/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013, 2016 by Delphix. All rights reserved. * Copyright 2017 Nexenta Systems, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * zfs_match_find() is used by zfs_dirent_lookup() to peform zap lookups * of names after deciding which is the appropriate lookup interface. */ static int zfs_match_find(zfsvfs_t *zfsvfs, znode_t *dzp, const char *name, matchtype_t mt, uint64_t *zoid) { int error; if (zfsvfs->z_norm) { /* * In the non-mixed case we only expect there would ever * be one match, but we need to use the normalizing lookup. */ error = zap_lookup_norm(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid, mt, NULL, 0, NULL); } else { error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid); } *zoid = ZFS_DIRENT_OBJ(*zoid); return (error); } /* * Look up a directory entry under a locked vnode. * dvp being locked gives us a guarantee that there are no concurrent * modification of the directory and, thus, if a node can be found in * the directory, then it must not be unlinked. * * Input arguments: * dzp - znode for directory * name - name of entry to lock * flag - ZNEW: if the entry already exists, fail with EEXIST. * ZEXISTS: if the entry does not exist, fail with ENOENT. * ZXATTR: we want dzp's xattr directory * * Output arguments: * zpp - pointer to the znode for the entry (NULL if there isn't one) * * Return value: 0 on success or errno on failure. * * NOTE: Always checks for, and rejects, '.' and '..'. */ int zfs_dirent_lookup(znode_t *dzp, const char *name, znode_t **zpp, int flag) { zfsvfs_t *zfsvfs = dzp->z_zfsvfs; znode_t *zp; matchtype_t mt = 0; uint64_t zoid; int error = 0; if (zfsvfs->z_replay == B_FALSE) ASSERT_VOP_LOCKED(ZTOV(dzp), __func__); *zpp = NULL; /* * Verify that we are not trying to lock '.', '..', or '.zfs' */ if (name[0] == '.' && (((name[1] == '\0') || (name[1] == '.' && name[2] == '\0')) || (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0))) return (SET_ERROR(EEXIST)); /* * Case sensitivity and normalization preferences are set when * the file system is created. These are stored in the * zfsvfs->z_case and zfsvfs->z_norm fields. These choices * affect how we perform zap lookups. * * When matching we may need to normalize & change case according to * FS settings. * * Note that a normalized match is necessary for a case insensitive * filesystem when the lookup request is not exact because normalization * can fold case independent of normalizing code point sequences. * * See the table above zfs_dropname(). */ if (zfsvfs->z_norm != 0) { mt = MT_NORMALIZE; /* * Determine if the match needs to honor the case specified in * lookup, and if so keep track of that so that during * normalization we don't fold case. */ if (zfsvfs->z_case == ZFS_CASE_MIXED) { mt |= MT_MATCH_CASE; } } /* * Only look in or update the DNLC if we are looking for the * name on a file system that does not require normalization * or case folding. We can also look there if we happen to be * on a non-normalizing, mixed sensitivity file system IF we * are looking for the exact name. * * NB: we do not need to worry about this flag for ZFS_CASE_SENSITIVE * because in that case MT_EXACT and MT_FIRST should produce exactly * the same result. */ if (dzp->z_unlinked && !(flag & ZXATTR)) return (ENOENT); if (flag & ZXATTR) { error = sa_lookup(dzp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &zoid, sizeof (zoid)); if (error == 0) error = (zoid == 0 ? ENOENT : 0); } else { error = zfs_match_find(zfsvfs, dzp, name, mt, &zoid); } if (error) { if (error != ENOENT || (flag & ZEXISTS)) { return (error); } } else { if (flag & ZNEW) { return (SET_ERROR(EEXIST)); } error = zfs_zget(zfsvfs, zoid, &zp); if (error) return (error); ASSERT(!zp->z_unlinked); *zpp = zp; } return (0); } static int zfs_dd_lookup(znode_t *dzp, znode_t **zpp) { zfsvfs_t *zfsvfs = dzp->z_zfsvfs; znode_t *zp; uint64_t parent; int error; if (zfsvfs->z_replay == B_FALSE) ASSERT_VOP_LOCKED(ZTOV(dzp), __func__); ASSERT(RRM_READ_HELD(&zfsvfs->z_teardown_lock)); if (dzp->z_unlinked) return (ENOENT); if ((error = sa_lookup(dzp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0) return (error); error = zfs_zget(zfsvfs, parent, &zp); if (error == 0) *zpp = zp; return (error); } int zfs_dirlook(znode_t *dzp, const char *name, znode_t **zpp) { zfsvfs_t *zfsvfs __unused = dzp->z_zfsvfs; znode_t *zp = NULL; int error = 0; #ifdef ZFS_DEBUG if (zfsvfs->z_replay == B_FALSE) ASSERT_VOP_LOCKED(ZTOV(dzp), __func__); ASSERT(RRM_READ_HELD(&zfsvfs->z_teardown_lock)); #endif if (dzp->z_unlinked) return (SET_ERROR(ENOENT)); if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) { *zpp = dzp; } else if (name[0] == '.' && name[1] == '.' && name[2] == 0) { error = zfs_dd_lookup(dzp, &zp); if (error == 0) *zpp = zp; } else { error = zfs_dirent_lookup(dzp, name, &zp, ZEXISTS); if (error == 0) { dzp->z_zn_prefetch = B_TRUE; /* enable prefetching */ *zpp = zp; } } return (error); } /* * unlinked Set (formerly known as the "delete queue") Error Handling * * When dealing with the unlinked set, we dmu_tx_hold_zap(), but we * don't specify the name of the entry that we will be manipulating. We * also fib and say that we won't be adding any new entries to the * unlinked set, even though we might (this is to lower the minimum file * size that can be deleted in a full filesystem). So on the small * chance that the nlink list is using a fat zap (ie. has more than * 2000 entries), we *may* not pre-read a block that's needed. * Therefore it is remotely possible for some of the assertions * regarding the unlinked set below to fail due to i/o error. On a * nondebug system, this will result in the space being leaked. */ void zfs_unlinked_add(znode_t *zp, dmu_tx_t *tx) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; ASSERT(zp->z_unlinked); ASSERT(zp->z_links == 0); VERIFY3U(0, ==, zap_add_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx)); } /* * Clean up any znodes that had no links when we either crashed or * (force) umounted the file system. */ void zfs_unlinked_drain(zfsvfs_t *zfsvfs) { zap_cursor_t zc; zap_attribute_t zap; dmu_object_info_t doi; znode_t *zp; dmu_tx_t *tx; int error; /* * Interate over the contents of the unlinked set. */ for (zap_cursor_init(&zc, zfsvfs->z_os, zfsvfs->z_unlinkedobj); zap_cursor_retrieve(&zc, &zap) == 0; zap_cursor_advance(&zc)) { /* * See what kind of object we have in list */ error = dmu_object_info(zfsvfs->z_os, zap.za_first_integer, &doi); if (error != 0) continue; ASSERT((doi.doi_type == DMU_OT_PLAIN_FILE_CONTENTS) || (doi.doi_type == DMU_OT_DIRECTORY_CONTENTS)); /* * We need to re-mark these list entries for deletion, * so we pull them back into core and set zp->z_unlinked. */ error = zfs_zget(zfsvfs, zap.za_first_integer, &zp); /* * We may pick up znodes that are already marked for deletion. * This could happen during the purge of an extended attribute * directory. All we need to do is skip over them, since they * are already in the system marked z_unlinked. */ if (error != 0) continue; vn_lock(ZTOV(zp), LK_EXCLUSIVE | LK_RETRY); /* * Due to changes in zfs_rmnode we need to make sure the * link count is set to zero here. */ if (zp->z_links != 0) { tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) { dmu_tx_abort(tx); vput(ZTOV(zp)); continue; } zp->z_links = 0; VERIFY0(sa_update(zp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), &zp->z_links, sizeof (zp->z_links), tx)); dmu_tx_commit(tx); } zp->z_unlinked = B_TRUE; vput(ZTOV(zp)); } zap_cursor_fini(&zc); } /* * Delete the entire contents of a directory. Return a count * of the number of entries that could not be deleted. If we encounter * an error, return a count of at least one so that the directory stays * in the unlinked set. * * NOTE: this function assumes that the directory is inactive, * so there is no need to lock its entries before deletion. * Also, it assumes the directory contents is *only* regular * files. */ static int zfs_purgedir(znode_t *dzp) { zap_cursor_t zc; zap_attribute_t zap; znode_t *xzp; dmu_tx_t *tx; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; int skipped = 0; int error; for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id); (error = zap_cursor_retrieve(&zc, &zap)) == 0; zap_cursor_advance(&zc)) { error = zfs_zget(zfsvfs, ZFS_DIRENT_OBJ(zap.za_first_integer), &xzp); if (error) { skipped += 1; continue; } vn_lock(ZTOV(xzp), LK_EXCLUSIVE | LK_RETRY); ASSERT((ZTOV(xzp)->v_type == VREG) || (ZTOV(xzp)->v_type == VLNK)); tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, dzp->z_id, FALSE, zap.za_name); dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); /* Is this really needed ? */ zfs_sa_upgrade_txholds(tx, xzp); dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); vput(ZTOV(xzp)); skipped += 1; continue; } error = zfs_link_destroy(dzp, zap.za_name, xzp, tx, 0, NULL); if (error) skipped += 1; dmu_tx_commit(tx); vput(ZTOV(xzp)); } zap_cursor_fini(&zc); if (error != ENOENT) skipped += 1; return (skipped); } extern taskq_t *zfsvfs_taskq; void zfs_rmnode(znode_t *zp) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; objset_t *os = zfsvfs->z_os; dmu_tx_t *tx; uint64_t acl_obj; uint64_t xattr_obj; uint64_t count; int error; ASSERT(zp->z_links == 0); if (zfsvfs->z_replay == B_FALSE) ASSERT_VOP_ELOCKED(ZTOV(zp), __func__); /* * If this is an attribute directory, purge its contents. */ if (ZTOV(zp) != NULL && ZTOV(zp)->v_type == VDIR && (zp->z_pflags & ZFS_XATTR)) { if (zfs_purgedir(zp) != 0) { /* * Not enough space to delete some xattrs. * Leave it in the unlinked set. */ zfs_znode_dmu_fini(zp); zfs_znode_free(zp); return; } } else { /* * Free up all the data in the file. We don't do this for * XATTR directories because we need truncate and remove to be * in the same tx, like in zfs_znode_delete(). Otherwise, if * we crash here we'll end up with an inconsistent truncated * zap object in the delete queue. Note a truncated file is * harmless since it only contains user data. */ error = dmu_free_long_range(os, zp->z_id, 0, DMU_OBJECT_END); if (error) { /* * Not enough space or we were interrupted by unmount. * Leave the file in the unlinked set. */ zfs_znode_dmu_fini(zp); zfs_znode_free(zp); return; } } /* * If the file has extended attributes, we're going to unlink * the xattr dir. */ error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj, sizeof (xattr_obj)); if (error) xattr_obj = 0; acl_obj = zfs_external_acl(zp); /* * Set up the final transaction. */ tx = dmu_tx_create(os); dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); if (xattr_obj) dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, TRUE, NULL); if (acl_obj) dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { /* * Not enough space to delete the file. Leave it in the * unlinked set, leaking it until the fs is remounted (at * which point we'll call zfs_unlinked_drain() to process it). */ dmu_tx_abort(tx); zfs_znode_dmu_fini(zp); zfs_znode_free(zp); return; } /* * FreeBSD's implemention of zfs_zget requires a vnode to back it. * This means that we could end up calling into getnewvnode while * calling zfs_rmnode as a result of a prior call to getnewvnode * trying to clear vnodes out of the cache. If this repeats we can * recurse enough that we overflow our stack. To avoid this, we * avoid calling zfs_zget on the xattr znode and instead simply add * it to the unlinked set and schedule a call to zfs_unlinked_drain. */ if (xattr_obj) { /* Add extended attribute directory to the unlinked set. */ VERIFY3U(0, ==, zap_add_int(os, zfsvfs->z_unlinkedobj, xattr_obj, tx)); } mutex_enter(&os->os_dsl_dataset->ds_dir->dd_activity_lock); /* Remove this znode from the unlinked set */ VERIFY3U(0, ==, zap_remove_int(os, zfsvfs->z_unlinkedobj, zp->z_id, tx)); if (zap_count(os, zfsvfs->z_unlinkedobj, &count) == 0 && count == 0) { cv_broadcast(&os->os_dsl_dataset->ds_dir->dd_activity_cv); } mutex_exit(&os->os_dsl_dataset->ds_dir->dd_activity_lock); zfs_znode_delete(zp, tx); dmu_tx_commit(tx); if (xattr_obj) { /* * We're using the FreeBSD taskqueue API here instead of * the Solaris taskq API since the FreeBSD API allows for a * task to be enqueued multiple times but executed once. */ taskqueue_enqueue(zfsvfs_taskq->tq_queue, &zfsvfs->z_unlinked_drain_task); } } static uint64_t zfs_dirent(znode_t *zp, uint64_t mode) { uint64_t de = zp->z_id; if (zp->z_zfsvfs->z_version >= ZPL_VERSION_DIRENT_TYPE) de |= IFTODT(mode) << 60; return (de); } /* * Link zp into dzp. Can only fail if zp has been unlinked. */ int zfs_link_create(znode_t *dzp, const char *name, znode_t *zp, dmu_tx_t *tx, int flag) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; vnode_t *vp = ZTOV(zp); uint64_t value; int zp_is_dir = (vp->v_type == VDIR); sa_bulk_attr_t bulk[5]; uint64_t mtime[2], ctime[2]; int count = 0; int error; if (zfsvfs->z_replay == B_FALSE) { ASSERT_VOP_ELOCKED(ZTOV(dzp), __func__); ASSERT_VOP_ELOCKED(ZTOV(zp), __func__); } if (zp_is_dir) { if (dzp->z_links >= ZFS_LINK_MAX) return (SET_ERROR(EMLINK)); } if (!(flag & ZRENAMING)) { if (zp->z_unlinked) { /* no new links to unlinked zp */ ASSERT(!(flag & (ZNEW | ZEXISTS))); return (SET_ERROR(ENOENT)); } if (zp->z_links >= ZFS_LINK_MAX - zp_is_dir) { return (SET_ERROR(EMLINK)); } zp->z_links++; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &zp->z_links, sizeof (zp->z_links)); } else { ASSERT(zp->z_unlinked == 0); } value = zfs_dirent(zp, zp->z_mode); error = zap_add(zp->z_zfsvfs->z_os, dzp->z_id, name, 8, 1, &value, tx); /* * zap_add could fail to add the entry if it exceeds the capacity of the * leaf-block and zap_leaf_split() failed to help. * The caller of this routine is responsible for failing the transaction * which will rollback the SA updates done above. */ if (error != 0) { if (!(flag & ZRENAMING) && !(flag & ZNEW)) zp->z_links--; return (error); } SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &dzp->z_id, sizeof (dzp->z_id)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, sizeof (zp->z_pflags)); if (!(flag & ZNEW)) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, sizeof (ctime)); zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime); } error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); ASSERT0(error); dzp->z_size++; dzp->z_links += zp_is_dir; count = 0; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, &dzp->z_size, sizeof (dzp->z_size)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &dzp->z_links, sizeof (dzp->z_links)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, sizeof (mtime)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, sizeof (ctime)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &dzp->z_pflags, sizeof (dzp->z_pflags)); zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime); error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx); ASSERT0(error); return (0); } /* * The match type in the code for this function should conform to: * * ------------------------------------------------------------------------ * fs type | z_norm | lookup type | match type * ---------|-------------|-------------|---------------------------------- * CS !norm | 0 | 0 | 0 (exact) * CS norm | formX | 0 | MT_NORMALIZE * CI !norm | upper | !ZCIEXACT | MT_NORMALIZE * CI !norm | upper | ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE * CI norm | upper|formX | !ZCIEXACT | MT_NORMALIZE * CI norm | upper|formX | ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE * CM !norm | upper | !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE * CM !norm | upper | ZCILOOK | MT_NORMALIZE * CM norm | upper|formX | !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE * CM norm | upper|formX | ZCILOOK | MT_NORMALIZE * * Abbreviations: * CS = Case Sensitive, CI = Case Insensitive, CM = Case Mixed * upper = case folding set by fs type on creation (U8_TEXTPREP_TOUPPER) * formX = unicode normalization form set on fs creation */ static int zfs_dropname(znode_t *dzp, const char *name, znode_t *zp, dmu_tx_t *tx, int flag) { int error; if (zp->z_zfsvfs->z_norm) { matchtype_t mt = MT_NORMALIZE; if (zp->z_zfsvfs->z_case == ZFS_CASE_MIXED) { mt |= MT_MATCH_CASE; } error = zap_remove_norm(zp->z_zfsvfs->z_os, dzp->z_id, name, mt, tx); } else { error = zap_remove(zp->z_zfsvfs->z_os, dzp->z_id, name, tx); } return (error); } /* * Unlink zp from dzp, and mark zp for deletion if this was the last link. * Can fail if zp is a mount point (EBUSY) or a non-empty directory (EEXIST). * If 'unlinkedp' is NULL, we put unlinked znodes on the unlinked list. * If it's non-NULL, we use it to indicate whether the znode needs deletion, * and it's the caller's job to do it. */ int zfs_link_destroy(znode_t *dzp, const char *name, znode_t *zp, dmu_tx_t *tx, int flag, boolean_t *unlinkedp) { zfsvfs_t *zfsvfs = dzp->z_zfsvfs; vnode_t *vp = ZTOV(zp); int zp_is_dir = (vp->v_type == VDIR); boolean_t unlinked = B_FALSE; sa_bulk_attr_t bulk[5]; uint64_t mtime[2], ctime[2]; int count = 0; int error; if (zfsvfs->z_replay == B_FALSE) { ASSERT_VOP_ELOCKED(ZTOV(dzp), __func__); ASSERT_VOP_ELOCKED(ZTOV(zp), __func__); } if (!(flag & ZRENAMING)) { if (zp_is_dir && !zfs_dirempty(zp)) return (SET_ERROR(ENOTEMPTY)); /* * If we get here, we are going to try to remove the object. * First try removing the name from the directory; if that * fails, return the error. */ error = zfs_dropname(dzp, name, zp, tx, flag); if (error != 0) { return (error); } if (zp->z_links <= zp_is_dir) { zfs_panic_recover("zfs: link count on vnode %p is %u, " "should be at least %u", zp->z_vnode, (int)zp->z_links, zp_is_dir + 1); zp->z_links = zp_is_dir + 1; } if (--zp->z_links == zp_is_dir) { zp->z_unlinked = B_TRUE; zp->z_links = 0; unlinked = B_TRUE; } else { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, sizeof (ctime)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, sizeof (zp->z_pflags)); zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime); } SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &zp->z_links, sizeof (zp->z_links)); error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); count = 0; ASSERT0(error); } else { ASSERT(zp->z_unlinked == 0); error = zfs_dropname(dzp, name, zp, tx, flag); if (error != 0) return (error); } dzp->z_size--; /* one dirent removed */ dzp->z_links -= zp_is_dir; /* ".." link from zp */ SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &dzp->z_links, sizeof (dzp->z_links)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, &dzp->z_size, sizeof (dzp->z_size)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, sizeof (ctime)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, sizeof (mtime)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &dzp->z_pflags, sizeof (dzp->z_pflags)); zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime); error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx); ASSERT0(error); if (unlinkedp != NULL) *unlinkedp = unlinked; else if (unlinked) zfs_unlinked_add(zp, tx); return (0); } /* * Indicate whether the directory is empty. */ boolean_t zfs_dirempty(znode_t *dzp) { return (dzp->z_size == 2); } int zfs_make_xattrdir(znode_t *zp, vattr_t *vap, znode_t **xvpp, cred_t *cr) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; znode_t *xzp; dmu_tx_t *tx; int error; zfs_acl_ids_t acl_ids; boolean_t fuid_dirtied; uint64_t parent __unused; *xvpp = NULL; if ((error = zfs_acl_ids_create(zp, IS_XATTR, vap, cr, NULL, &acl_ids)) != 0) return (error); if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, 0)) { zfs_acl_ids_free(&acl_ids); return (SET_ERROR(EDQUOT)); } getnewvnode_reserve_(); tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); fuid_dirtied = zfsvfs->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); getnewvnode_drop_reserve(); return (error); } zfs_mknode(zp, vap, tx, cr, IS_XATTR, &xzp, &acl_ids); if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); #ifdef DEBUG error = sa_lookup(xzp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent)); ASSERT(error == 0 && parent == zp->z_id); #endif VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xzp->z_id, sizeof (xzp->z_id), tx)); (void) zfs_log_create(zfsvfs->z_log, tx, TX_MKXATTR, zp, xzp, "", NULL, acl_ids.z_fuidp, vap); zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); getnewvnode_drop_reserve(); *xvpp = xzp; return (0); } /* * Return a znode for the extended attribute directory for zp. * ** If the directory does not already exist, it is created ** * * IN: zp - znode to obtain attribute directory from * cr - credentials of caller * flags - flags from the VOP_LOOKUP call * * OUT: xzpp - pointer to extended attribute znode * * RETURN: 0 on success * error number on failure */ int zfs_get_xattrdir(znode_t *zp, znode_t **xzpp, cred_t *cr, int flags) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; znode_t *xzp; vattr_t va; int error; top: error = zfs_dirent_lookup(zp, "", &xzp, ZXATTR); if (error) return (error); if (xzp != NULL) { *xzpp = xzp; return (0); } if (!(flags & CREATE_XATTR_DIR)) return (SET_ERROR(ENOATTR)); if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { return (SET_ERROR(EROFS)); } /* * The ability to 'create' files in an attribute * directory comes from the write_xattr permission on the base file. * * The ability to 'search' an attribute directory requires * read_xattr permission on the base file. * * Once in a directory the ability to read/write attributes * is controlled by the permissions on the attribute file. */ va.va_mask = AT_MODE | AT_UID | AT_GID; va.va_type = VDIR; va.va_mode = S_IFDIR | S_ISVTX | 0777; zfs_fuid_map_ids(zp, cr, &va.va_uid, &va.va_gid); error = zfs_make_xattrdir(zp, &va, xzpp, cr); if (error == ERESTART) { /* NB: we already did dmu_tx_wait() if necessary */ goto top; } if (error == 0) VOP_UNLOCK1(ZTOV(*xzpp)); return (error); } /* * Decide whether it is okay to remove within a sticky directory. * * In sticky directories, write access is not sufficient; * you can remove entries from a directory only if: * * you own the directory, * you own the entry, * the entry is a plain file and you have write access, * or you are privileged (checked in secpolicy...). * * The function returns 0 if remove access is granted. */ int zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr) { uid_t uid; uid_t downer; uid_t fowner; zfsvfs_t *zfsvfs = zdp->z_zfsvfs; if (zdp->z_zfsvfs->z_replay) return (0); if ((zdp->z_mode & S_ISVTX) == 0) return (0); downer = zfs_fuid_map_id(zfsvfs, zdp->z_uid, cr, ZFS_OWNER); fowner = zfs_fuid_map_id(zfsvfs, zp->z_uid, cr, ZFS_OWNER); if ((uid = crgetuid(cr)) == downer || uid == fowner || (ZTOV(zp)->v_type == VREG && zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr) == 0)) return (0); else return (secpolicy_vnode_remove(ZTOV(zp), cr)); }