/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or https://opensource.org/licenses/CDDL-1.0.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
 */

/*
 * AES provider for the Kernel Cryptographic Framework (KCF)
 */

#include <sys/zfs_context.h>
#include <sys/crypto/common.h>
#include <sys/crypto/impl.h>
#include <sys/crypto/spi.h>
#include <sys/crypto/icp.h>
#include <modes/modes.h>
#define	_AES_IMPL
#include <aes/aes_impl.h>
#include <modes/gcm_impl.h>

/*
 * Mechanism info structure passed to KCF during registration.
 */
static const crypto_mech_info_t aes_mech_info_tab[] = {
	/* AES_ECB */
	{SUN_CKM_AES_ECB, AES_ECB_MECH_INFO_TYPE,
	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC},
	/* AES_CBC */
	{SUN_CKM_AES_CBC, AES_CBC_MECH_INFO_TYPE,
	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC},
	/* AES_CTR */
	{SUN_CKM_AES_CTR, AES_CTR_MECH_INFO_TYPE,
	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC},
	/* AES_CCM */
	{SUN_CKM_AES_CCM, AES_CCM_MECH_INFO_TYPE,
	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC},
	/* AES_GCM */
	{SUN_CKM_AES_GCM, AES_GCM_MECH_INFO_TYPE,
	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC},
	/* AES_GMAC */
	{SUN_CKM_AES_GMAC, AES_GMAC_MECH_INFO_TYPE,
	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC |
	    CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC},
};

static int aes_encrypt_init(crypto_ctx_t *, crypto_mechanism_t *,
    crypto_key_t *, crypto_spi_ctx_template_t);
static int aes_decrypt_init(crypto_ctx_t *, crypto_mechanism_t *,
    crypto_key_t *, crypto_spi_ctx_template_t);
static int aes_common_init(crypto_ctx_t *, crypto_mechanism_t *,
    crypto_key_t *, crypto_spi_ctx_template_t, boolean_t);
static int aes_common_init_ctx(aes_ctx_t *, crypto_spi_ctx_template_t *,
    crypto_mechanism_t *, crypto_key_t *, int, boolean_t);
static int aes_encrypt_final(crypto_ctx_t *, crypto_data_t *);
static int aes_decrypt_final(crypto_ctx_t *, crypto_data_t *);

static int aes_encrypt(crypto_ctx_t *, crypto_data_t *, crypto_data_t *);
static int aes_encrypt_update(crypto_ctx_t *, crypto_data_t *,
    crypto_data_t *);
static int aes_encrypt_atomic(crypto_mechanism_t *, crypto_key_t *,
    crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t);

static int aes_decrypt(crypto_ctx_t *, crypto_data_t *, crypto_data_t *);
static int aes_decrypt_update(crypto_ctx_t *, crypto_data_t *,
    crypto_data_t *);
static int aes_decrypt_atomic(crypto_mechanism_t *, crypto_key_t *,
    crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t);

static const crypto_cipher_ops_t aes_cipher_ops = {
	.encrypt_init = aes_encrypt_init,
	.encrypt = aes_encrypt,
	.encrypt_update = aes_encrypt_update,
	.encrypt_final = aes_encrypt_final,
	.encrypt_atomic = aes_encrypt_atomic,
	.decrypt_init = aes_decrypt_init,
	.decrypt = aes_decrypt,
	.decrypt_update = aes_decrypt_update,
	.decrypt_final = aes_decrypt_final,
	.decrypt_atomic = aes_decrypt_atomic
};

static int aes_mac_atomic(crypto_mechanism_t *, crypto_key_t *, crypto_data_t *,
    crypto_data_t *, crypto_spi_ctx_template_t);
static int aes_mac_verify_atomic(crypto_mechanism_t *, crypto_key_t *,
    crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t);

static const crypto_mac_ops_t aes_mac_ops = {
	.mac_init = NULL,
	.mac = NULL,
	.mac_update = NULL,
	.mac_final = NULL,
	.mac_atomic = aes_mac_atomic,
	.mac_verify_atomic = aes_mac_verify_atomic
};

static int aes_create_ctx_template(crypto_mechanism_t *, crypto_key_t *,
    crypto_spi_ctx_template_t *, size_t *);
static int aes_free_context(crypto_ctx_t *);

static const crypto_ctx_ops_t aes_ctx_ops = {
	.create_ctx_template = aes_create_ctx_template,
	.free_context = aes_free_context
};

static const crypto_ops_t aes_crypto_ops = {
	NULL,
	&aes_cipher_ops,
	&aes_mac_ops,
	&aes_ctx_ops,
};

static const crypto_provider_info_t aes_prov_info = {
	"AES Software Provider",
	&aes_crypto_ops,
	sizeof (aes_mech_info_tab) / sizeof (crypto_mech_info_t),
	aes_mech_info_tab
};

static crypto_kcf_provider_handle_t aes_prov_handle = 0;
static crypto_data_t null_crypto_data = { CRYPTO_DATA_RAW };

int
aes_mod_init(void)
{
	/* Determine the fastest available implementation. */
	aes_impl_init();
	gcm_impl_init();

	/* Register with KCF.  If the registration fails, remove the module. */
	if (crypto_register_provider(&aes_prov_info, &aes_prov_handle))
		return (EACCES);

	return (0);
}

int
aes_mod_fini(void)
{
	/* Unregister from KCF if module is registered */
	if (aes_prov_handle != 0) {
		if (crypto_unregister_provider(aes_prov_handle))
			return (EBUSY);

		aes_prov_handle = 0;
	}

	return (0);
}

static int
aes_check_mech_param(crypto_mechanism_t *mechanism, aes_ctx_t **ctx)
{
	void *p = NULL;
	boolean_t param_required = B_TRUE;
	size_t param_len;
	void *(*alloc_fun)(int);
	int rv = CRYPTO_SUCCESS;

	switch (mechanism->cm_type) {
	case AES_ECB_MECH_INFO_TYPE:
		param_required = B_FALSE;
		alloc_fun = ecb_alloc_ctx;
		break;
	case AES_CBC_MECH_INFO_TYPE:
		param_len = AES_BLOCK_LEN;
		alloc_fun = cbc_alloc_ctx;
		break;
	case AES_CTR_MECH_INFO_TYPE:
		param_len = sizeof (CK_AES_CTR_PARAMS);
		alloc_fun = ctr_alloc_ctx;
		break;
	case AES_CCM_MECH_INFO_TYPE:
		param_len = sizeof (CK_AES_CCM_PARAMS);
		alloc_fun = ccm_alloc_ctx;
		break;
	case AES_GCM_MECH_INFO_TYPE:
		param_len = sizeof (CK_AES_GCM_PARAMS);
		alloc_fun = gcm_alloc_ctx;
		break;
	case AES_GMAC_MECH_INFO_TYPE:
		param_len = sizeof (CK_AES_GMAC_PARAMS);
		alloc_fun = gmac_alloc_ctx;
		break;
	default:
		rv = CRYPTO_MECHANISM_INVALID;
		return (rv);
	}
	if (param_required && mechanism->cm_param != NULL &&
	    mechanism->cm_param_len != param_len) {
		rv = CRYPTO_MECHANISM_PARAM_INVALID;
	}
	if (ctx != NULL) {
		p = (alloc_fun)(KM_SLEEP);
		*ctx = p;
	}
	return (rv);
}

/*
 * Initialize key schedules for AES
 */
static int
init_keysched(crypto_key_t *key, void *newbie)
{
	if (key->ck_length < AES_MINBITS ||
	    key->ck_length > AES_MAXBITS) {
		return (CRYPTO_KEY_SIZE_RANGE);
	}

	/* key length must be either 128, 192, or 256 */
	if ((key->ck_length & 63) != 0)
		return (CRYPTO_KEY_SIZE_RANGE);

	aes_init_keysched(key->ck_data, key->ck_length, newbie);
	return (CRYPTO_SUCCESS);
}

static int
aes_encrypt_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
    crypto_key_t *key, crypto_spi_ctx_template_t template)
{
	return (aes_common_init(ctx, mechanism, key, template, B_TRUE));
}

static int
aes_decrypt_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
    crypto_key_t *key, crypto_spi_ctx_template_t template)
{
	return (aes_common_init(ctx, mechanism, key, template, B_FALSE));
}



/*
 * KCF software provider encrypt entry points.
 */
static int
aes_common_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
    crypto_key_t *key, crypto_spi_ctx_template_t template,
    boolean_t is_encrypt_init)
{
	aes_ctx_t *aes_ctx;
	int rv;

	if ((rv = aes_check_mech_param(mechanism, &aes_ctx))
	    != CRYPTO_SUCCESS)
		return (rv);

	rv = aes_common_init_ctx(aes_ctx, template, mechanism, key, KM_SLEEP,
	    is_encrypt_init);
	if (rv != CRYPTO_SUCCESS) {
		crypto_free_mode_ctx(aes_ctx);
		return (rv);
	}

	ctx->cc_provider_private = aes_ctx;

	return (CRYPTO_SUCCESS);
}

static void
aes_copy_block64(uint8_t *in, uint64_t *out)
{
	if (IS_P2ALIGNED(in, sizeof (uint64_t))) {
		/* LINTED: pointer alignment */
		out[0] = *(uint64_t *)&in[0];
		/* LINTED: pointer alignment */
		out[1] = *(uint64_t *)&in[8];
	} else {
		uint8_t *iv8 = (uint8_t *)&out[0];

		AES_COPY_BLOCK(in, iv8);
	}
}


static int
aes_encrypt(crypto_ctx_t *ctx, crypto_data_t *plaintext,
    crypto_data_t *ciphertext)
{
	int ret = CRYPTO_FAILED;

	aes_ctx_t *aes_ctx;
	size_t saved_length, saved_offset, length_needed;

	ASSERT(ctx->cc_provider_private != NULL);
	aes_ctx = ctx->cc_provider_private;

	/*
	 * For block ciphers, plaintext must be a multiple of AES block size.
	 * This test is only valid for ciphers whose blocksize is a power of 2.
	 */
	if (((aes_ctx->ac_flags & (CTR_MODE|CCM_MODE|GCM_MODE|GMAC_MODE))
	    == 0) && (plaintext->cd_length & (AES_BLOCK_LEN - 1)) != 0)
		return (CRYPTO_DATA_LEN_RANGE);

	ASSERT(ciphertext != NULL);

	/*
	 * We need to just return the length needed to store the output.
	 * We should not destroy the context for the following case.
	 */
	switch (aes_ctx->ac_flags & (CCM_MODE|GCM_MODE|GMAC_MODE)) {
	case CCM_MODE:
		length_needed = plaintext->cd_length + aes_ctx->ac_mac_len;
		break;
	case GCM_MODE:
		length_needed = plaintext->cd_length + aes_ctx->ac_tag_len;
		break;
	case GMAC_MODE:
		if (plaintext->cd_length != 0)
			return (CRYPTO_ARGUMENTS_BAD);

		length_needed = aes_ctx->ac_tag_len;
		break;
	default:
		length_needed = plaintext->cd_length;
	}

	if (ciphertext->cd_length < length_needed) {
		ciphertext->cd_length = length_needed;
		return (CRYPTO_BUFFER_TOO_SMALL);
	}

	saved_length = ciphertext->cd_length;
	saved_offset = ciphertext->cd_offset;

	/*
	 * Do an update on the specified input data.
	 */
	ret = aes_encrypt_update(ctx, plaintext, ciphertext);
	if (ret != CRYPTO_SUCCESS) {
		return (ret);
	}

	/*
	 * For CCM mode, aes_ccm_encrypt_final() will take care of any
	 * left-over unprocessed data, and compute the MAC
	 */
	if (aes_ctx->ac_flags & CCM_MODE) {
		/*
		 * ccm_encrypt_final() will compute the MAC and append
		 * it to existing ciphertext. So, need to adjust the left over
		 * length value accordingly
		 */

		/* order of following 2 lines MUST not be reversed */
		ciphertext->cd_offset = ciphertext->cd_length;
		ciphertext->cd_length = saved_length - ciphertext->cd_length;
		ret = ccm_encrypt_final((ccm_ctx_t *)aes_ctx, ciphertext,
		    AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
		if (ret != CRYPTO_SUCCESS) {
			return (ret);
		}

		if (plaintext != ciphertext) {
			ciphertext->cd_length =
			    ciphertext->cd_offset - saved_offset;
		}
		ciphertext->cd_offset = saved_offset;
	} else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) {
		/*
		 * gcm_encrypt_final() will compute the MAC and append
		 * it to existing ciphertext. So, need to adjust the left over
		 * length value accordingly
		 */

		/* order of following 2 lines MUST not be reversed */
		ciphertext->cd_offset = ciphertext->cd_length;
		ciphertext->cd_length = saved_length - ciphertext->cd_length;
		ret = gcm_encrypt_final((gcm_ctx_t *)aes_ctx, ciphertext,
		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
		    aes_xor_block);
		if (ret != CRYPTO_SUCCESS) {
			return (ret);
		}

		if (plaintext != ciphertext) {
			ciphertext->cd_length =
			    ciphertext->cd_offset - saved_offset;
		}
		ciphertext->cd_offset = saved_offset;
	}

	ASSERT(aes_ctx->ac_remainder_len == 0);
	(void) aes_free_context(ctx);

	return (ret);
}


static int
aes_decrypt(crypto_ctx_t *ctx, crypto_data_t *ciphertext,
    crypto_data_t *plaintext)
{
	int ret = CRYPTO_FAILED;

	aes_ctx_t *aes_ctx;
	off_t saved_offset;
	size_t saved_length, length_needed;

	ASSERT(ctx->cc_provider_private != NULL);
	aes_ctx = ctx->cc_provider_private;

	/*
	 * For block ciphers, plaintext must be a multiple of AES block size.
	 * This test is only valid for ciphers whose blocksize is a power of 2.
	 */
	if (((aes_ctx->ac_flags & (CTR_MODE|CCM_MODE|GCM_MODE|GMAC_MODE))
	    == 0) && (ciphertext->cd_length & (AES_BLOCK_LEN - 1)) != 0) {
		return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
	}

	ASSERT(plaintext != NULL);

	/*
	 * Return length needed to store the output.
	 * Do not destroy context when plaintext buffer is too small.
	 *
	 * CCM:  plaintext is MAC len smaller than cipher text
	 * GCM:  plaintext is TAG len smaller than cipher text
	 * GMAC: plaintext length must be zero
	 */
	switch (aes_ctx->ac_flags & (CCM_MODE|GCM_MODE|GMAC_MODE)) {
	case CCM_MODE:
		length_needed = aes_ctx->ac_processed_data_len;
		break;
	case GCM_MODE:
		length_needed = ciphertext->cd_length - aes_ctx->ac_tag_len;
		break;
	case GMAC_MODE:
		if (plaintext->cd_length != 0)
			return (CRYPTO_ARGUMENTS_BAD);

		length_needed = 0;
		break;
	default:
		length_needed = ciphertext->cd_length;
	}

	if (plaintext->cd_length < length_needed) {
		plaintext->cd_length = length_needed;
		return (CRYPTO_BUFFER_TOO_SMALL);
	}

	saved_offset = plaintext->cd_offset;
	saved_length = plaintext->cd_length;

	/*
	 * Do an update on the specified input data.
	 */
	ret = aes_decrypt_update(ctx, ciphertext, plaintext);
	if (ret != CRYPTO_SUCCESS) {
		goto cleanup;
	}

	if (aes_ctx->ac_flags & CCM_MODE) {
		ASSERT(aes_ctx->ac_processed_data_len == aes_ctx->ac_data_len);
		ASSERT(aes_ctx->ac_processed_mac_len == aes_ctx->ac_mac_len);

		/* order of following 2 lines MUST not be reversed */
		plaintext->cd_offset = plaintext->cd_length;
		plaintext->cd_length = saved_length - plaintext->cd_length;

		ret = ccm_decrypt_final((ccm_ctx_t *)aes_ctx, plaintext,
		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
		    aes_xor_block);
		if (ret == CRYPTO_SUCCESS) {
			if (plaintext != ciphertext) {
				plaintext->cd_length =
				    plaintext->cd_offset - saved_offset;
			}
		} else {
			plaintext->cd_length = saved_length;
		}

		plaintext->cd_offset = saved_offset;
	} else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) {
		/* order of following 2 lines MUST not be reversed */
		plaintext->cd_offset = plaintext->cd_length;
		plaintext->cd_length = saved_length - plaintext->cd_length;

		ret = gcm_decrypt_final((gcm_ctx_t *)aes_ctx, plaintext,
		    AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
		if (ret == CRYPTO_SUCCESS) {
			if (plaintext != ciphertext) {
				plaintext->cd_length =
				    plaintext->cd_offset - saved_offset;
			}
		} else {
			plaintext->cd_length = saved_length;
		}

		plaintext->cd_offset = saved_offset;
	}

	ASSERT(aes_ctx->ac_remainder_len == 0);

cleanup:
	(void) aes_free_context(ctx);

	return (ret);
}


static int
aes_encrypt_update(crypto_ctx_t *ctx, crypto_data_t *plaintext,
    crypto_data_t *ciphertext)
{
	off_t saved_offset;
	size_t saved_length, out_len;
	int ret = CRYPTO_SUCCESS;
	aes_ctx_t *aes_ctx;

	ASSERT(ctx->cc_provider_private != NULL);
	aes_ctx = ctx->cc_provider_private;

	ASSERT(ciphertext != NULL);

	/* compute number of bytes that will hold the ciphertext */
	out_len = aes_ctx->ac_remainder_len;
	out_len += plaintext->cd_length;
	out_len &= ~(AES_BLOCK_LEN - 1);

	/* return length needed to store the output */
	if (ciphertext->cd_length < out_len) {
		ciphertext->cd_length = out_len;
		return (CRYPTO_BUFFER_TOO_SMALL);
	}

	saved_offset = ciphertext->cd_offset;
	saved_length = ciphertext->cd_length;

	/*
	 * Do the AES update on the specified input data.
	 */
	switch (plaintext->cd_format) {
	case CRYPTO_DATA_RAW:
		ret = crypto_update_iov(ctx->cc_provider_private,
		    plaintext, ciphertext, aes_encrypt_contiguous_blocks);
		break;
	case CRYPTO_DATA_UIO:
		ret = crypto_update_uio(ctx->cc_provider_private,
		    plaintext, ciphertext, aes_encrypt_contiguous_blocks);
		break;
	default:
		ret = CRYPTO_ARGUMENTS_BAD;
	}

	/*
	 * Since AES counter mode is a stream cipher, we call
	 * ctr_mode_final() to pick up any remaining bytes.
	 * It is an internal function that does not destroy
	 * the context like *normal* final routines.
	 */
	if ((aes_ctx->ac_flags & CTR_MODE) && (aes_ctx->ac_remainder_len > 0)) {
		ret = ctr_mode_final((ctr_ctx_t *)aes_ctx,
		    ciphertext, aes_encrypt_block);
	}

	if (ret == CRYPTO_SUCCESS) {
		if (plaintext != ciphertext)
			ciphertext->cd_length =
			    ciphertext->cd_offset - saved_offset;
	} else {
		ciphertext->cd_length = saved_length;
	}
	ciphertext->cd_offset = saved_offset;

	return (ret);
}


static int
aes_decrypt_update(crypto_ctx_t *ctx, crypto_data_t *ciphertext,
    crypto_data_t *plaintext)
{
	off_t saved_offset;
	size_t saved_length, out_len;
	int ret = CRYPTO_SUCCESS;
	aes_ctx_t *aes_ctx;

	ASSERT(ctx->cc_provider_private != NULL);
	aes_ctx = ctx->cc_provider_private;

	ASSERT(plaintext != NULL);

	/*
	 * Compute number of bytes that will hold the plaintext.
	 * This is not necessary for CCM, GCM, and GMAC since these
	 * mechanisms never return plaintext for update operations.
	 */
	if ((aes_ctx->ac_flags & (CCM_MODE|GCM_MODE|GMAC_MODE)) == 0) {
		out_len = aes_ctx->ac_remainder_len;
		out_len += ciphertext->cd_length;
		out_len &= ~(AES_BLOCK_LEN - 1);

		/* return length needed to store the output */
		if (plaintext->cd_length < out_len) {
			plaintext->cd_length = out_len;
			return (CRYPTO_BUFFER_TOO_SMALL);
		}
	}

	saved_offset = plaintext->cd_offset;
	saved_length = plaintext->cd_length;

	/*
	 * Do the AES update on the specified input data.
	 */
	switch (ciphertext->cd_format) {
	case CRYPTO_DATA_RAW:
		ret = crypto_update_iov(ctx->cc_provider_private,
		    ciphertext, plaintext, aes_decrypt_contiguous_blocks);
		break;
	case CRYPTO_DATA_UIO:
		ret = crypto_update_uio(ctx->cc_provider_private,
		    ciphertext, plaintext, aes_decrypt_contiguous_blocks);
		break;
	default:
		ret = CRYPTO_ARGUMENTS_BAD;
	}

	/*
	 * Since AES counter mode is a stream cipher, we call
	 * ctr_mode_final() to pick up any remaining bytes.
	 * It is an internal function that does not destroy
	 * the context like *normal* final routines.
	 */
	if ((aes_ctx->ac_flags & CTR_MODE) && (aes_ctx->ac_remainder_len > 0)) {
		ret = ctr_mode_final((ctr_ctx_t *)aes_ctx, plaintext,
		    aes_encrypt_block);
		if (ret == CRYPTO_DATA_LEN_RANGE)
			ret = CRYPTO_ENCRYPTED_DATA_LEN_RANGE;
	}

	if (ret == CRYPTO_SUCCESS) {
		if (ciphertext != plaintext)
			plaintext->cd_length =
			    plaintext->cd_offset - saved_offset;
	} else {
		plaintext->cd_length = saved_length;
	}
	plaintext->cd_offset = saved_offset;


	return (ret);
}

static int
aes_encrypt_final(crypto_ctx_t *ctx, crypto_data_t *data)
{
	aes_ctx_t *aes_ctx;
	int ret;

	ASSERT(ctx->cc_provider_private != NULL);
	aes_ctx = ctx->cc_provider_private;

	if (data->cd_format != CRYPTO_DATA_RAW &&
	    data->cd_format != CRYPTO_DATA_UIO) {
		return (CRYPTO_ARGUMENTS_BAD);
	}

	if (aes_ctx->ac_flags & CTR_MODE) {
		if (aes_ctx->ac_remainder_len > 0) {
			ret = ctr_mode_final((ctr_ctx_t *)aes_ctx, data,
			    aes_encrypt_block);
			if (ret != CRYPTO_SUCCESS)
				return (ret);
		}
	} else if (aes_ctx->ac_flags & CCM_MODE) {
		ret = ccm_encrypt_final((ccm_ctx_t *)aes_ctx, data,
		    AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
		if (ret != CRYPTO_SUCCESS) {
			return (ret);
		}
	} else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) {
		size_t saved_offset = data->cd_offset;

		ret = gcm_encrypt_final((gcm_ctx_t *)aes_ctx, data,
		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
		    aes_xor_block);
		if (ret != CRYPTO_SUCCESS) {
			return (ret);
		}
		data->cd_length = data->cd_offset - saved_offset;
		data->cd_offset = saved_offset;
	} else {
		/*
		 * There must be no unprocessed plaintext.
		 * This happens if the length of the last data is
		 * not a multiple of the AES block length.
		 */
		if (aes_ctx->ac_remainder_len > 0) {
			return (CRYPTO_DATA_LEN_RANGE);
		}
		data->cd_length = 0;
	}

	(void) aes_free_context(ctx);

	return (CRYPTO_SUCCESS);
}

static int
aes_decrypt_final(crypto_ctx_t *ctx, crypto_data_t *data)
{
	aes_ctx_t *aes_ctx;
	int ret;
	off_t saved_offset;
	size_t saved_length;

	ASSERT(ctx->cc_provider_private != NULL);
	aes_ctx = ctx->cc_provider_private;

	if (data->cd_format != CRYPTO_DATA_RAW &&
	    data->cd_format != CRYPTO_DATA_UIO) {
		return (CRYPTO_ARGUMENTS_BAD);
	}

	/*
	 * There must be no unprocessed ciphertext.
	 * This happens if the length of the last ciphertext is
	 * not a multiple of the AES block length.
	 */
	if (aes_ctx->ac_remainder_len > 0) {
		if ((aes_ctx->ac_flags & CTR_MODE) == 0)
			return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
		else {
			ret = ctr_mode_final((ctr_ctx_t *)aes_ctx, data,
			    aes_encrypt_block);
			if (ret == CRYPTO_DATA_LEN_RANGE)
				ret = CRYPTO_ENCRYPTED_DATA_LEN_RANGE;
			if (ret != CRYPTO_SUCCESS)
				return (ret);
		}
	}

	if (aes_ctx->ac_flags & CCM_MODE) {
		/*
		 * This is where all the plaintext is returned, make sure
		 * the plaintext buffer is big enough
		 */
		size_t pt_len = aes_ctx->ac_data_len;
		if (data->cd_length < pt_len) {
			data->cd_length = pt_len;
			return (CRYPTO_BUFFER_TOO_SMALL);
		}

		ASSERT(aes_ctx->ac_processed_data_len == pt_len);
		ASSERT(aes_ctx->ac_processed_mac_len == aes_ctx->ac_mac_len);
		saved_offset = data->cd_offset;
		saved_length = data->cd_length;
		ret = ccm_decrypt_final((ccm_ctx_t *)aes_ctx, data,
		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
		    aes_xor_block);
		if (ret == CRYPTO_SUCCESS) {
			data->cd_length = data->cd_offset - saved_offset;
		} else {
			data->cd_length = saved_length;
		}

		data->cd_offset = saved_offset;
		if (ret != CRYPTO_SUCCESS) {
			return (ret);
		}
	} else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) {
		/*
		 * This is where all the plaintext is returned, make sure
		 * the plaintext buffer is big enough
		 */
		gcm_ctx_t *ctx = (gcm_ctx_t *)aes_ctx;
		size_t pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len;

		if (data->cd_length < pt_len) {
			data->cd_length = pt_len;
			return (CRYPTO_BUFFER_TOO_SMALL);
		}

		saved_offset = data->cd_offset;
		saved_length = data->cd_length;
		ret = gcm_decrypt_final((gcm_ctx_t *)aes_ctx, data,
		    AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
		if (ret == CRYPTO_SUCCESS) {
			data->cd_length = data->cd_offset - saved_offset;
		} else {
			data->cd_length = saved_length;
		}

		data->cd_offset = saved_offset;
		if (ret != CRYPTO_SUCCESS) {
			return (ret);
		}
	}


	if ((aes_ctx->ac_flags & (CTR_MODE|CCM_MODE|GCM_MODE|GMAC_MODE)) == 0) {
		data->cd_length = 0;
	}

	(void) aes_free_context(ctx);

	return (CRYPTO_SUCCESS);
}

static int
aes_encrypt_atomic(crypto_mechanism_t *mechanism,
    crypto_key_t *key, crypto_data_t *plaintext, crypto_data_t *ciphertext,
    crypto_spi_ctx_template_t template)
{
	aes_ctx_t aes_ctx = {{{{0}}}};
	off_t saved_offset;
	size_t saved_length;
	size_t length_needed;
	int ret;

	ASSERT(ciphertext != NULL);

	/*
	 * CTR, CCM, GCM, and GMAC modes do not require that plaintext
	 * be a multiple of AES block size.
	 */
	switch (mechanism->cm_type) {
	case AES_CTR_MECH_INFO_TYPE:
	case AES_CCM_MECH_INFO_TYPE:
	case AES_GCM_MECH_INFO_TYPE:
	case AES_GMAC_MECH_INFO_TYPE:
		break;
	default:
		if ((plaintext->cd_length & (AES_BLOCK_LEN - 1)) != 0)
			return (CRYPTO_DATA_LEN_RANGE);
	}

	if ((ret = aes_check_mech_param(mechanism, NULL)) != CRYPTO_SUCCESS)
		return (ret);

	ret = aes_common_init_ctx(&aes_ctx, template, mechanism, key,
	    KM_SLEEP, B_TRUE);
	if (ret != CRYPTO_SUCCESS)
		return (ret);

	switch (mechanism->cm_type) {
	case AES_CCM_MECH_INFO_TYPE:
		length_needed = plaintext->cd_length + aes_ctx.ac_mac_len;
		break;
	case AES_GMAC_MECH_INFO_TYPE:
		if (plaintext->cd_length != 0)
			return (CRYPTO_ARGUMENTS_BAD);
		zfs_fallthrough;
	case AES_GCM_MECH_INFO_TYPE:
		length_needed = plaintext->cd_length + aes_ctx.ac_tag_len;
		break;
	default:
		length_needed = plaintext->cd_length;
	}

	/* return size of buffer needed to store output */
	if (ciphertext->cd_length < length_needed) {
		ciphertext->cd_length = length_needed;
		ret = CRYPTO_BUFFER_TOO_SMALL;
		goto out;
	}

	saved_offset = ciphertext->cd_offset;
	saved_length = ciphertext->cd_length;

	/*
	 * Do an update on the specified input data.
	 */
	switch (plaintext->cd_format) {
	case CRYPTO_DATA_RAW:
		ret = crypto_update_iov(&aes_ctx, plaintext, ciphertext,
		    aes_encrypt_contiguous_blocks);
		break;
	case CRYPTO_DATA_UIO:
		ret = crypto_update_uio(&aes_ctx, plaintext, ciphertext,
		    aes_encrypt_contiguous_blocks);
		break;
	default:
		ret = CRYPTO_ARGUMENTS_BAD;
	}

	if (ret == CRYPTO_SUCCESS) {
		if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) {
			ret = ccm_encrypt_final((ccm_ctx_t *)&aes_ctx,
			    ciphertext, AES_BLOCK_LEN, aes_encrypt_block,
			    aes_xor_block);
			if (ret != CRYPTO_SUCCESS)
				goto out;
			ASSERT(aes_ctx.ac_remainder_len == 0);
		} else if (mechanism->cm_type == AES_GCM_MECH_INFO_TYPE ||
		    mechanism->cm_type == AES_GMAC_MECH_INFO_TYPE) {
			ret = gcm_encrypt_final((gcm_ctx_t *)&aes_ctx,
			    ciphertext, AES_BLOCK_LEN, aes_encrypt_block,
			    aes_copy_block, aes_xor_block);
			if (ret != CRYPTO_SUCCESS)
				goto out;
			ASSERT(aes_ctx.ac_remainder_len == 0);
		} else if (mechanism->cm_type == AES_CTR_MECH_INFO_TYPE) {
			if (aes_ctx.ac_remainder_len > 0) {
				ret = ctr_mode_final((ctr_ctx_t *)&aes_ctx,
				    ciphertext, aes_encrypt_block);
				if (ret != CRYPTO_SUCCESS)
					goto out;
			}
		} else {
			ASSERT(aes_ctx.ac_remainder_len == 0);
		}

		if (plaintext != ciphertext) {
			ciphertext->cd_length =
			    ciphertext->cd_offset - saved_offset;
		}
	} else {
		ciphertext->cd_length = saved_length;
	}
	ciphertext->cd_offset = saved_offset;

out:
	if (aes_ctx.ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
		memset(aes_ctx.ac_keysched, 0, aes_ctx.ac_keysched_len);
		kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
	}
	if (aes_ctx.ac_flags & (GCM_MODE|GMAC_MODE)) {
		gcm_clear_ctx((gcm_ctx_t *)&aes_ctx);
	}
	return (ret);
}

static int
aes_decrypt_atomic(crypto_mechanism_t *mechanism,
    crypto_key_t *key, crypto_data_t *ciphertext, crypto_data_t *plaintext,
    crypto_spi_ctx_template_t template)
{
	aes_ctx_t aes_ctx = {{{{0}}}};
	off_t saved_offset;
	size_t saved_length;
	size_t length_needed;
	int ret;

	ASSERT(plaintext != NULL);

	/*
	 * CCM, GCM, CTR, and GMAC modes do not require that ciphertext
	 * be a multiple of AES block size.
	 */
	switch (mechanism->cm_type) {
	case AES_CTR_MECH_INFO_TYPE:
	case AES_CCM_MECH_INFO_TYPE:
	case AES_GCM_MECH_INFO_TYPE:
	case AES_GMAC_MECH_INFO_TYPE:
		break;
	default:
		if ((ciphertext->cd_length & (AES_BLOCK_LEN - 1)) != 0)
			return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
	}

	if ((ret = aes_check_mech_param(mechanism, NULL)) != CRYPTO_SUCCESS)
		return (ret);

	ret = aes_common_init_ctx(&aes_ctx, template, mechanism, key,
	    KM_SLEEP, B_FALSE);
	if (ret != CRYPTO_SUCCESS)
		return (ret);

	switch (mechanism->cm_type) {
	case AES_CCM_MECH_INFO_TYPE:
		length_needed = aes_ctx.ac_data_len;
		break;
	case AES_GCM_MECH_INFO_TYPE:
		length_needed = ciphertext->cd_length - aes_ctx.ac_tag_len;
		break;
	case AES_GMAC_MECH_INFO_TYPE:
		if (plaintext->cd_length != 0)
			return (CRYPTO_ARGUMENTS_BAD);
		length_needed = 0;
		break;
	default:
		length_needed = ciphertext->cd_length;
	}

	/* return size of buffer needed to store output */
	if (plaintext->cd_length < length_needed) {
		plaintext->cd_length = length_needed;
		ret = CRYPTO_BUFFER_TOO_SMALL;
		goto out;
	}

	saved_offset = plaintext->cd_offset;
	saved_length = plaintext->cd_length;

	/*
	 * Do an update on the specified input data.
	 */
	switch (ciphertext->cd_format) {
	case CRYPTO_DATA_RAW:
		ret = crypto_update_iov(&aes_ctx, ciphertext, plaintext,
		    aes_decrypt_contiguous_blocks);
		break;
	case CRYPTO_DATA_UIO:
		ret = crypto_update_uio(&aes_ctx, ciphertext, plaintext,
		    aes_decrypt_contiguous_blocks);
		break;
	default:
		ret = CRYPTO_ARGUMENTS_BAD;
	}

	if (ret == CRYPTO_SUCCESS) {
		if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) {
			ASSERT(aes_ctx.ac_processed_data_len
			    == aes_ctx.ac_data_len);
			ASSERT(aes_ctx.ac_processed_mac_len
			    == aes_ctx.ac_mac_len);
			ret = ccm_decrypt_final((ccm_ctx_t *)&aes_ctx,
			    plaintext, AES_BLOCK_LEN, aes_encrypt_block,
			    aes_copy_block, aes_xor_block);
			ASSERT(aes_ctx.ac_remainder_len == 0);
			if ((ret == CRYPTO_SUCCESS) &&
			    (ciphertext != plaintext)) {
				plaintext->cd_length =
				    plaintext->cd_offset - saved_offset;
			} else {
				plaintext->cd_length = saved_length;
			}
		} else if (mechanism->cm_type == AES_GCM_MECH_INFO_TYPE ||
		    mechanism->cm_type == AES_GMAC_MECH_INFO_TYPE) {
			ret = gcm_decrypt_final((gcm_ctx_t *)&aes_ctx,
			    plaintext, AES_BLOCK_LEN, aes_encrypt_block,
			    aes_xor_block);
			ASSERT(aes_ctx.ac_remainder_len == 0);
			if ((ret == CRYPTO_SUCCESS) &&
			    (ciphertext != plaintext)) {
				plaintext->cd_length =
				    plaintext->cd_offset - saved_offset;
			} else {
				plaintext->cd_length = saved_length;
			}
		} else if (mechanism->cm_type != AES_CTR_MECH_INFO_TYPE) {
			ASSERT(aes_ctx.ac_remainder_len == 0);
			if (ciphertext != plaintext)
				plaintext->cd_length =
				    plaintext->cd_offset - saved_offset;
		} else {
			if (aes_ctx.ac_remainder_len > 0) {
				ret = ctr_mode_final((ctr_ctx_t *)&aes_ctx,
				    plaintext, aes_encrypt_block);
				if (ret == CRYPTO_DATA_LEN_RANGE)
					ret = CRYPTO_ENCRYPTED_DATA_LEN_RANGE;
				if (ret != CRYPTO_SUCCESS)
					goto out;
			}
			if (ciphertext != plaintext)
				plaintext->cd_length =
				    plaintext->cd_offset - saved_offset;
		}
	} else {
		plaintext->cd_length = saved_length;
	}
	plaintext->cd_offset = saved_offset;

out:
	if (aes_ctx.ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
		memset(aes_ctx.ac_keysched, 0, aes_ctx.ac_keysched_len);
		kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
	}

	if (aes_ctx.ac_flags & CCM_MODE) {
		if (aes_ctx.ac_pt_buf != NULL) {
			vmem_free(aes_ctx.ac_pt_buf, aes_ctx.ac_data_len);
		}
	} else if (aes_ctx.ac_flags & (GCM_MODE|GMAC_MODE)) {
		gcm_clear_ctx((gcm_ctx_t *)&aes_ctx);
	}

	return (ret);
}

/*
 * KCF software provider context template entry points.
 */
static int
aes_create_ctx_template(crypto_mechanism_t *mechanism, crypto_key_t *key,
    crypto_spi_ctx_template_t *tmpl, size_t *tmpl_size)
{
	void *keysched;
	size_t size;
	int rv;

	if (mechanism->cm_type != AES_ECB_MECH_INFO_TYPE &&
	    mechanism->cm_type != AES_CBC_MECH_INFO_TYPE &&
	    mechanism->cm_type != AES_CTR_MECH_INFO_TYPE &&
	    mechanism->cm_type != AES_CCM_MECH_INFO_TYPE &&
	    mechanism->cm_type != AES_GCM_MECH_INFO_TYPE &&
	    mechanism->cm_type != AES_GMAC_MECH_INFO_TYPE)
		return (CRYPTO_MECHANISM_INVALID);

	if ((keysched = aes_alloc_keysched(&size, KM_SLEEP)) == NULL) {
		return (CRYPTO_HOST_MEMORY);
	}

	/*
	 * Initialize key schedule.  Key length information is stored
	 * in the key.
	 */
	if ((rv = init_keysched(key, keysched)) != CRYPTO_SUCCESS) {
		memset(keysched, 0, size);
		kmem_free(keysched, size);
		return (rv);
	}

	*tmpl = keysched;
	*tmpl_size = size;

	return (CRYPTO_SUCCESS);
}


static int
aes_free_context(crypto_ctx_t *ctx)
{
	aes_ctx_t *aes_ctx = ctx->cc_provider_private;

	if (aes_ctx != NULL) {
		if (aes_ctx->ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
			ASSERT(aes_ctx->ac_keysched_len != 0);
			memset(aes_ctx->ac_keysched, 0,
			    aes_ctx->ac_keysched_len);
			kmem_free(aes_ctx->ac_keysched,
			    aes_ctx->ac_keysched_len);
		}
		crypto_free_mode_ctx(aes_ctx);
		ctx->cc_provider_private = NULL;
	}

	return (CRYPTO_SUCCESS);
}


static int
aes_common_init_ctx(aes_ctx_t *aes_ctx, crypto_spi_ctx_template_t *template,
    crypto_mechanism_t *mechanism, crypto_key_t *key, int kmflag,
    boolean_t is_encrypt_init)
{
	int rv = CRYPTO_SUCCESS;
	void *keysched;
	size_t size = 0;

	if (template == NULL) {
		if ((keysched = aes_alloc_keysched(&size, kmflag)) == NULL)
			return (CRYPTO_HOST_MEMORY);
		/*
		 * Initialize key schedule.
		 * Key length is stored in the key.
		 */
		if ((rv = init_keysched(key, keysched)) != CRYPTO_SUCCESS) {
			kmem_free(keysched, size);
			return (rv);
		}

		aes_ctx->ac_flags |= PROVIDER_OWNS_KEY_SCHEDULE;
		aes_ctx->ac_keysched_len = size;
	} else {
		keysched = template;
	}
	aes_ctx->ac_keysched = keysched;

	switch (mechanism->cm_type) {
	case AES_CBC_MECH_INFO_TYPE:
		rv = cbc_init_ctx((cbc_ctx_t *)aes_ctx, mechanism->cm_param,
		    mechanism->cm_param_len, AES_BLOCK_LEN, aes_copy_block64);
		break;
	case AES_CTR_MECH_INFO_TYPE: {
		CK_AES_CTR_PARAMS *pp;

		if (mechanism->cm_param == NULL ||
		    mechanism->cm_param_len != sizeof (CK_AES_CTR_PARAMS)) {
			return (CRYPTO_MECHANISM_PARAM_INVALID);
		}
		pp = (CK_AES_CTR_PARAMS *)(void *)mechanism->cm_param;
		rv = ctr_init_ctx((ctr_ctx_t *)aes_ctx, pp->ulCounterBits,
		    pp->cb, aes_copy_block);
		break;
	}
	case AES_CCM_MECH_INFO_TYPE:
		if (mechanism->cm_param == NULL ||
		    mechanism->cm_param_len != sizeof (CK_AES_CCM_PARAMS)) {
			return (CRYPTO_MECHANISM_PARAM_INVALID);
		}
		rv = ccm_init_ctx((ccm_ctx_t *)aes_ctx, mechanism->cm_param,
		    kmflag, is_encrypt_init, AES_BLOCK_LEN, aes_encrypt_block,
		    aes_xor_block);
		break;
	case AES_GCM_MECH_INFO_TYPE:
		if (mechanism->cm_param == NULL ||
		    mechanism->cm_param_len != sizeof (CK_AES_GCM_PARAMS)) {
			return (CRYPTO_MECHANISM_PARAM_INVALID);
		}
		rv = gcm_init_ctx((gcm_ctx_t *)aes_ctx, mechanism->cm_param,
		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
		    aes_xor_block);
		break;
	case AES_GMAC_MECH_INFO_TYPE:
		if (mechanism->cm_param == NULL ||
		    mechanism->cm_param_len != sizeof (CK_AES_GMAC_PARAMS)) {
			return (CRYPTO_MECHANISM_PARAM_INVALID);
		}
		rv = gmac_init_ctx((gcm_ctx_t *)aes_ctx, mechanism->cm_param,
		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
		    aes_xor_block);
		break;
	case AES_ECB_MECH_INFO_TYPE:
		aes_ctx->ac_flags |= ECB_MODE;
	}

	if (rv != CRYPTO_SUCCESS) {
		if (aes_ctx->ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
			memset(keysched, 0, size);
			kmem_free(keysched, size);
		}
	}

	return (rv);
}

static int
process_gmac_mech(crypto_mechanism_t *mech, crypto_data_t *data,
    CK_AES_GCM_PARAMS *gcm_params)
{
	/* LINTED: pointer alignment */
	CK_AES_GMAC_PARAMS *params = (CK_AES_GMAC_PARAMS *)mech->cm_param;

	if (mech->cm_type != AES_GMAC_MECH_INFO_TYPE)
		return (CRYPTO_MECHANISM_INVALID);

	if (mech->cm_param_len != sizeof (CK_AES_GMAC_PARAMS))
		return (CRYPTO_MECHANISM_PARAM_INVALID);

	if (params->pIv == NULL)
		return (CRYPTO_MECHANISM_PARAM_INVALID);

	gcm_params->pIv = params->pIv;
	gcm_params->ulIvLen = AES_GMAC_IV_LEN;
	gcm_params->ulTagBits = AES_GMAC_TAG_BITS;

	if (data == NULL)
		return (CRYPTO_SUCCESS);

	if (data->cd_format != CRYPTO_DATA_RAW)
		return (CRYPTO_ARGUMENTS_BAD);

	gcm_params->pAAD = (uchar_t *)data->cd_raw.iov_base;
	gcm_params->ulAADLen = data->cd_length;
	return (CRYPTO_SUCCESS);
}

static int
aes_mac_atomic(crypto_mechanism_t *mechanism,
    crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac,
    crypto_spi_ctx_template_t template)
{
	CK_AES_GCM_PARAMS gcm_params;
	crypto_mechanism_t gcm_mech;
	int rv;

	if ((rv = process_gmac_mech(mechanism, data, &gcm_params))
	    != CRYPTO_SUCCESS)
		return (rv);

	gcm_mech.cm_type = AES_GCM_MECH_INFO_TYPE;
	gcm_mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
	gcm_mech.cm_param = (char *)&gcm_params;

	return (aes_encrypt_atomic(&gcm_mech,
	    key, &null_crypto_data, mac, template));
}

static int
aes_mac_verify_atomic(crypto_mechanism_t *mechanism, crypto_key_t *key,
    crypto_data_t *data, crypto_data_t *mac, crypto_spi_ctx_template_t template)
{
	CK_AES_GCM_PARAMS gcm_params;
	crypto_mechanism_t gcm_mech;
	int rv;

	if ((rv = process_gmac_mech(mechanism, data, &gcm_params))
	    != CRYPTO_SUCCESS)
		return (rv);

	gcm_mech.cm_type = AES_GCM_MECH_INFO_TYPE;
	gcm_mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
	gcm_mech.cm_param = (char *)&gcm_params;

	return (aes_decrypt_atomic(&gcm_mech,
	    key, mac, &null_crypto_data, template));
}