_mac_len); ret = ccm_decrypt_final((ccm_ctx_t *)&aes_ctx, plaintext, AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block, aes_xor_block); ASSERT(aes_ctx.ac_remainder_len == 0); if ((ret == CRYPTO_SUCCESS) && (ciphertext != plaintext)) { plaintext->cd_length = plaintext->cd_offset - saved_offset; } else { plaintext->cd_length = saved_length; } } else if (mechanism->cm_type == AES_GCM_MECH_INFO_TYPE || mechanism->cm_type == AES_GMAC_MECH_INFO_TYPE) { ret = gcm_decrypt_final((gcm_ctx_t *)&aes_ctx, plaintext, AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block); ASSERT(aes_ctx.ac_remainder_len == 0); if ((ret == CRYPTO_SUCCESS) && (ciphertext != plaintext)) { plaintext->cd_length = plaintext->cd_offset - saved_offset; } else { plaintext->cd_length = saved_length; } } else if (mechanism->cm_type != AES_CTR_MECH_INFO_TYPE) { ASSERT(aes_ctx.ac_remainder_len == 0); if (ciphertext != plaintext) plaintext->cd_length = plaintext->cd_offset - saved_offset; } else { if (aes_ctx.ac_remainder_len > 0) { ret = ctr_mode_final((ctr_ctx_t *)&aes_ctx, plaintext, aes_encrypt_block); if (ret == CRYPTO_DATA_LEN_RANGE) ret = CRYPTO_ENCRYPTED_DATA_LEN_RANGE; if (ret != CRYPTO_SUCCESS) goto out; } if (ciphertext != plaintext) plaintext->cd_length = plaintext->cd_offset - saved_offset; } } else { plaintext->cd_length = saved_length; } plaintext->cd_offset = saved_offset; out: if (aes_ctx.ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) { memset(aes_ctx.ac_keysched, 0, aes_ctx.ac_keysched_len); kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len); } if (aes_ctx.ac_flags & CCM_MODE) { if (aes_ctx.ac_pt_buf != NULL) { vmem_free(aes_ctx.ac_pt_buf, aes_ctx.ac_data_len); } } else if (aes_ctx.ac_flags & (GCM_MODE|GMAC_MODE)) { gcm_clear_ctx((gcm_ctx_t *)&aes_ctx); } return (ret); } /* * KCF software provider context template entry points. */ static int aes_create_ctx_template(crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_spi_ctx_template_t *tmpl, size_t *tmpl_size) { void *keysched; size_t size; int rv; if (mechanism->cm_type != AES_ECB_MECH_INFO_TYPE && mechanism->cm_type != AES_CBC_MECH_INFO_TYPE && mechanism->cm_type != AES_CTR_MECH_INFO_TYPE && mechanism->cm_type != AES_CCM_MECH_INFO_TYPE && mechanism->cm_type != AES_GCM_MECH_INFO_TYPE && mechanism->cm_type != AES_GMAC_MECH_INFO_TYPE) return (CRYPTO_MECHANISM_INVALID); if ((keysched = aes_alloc_keysched(&size, KM_SLEEP)) == NULL) { return (CRYPTO_HOST_MEMORY); } /* * Initialize key schedule. Key length information is stored * in the key. */ if ((rv = init_keysched(key, keysched)) != CRYPTO_SUCCESS) { memset(keysched, 0, size); kmem_free(keysched, size); return (rv); } *tmpl = keysched; *tmpl_size = size; return (CRYPTO_SUCCESS); } static int aes_free_context(crypto_ctx_t *ctx) { aes_ctx_t *aes_ctx = ctx->cc_provider_private; if (aes_ctx != NULL) { if (aes_ctx->ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) { ASSERT(aes_ctx->ac_keysched_len != 0); memset(aes_ctx->ac_keysched, 0, aes_ctx->ac_keysched_len); kmem_free(aes_ctx->ac_keysched, aes_ctx->ac_keysched_len); } crypto_free_mode_ctx(aes_ctx); ctx->cc_provider_private = NULL; } return (CRYPTO_SUCCESS); } static int aes_common_init_ctx(aes_ctx_t *aes_ctx, crypto_spi_ctx_template_t *template, crypto_mechanism_t *mechanism, crypto_key_t *key, int kmflag, boolean_t is_encrypt_init) { int rv = CRYPTO_SUCCESS; void *keysched; size_t size = 0; if (template == NULL) { if ((keysched = aes_alloc_keysched(&size, kmflag)) == NULL) return (CRYPTO_HOST_MEMORY); /* * Initialize key schedule. * Key length is stored in the key. */ if ((rv = init_keysched(key, keysched)) != CRYPTO_SUCCESS) { kmem_free(keysched, size); return (rv); } aes_ctx->ac_flags |= PROVIDER_OWNS_KEY_SCHEDULE; aes_ctx->ac_keysched_len = size; } else { keysched = template; } aes_ctx->ac_keysched = keysched; switch (mechanism->cm_type) { case AES_CBC_MECH_INFO_TYPE: rv = cbc_init_ctx((cbc_ctx_t *)aes_ctx, mechanism->cm_param, mechanism->cm_param_len, AES_BLOCK_LEN, aes_copy_block64); break; case AES_CTR_MECH_INFO_TYPE: { CK_AES_CTR_PARAMS *pp; if (mechanism->cm_param == NULL || mechanism->cm_param_len != sizeof (CK_AES_CTR_PARAMS)) { return (CRYPTO_MECHANISM_PARAM_INVALID); } pp = (CK_AES_CTR_PARAMS *)(void *)mechanism->cm_param; rv = ctr_init_ctx((ctr_ctx_t *)aes_ctx, pp->ulCounterBits, pp->cb, aes_copy_block); break; } case AES_CCM_MECH_INFO_TYPE: if (mechanism->cm_param == NULL || mechanism->cm_param_len != sizeof (CK_AES_CCM_PARAMS)) { return (CRYPTO_MECHANISM_PARAM_INVALID); } rv = ccm_init_ctx((ccm_ctx_t *)aes_ctx, mechanism->cm_param, kmflag, is_encrypt_init, AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block); break; case AES_GCM_MECH_INFO_TYPE: if (mechanism->cm_param == NULL || mechanism->cm_param_len != sizeof (CK_AES_GCM_PARAMS)) { return (CRYPTO_MECHANISM_PARAM_INVALID); } rv = gcm_init_ctx((gcm_ctx_t *)aes_ctx, mechanism->cm_param, AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block, aes_xor_block); break; case AES_GMAC_MECH_INFO_TYPE: if (mechanism->cm_param == NULL || mechanism->cm_param_len != sizeof (CK_AES_GMAC_PARAMS)) { return (CRYPTO_MECHANISM_PARAM_INVALID); } rv = gmac_init_ctx((gcm_ctx_t *)aes_ctx, mechanism->cm_param, AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block, aes_xor_block); break; case AES_ECB_MECH_INFO_TYPE: aes_ctx->ac_flags |= ECB_MODE; } if (rv != CRYPTO_SUCCESS) { if (aes_ctx->ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) { memset(keysched, 0, size); kmem_free(keysched, size); } } return (rv); } static int process_gmac_mech(crypto_mechanism_t *mech, crypto_data_t *data, CK_AES_GCM_PARAMS *gcm_params) { /* LINTED: pointer alignment */ CK_AES_GMAC_PARAMS *params = (CK_AES_GMAC_PARAMS *)mech->cm_param; if (mech->cm_type != AES_GMAC_MECH_INFO_TYPE) return (CRYPTO_MECHANISM_INVALID); if (mech->cm_param_len != sizeof (CK_AES_GMAC_PARAMS)) return (CRYPTO_MECHANISM_PARAM_INVALID); if (params->pIv == NULL) return (CRYPTO_MECHANISM_PARAM_INVALID); gcm_params->pIv = params->pIv; gcm_params->ulIvLen = AES_GMAC_IV_LEN; gcm_params->ulTagBits = AES_GMAC_TAG_BITS; if (data == NULL) return (CRYPTO_SUCCESS); if (data->cd_format != CRYPTO_DATA_RAW) return (CRYPTO_ARGUMENTS_BAD); gcm_params->pAAD = (uchar_t *)data->cd_raw.iov_base; gcm_params->ulAADLen = data->cd_length; return (CRYPTO_SUCCESS); } static int aes_mac_atomic(crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac, crypto_spi_ctx_template_t template) { CK_AES_GCM_PARAMS gcm_params; crypto_mechanism_t gcm_mech; int rv; if ((rv = process_gmac_mech(mechanism, data, &gcm_params)) != CRYPTO_SUCCESS) return (rv); gcm_mech.cm_type = AES_GCM_MECH_INFO_TYPE; gcm_mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS); gcm_mech.cm_param = (char *)&gcm_params; return (aes_encrypt_atomic(&gcm_mech, key, &null_crypto_data, mac, template)); } static int aes_mac_verify_atomic(crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac, crypto_spi_ctx_template_t template) { CK_AES_GCM_PARAMS gcm_params; crypto_mechanism_t gcm_mech; int rv; if ((rv = process_gmac_mech(mechanism, data, &gcm_params)) != CRYPTO_SUCCESS) return (rv); gcm_mech.cm_type = AES_GCM_MECH_INFO_TYPE; gcm_mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS); gcm_mech.cm_param = (char *)&gcm_params; return (aes_decrypt_atomic(&gcm_mech, key, mac, &null_crypto_data, template)); }