/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012, 2017 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include /* * Note on space map block size: * * The data for a given space map can be kept on blocks of any size. * Larger blocks entail fewer i/o operations, but they also cause the * DMU to keep more data in-core, and also to waste more i/o bandwidth * when only a few blocks have changed since the last transaction group. */ /* * Iterate through the space map, invoking the callback on each (non-debug) * space map entry. */ int space_map_iterate(space_map_t *sm, sm_cb_t callback, void *arg) { uint64_t *entry, *entry_map, *entry_map_end; uint64_t bufsize, size, offset, end; int error = 0; end = space_map_length(sm); bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE); entry_map = vmem_alloc(bufsize, KM_SLEEP); if (end > bufsize) { dmu_prefetch(sm->sm_os, space_map_object(sm), 0, bufsize, end - bufsize, ZIO_PRIORITY_SYNC_READ); } for (offset = 0; offset < end && error == 0; offset += bufsize) { size = MIN(end - offset, bufsize); VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0); VERIFY(size != 0); ASSERT3U(sm->sm_blksz, !=, 0); dprintf("object=%llu offset=%llx size=%llx\n", space_map_object(sm), offset, size); error = dmu_read(sm->sm_os, space_map_object(sm), offset, size, entry_map, DMU_READ_PREFETCH); if (error != 0) break; entry_map_end = entry_map + (size / sizeof (uint64_t)); for (entry = entry_map; entry < entry_map_end && error == 0; entry++) { uint64_t e = *entry; uint64_t offset, size; if (SM_DEBUG_DECODE(e)) /* Skip debug entries */ continue; offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) + sm->sm_start; size = SM_RUN_DECODE(e) << sm->sm_shift; VERIFY0(P2PHASE(offset, 1ULL << sm->sm_shift)); VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift)); VERIFY3U(offset, >=, sm->sm_start); VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size); error = callback(SM_TYPE_DECODE(e), offset, size, arg); } } vmem_free(entry_map, bufsize); return (error); } /* * Note: This function performs destructive actions - specifically * it deletes entries from the end of the space map. Thus, callers * should ensure that they are holding the appropriate locks for * the space map that they provide. */ int space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg, dmu_tx_t *tx) { uint64_t bufsize, len; uint64_t *entry_map; int error = 0; len = space_map_length(sm); bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE); entry_map = zio_buf_alloc(bufsize); dmu_buf_will_dirty(sm->sm_dbuf, tx); /* * Since we can't move the starting offset of the space map * (e.g there are reference on-disk pointing to it), we destroy * its entries incrementally starting from the end. * * The logic that follows is basically the same as the one used * in space_map_iterate() but it traverses the space map * backwards: * * 1] We figure out the size of the buffer that we want to use * to read the on-disk space map entries. * 2] We figure out the offset at the end of the space map where * we will start reading entries into our buffer. * 3] We read the on-disk entries into the buffer. * 4] We iterate over the entries from end to beginning calling * the callback function on each one. As we move from entry * to entry we decrease the size of the space map, deleting * effectively each entry. * 5] If there are no more entries in the space map or the * callback returns a value other than 0, we stop iterating * over the space map. If there are entries remaining and * the callback returned zero we go back to step [1]. */ uint64_t offset = 0, size = 0; while (len > 0 && error == 0) { size = MIN(bufsize, len); VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0); VERIFY3U(size, >, 0); ASSERT3U(sm->sm_blksz, !=, 0); offset = len - size; IMPLY(bufsize > len, offset == 0); IMPLY(bufsize == len, offset == 0); IMPLY(bufsize < len, offset > 0); EQUIV(size == len, offset == 0); IMPLY(size < len, bufsize < len); dprintf("object=%llu offset=%llx size=%llx\n", space_map_object(sm), offset, size); error = dmu_read(sm->sm_os, space_map_object(sm), offset, size, entry_map, DMU_READ_PREFETCH); if (error != 0) break; uint64_t num_entries = size / sizeof (uint64_t); ASSERT3U(num_entries, >, 0); while (num_entries > 0) { uint64_t e, entry_offset, entry_size; maptype_t type; e = entry_map[num_entries - 1]; ASSERT3U(num_entries, >, 0); ASSERT0(error); if (SM_DEBUG_DECODE(e)) { sm->sm_phys->smp_objsize -= sizeof (uint64_t); space_map_update(sm); len -= sizeof (uint64_t); num_entries--; continue; } type = SM_TYPE_DECODE(e); entry_offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) + sm->sm_start; entry_size = SM_RUN_DECODE(e) << sm->sm_shift; VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift)); VERIFY0(P2PHASE(entry_size, 1ULL << sm->sm_shift)); VERIFY3U(entry_offset, >=, sm->sm_start); VERIFY3U(entry_offset + entry_size, <=, sm->sm_start + sm->sm_size); error = callback(type, entry_offset, entry_size, arg); if (error != 0) break; if (type == SM_ALLOC) sm->sm_phys->smp_alloc -= entry_size; else sm->sm_phys->smp_alloc += entry_size; sm->sm_phys->smp_objsize -= sizeof (uint64_t); space_map_update(sm); len -= sizeof (uint64_t); num_entries--; } IMPLY(error == 0, num_entries == 0); EQUIV(offset == 0 && error == 0, len == 0 && num_entries == 0); } if (len == 0) { ASSERT0(error); ASSERT0(offset); ASSERT0(sm->sm_length); ASSERT0(sm->sm_phys->smp_objsize); ASSERT0(sm->sm_alloc); } zio_buf_free(entry_map, bufsize); return (error); } typedef struct space_map_load_arg { space_map_t *smla_sm; range_tree_t *smla_rt; maptype_t smla_type; } space_map_load_arg_t; static int space_map_load_callback(maptype_t type, uint64_t offset, uint64_t size, void *arg) { space_map_load_arg_t *smla = arg; if (type == smla->smla_type) { VERIFY3U(range_tree_space(smla->smla_rt) + size, <=, smla->smla_sm->sm_size); range_tree_add(smla->smla_rt, offset, size); } else { range_tree_remove(smla->smla_rt, offset, size); } return (0); } /* * Load the space map disk into the specified range tree. Segments of maptype * are added to the range tree, other segment types are removed. */ int space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype) { uint64_t space; int err; space_map_load_arg_t smla; VERIFY0(range_tree_space(rt)); space = space_map_allocated(sm); if (maptype == SM_FREE) { range_tree_add(rt, sm->sm_start, sm->sm_size); space = sm->sm_size - space; } smla.smla_rt = rt; smla.smla_sm = sm; smla.smla_type = maptype; err = space_map_iterate(sm, space_map_load_callback, &smla); if (err == 0) { VERIFY3U(range_tree_space(rt), ==, space); } else { range_tree_vacate(rt, NULL, NULL); } return (err); } void space_map_histogram_clear(space_map_t *sm) { if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) return; bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram)); } boolean_t space_map_histogram_verify(space_map_t *sm, range_tree_t *rt) { /* * Verify that the in-core range tree does not have any * ranges smaller than our sm_shift size. */ for (int i = 0; i < sm->sm_shift; i++) { if (rt->rt_histogram[i] != 0) return (B_FALSE); } return (B_TRUE); } void space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx) { int idx = 0; ASSERT(dmu_tx_is_syncing(tx)); VERIFY3U(space_map_object(sm), !=, 0); if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) return; dmu_buf_will_dirty(sm->sm_dbuf, tx); ASSERT(space_map_histogram_verify(sm, rt)); /* * Transfer the content of the range tree histogram to the space * map histogram. The space map histogram contains 32 buckets ranging * between 2^sm_shift to 2^(32+sm_shift-1). The range tree, * however, can represent ranges from 2^0 to 2^63. Since the space * map only cares about allocatable blocks (minimum of sm_shift) we * can safely ignore all ranges in the range tree smaller than sm_shift. */ for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { /* * Since the largest histogram bucket in the space map is * 2^(32+sm_shift-1), we need to normalize the values in * the range tree for any bucket larger than that size. For * example given an sm_shift of 9, ranges larger than 2^40 * would get normalized as if they were 1TB ranges. Assume * the range tree had a count of 5 in the 2^44 (16TB) bucket, * the calculation below would normalize this to 5 * 2^4 (16). */ ASSERT3U(i, >=, idx + sm->sm_shift); sm->sm_phys->smp_histogram[idx] += rt->rt_histogram[i] << (i - idx - sm->sm_shift); /* * Increment the space map's index as long as we haven't * reached the maximum bucket size. Accumulate all ranges * larger than the max bucket size into the last bucket. */ if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { ASSERT3U(idx + sm->sm_shift, ==, i); idx++; ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); } } } uint64_t space_map_entries(space_map_t *sm, range_tree_t *rt) { avl_tree_t *t = &rt->rt_root; range_seg_t *rs; uint64_t size, entries; /* * All space_maps always have a debug entry so account for it here. */ entries = 1; /* * Traverse the range tree and calculate the number of space map * entries that would be required to write out the range tree. */ for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) { size = (rs->rs_end - rs->rs_start) >> sm->sm_shift; entries += howmany(size, SM_RUN_MAX); } return (entries); } void space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype, dmu_tx_t *tx) { objset_t *os = sm->sm_os; spa_t *spa = dmu_objset_spa(os); avl_tree_t *t = &rt->rt_root; range_seg_t *rs; uint64_t size, total, rt_space, nodes; uint64_t *entry, *entry_map, *entry_map_end; uint64_t expected_entries, actual_entries = 1; ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); VERIFY3U(space_map_object(sm), !=, 0); dmu_buf_will_dirty(sm->sm_dbuf, tx); /* * This field is no longer necessary since the in-core space map * now contains the object number but is maintained for backwards * compatibility. */ sm->sm_phys->smp_object = sm->sm_object; if (range_tree_is_empty(rt)) { VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object); return; } if (maptype == SM_ALLOC) sm->sm_phys->smp_alloc += range_tree_space(rt); else sm->sm_phys->smp_alloc -= range_tree_space(rt); expected_entries = space_map_entries(sm, rt); entry_map = vmem_alloc(sm->sm_blksz, KM_SLEEP); entry_map_end = entry_map + (sm->sm_blksz / sizeof (uint64_t)); entry = entry_map; *entry++ = SM_DEBUG_ENCODE(1) | SM_DEBUG_ACTION_ENCODE(maptype) | SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) | SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx)); total = 0; nodes = avl_numnodes(&rt->rt_root); rt_space = range_tree_space(rt); for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) { uint64_t start; size = (rs->rs_end - rs->rs_start) >> sm->sm_shift; start = (rs->rs_start - sm->sm_start) >> sm->sm_shift; total += size << sm->sm_shift; while (size != 0) { uint64_t run_len; run_len = MIN(size, SM_RUN_MAX); if (entry == entry_map_end) { dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize, sm->sm_blksz, entry_map, tx); sm->sm_phys->smp_objsize += sm->sm_blksz; entry = entry_map; } *entry++ = SM_OFFSET_ENCODE(start) | SM_TYPE_ENCODE(maptype) | SM_RUN_ENCODE(run_len); start += run_len; size -= run_len; actual_entries++; } } if (entry != entry_map) { size = (entry - entry_map) * sizeof (uint64_t); dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize, size, entry_map, tx); sm->sm_phys->smp_objsize += size; } ASSERT3U(expected_entries, ==, actual_entries); /* * Ensure that the space_map's accounting wasn't changed * while we were in the middle of writing it out. */ VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root)); VERIFY3U(range_tree_space(rt), ==, rt_space); VERIFY3U(range_tree_space(rt), ==, total); vmem_free(entry_map, sm->sm_blksz); } static int space_map_open_impl(space_map_t *sm) { int error; u_longlong_t blocks; error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf); if (error) return (error); dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks); sm->sm_phys = sm->sm_dbuf->db_data; return (0); } int space_map_open(space_map_t **smp, objset_t *os, uint64_t object, uint64_t start, uint64_t size, uint8_t shift) { space_map_t *sm; int error; ASSERT(*smp == NULL); ASSERT(os != NULL); ASSERT(object != 0); sm = kmem_alloc(sizeof (space_map_t), KM_SLEEP); sm->sm_start = start; sm->sm_size = size; sm->sm_shift = shift; sm->sm_os = os; sm->sm_object = object; sm->sm_length = 0; sm->sm_alloc = 0; sm->sm_blksz = 0; sm->sm_dbuf = NULL; sm->sm_phys = NULL; error = space_map_open_impl(sm); if (error != 0) { space_map_close(sm); return (error); } *smp = sm; return (0); } void space_map_close(space_map_t *sm) { if (sm == NULL) return; if (sm->sm_dbuf != NULL) dmu_buf_rele(sm->sm_dbuf, sm); sm->sm_dbuf = NULL; sm->sm_phys = NULL; kmem_free(sm, sizeof (*sm)); } void space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx) { objset_t *os = sm->sm_os; spa_t *spa = dmu_objset_spa(os); dmu_object_info_t doi; ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); ASSERT(dmu_tx_is_syncing(tx)); VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa)); dmu_object_info_from_db(sm->sm_dbuf, &doi); /* * If the space map has the wrong bonus size (because * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or * the wrong block size (because space_map_blksz has changed), * free and re-allocate its object with the updated sizes. * * Otherwise, just truncate the current object. */ if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && doi.doi_bonus_size != sizeof (space_map_phys_t)) || doi.doi_data_block_size != blocksize) { zfs_dbgmsg("txg %llu, spa %s, sm %p, reallocating " "object[%llu]: old bonus %u, old blocksz %u", dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object, doi.doi_bonus_size, doi.doi_data_block_size); space_map_free(sm, tx); dmu_buf_rele(sm->sm_dbuf, sm); sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx); VERIFY0(space_map_open_impl(sm)); } else { VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx)); /* * If the spacemap is reallocated, its histogram * will be reset. Do the same in the common case so that * bugs related to the uncommon case do not go unnoticed. */ bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram)); } dmu_buf_will_dirty(sm->sm_dbuf, tx); sm->sm_phys->smp_objsize = 0; sm->sm_phys->smp_alloc = 0; } /* * Update the in-core space_map allocation and length values. */ void space_map_update(space_map_t *sm) { if (sm == NULL) return; sm->sm_alloc = sm->sm_phys->smp_alloc; sm->sm_length = sm->sm_phys->smp_objsize; } uint64_t space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx) { spa_t *spa = dmu_objset_spa(os); uint64_t object; int bonuslen; if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx); bonuslen = sizeof (space_map_phys_t); ASSERT3U(bonuslen, <=, dmu_bonus_max()); } else { bonuslen = SPACE_MAP_SIZE_V0; } object = dmu_object_alloc(os, DMU_OT_SPACE_MAP, blocksize, DMU_OT_SPACE_MAP_HEADER, bonuslen, tx); return (object); } void space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx) { spa_t *spa = dmu_objset_spa(os); if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { dmu_object_info_t doi; VERIFY0(dmu_object_info(os, smobj, &doi)); if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) { spa_feature_decr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx); } } VERIFY0(dmu_object_free(os, smobj, tx)); } void space_map_free(space_map_t *sm, dmu_tx_t *tx) { if (sm == NULL) return; space_map_free_obj(sm->sm_os, space_map_object(sm), tx); sm->sm_object = 0; } uint64_t space_map_object(space_map_t *sm) { return (sm != NULL ? sm->sm_object : 0); } /* * Returns the already synced, on-disk allocated space. */ uint64_t space_map_allocated(space_map_t *sm) { return (sm != NULL ? sm->sm_alloc : 0); } /* * Returns the already synced, on-disk length; */ uint64_t space_map_length(space_map_t *sm) { return (sm != NULL ? sm->sm_length : 0); } /* * Returns the allocated space that is currently syncing. */ int64_t space_map_alloc_delta(space_map_t *sm) { if (sm == NULL) return (0); ASSERT(sm->sm_dbuf != NULL); return (sm->sm_phys->smp_alloc - space_map_allocated(sm)); }