/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC. * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). * Rewritten for Linux by Brian Behlendorf . * LLNL-CODE-403049. * * ZFS volume emulation driver. * * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes. * Volumes are accessed through the symbolic links named: * * /dev// * * Volumes are persistent through reboot and module load. No user command * needs to be run before opening and using a device. * * Copyright 2014 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2016 Actifio, Inc. All rights reserved. * Copyright (c) 2012, 2019 by Delphix. All rights reserved. */ /* * Note on locking of zvol state structures. * * These structures are used to maintain internal state used to emulate block * devices on top of zvols. In particular, management of device minor number * operations - create, remove, rename, and set_snapdev - involves access to * these structures. The zvol_state_lock is primarily used to protect the * zvol_state_list. The zv->zv_state_lock is used to protect the contents * of the zvol_state_t structures, as well as to make sure that when the * time comes to remove the structure from the list, it is not in use, and * therefore, it can be taken off zvol_state_list and freed. * * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol, * e.g. for the duration of receive and rollback operations. This lock can be * held for significant periods of time. Given that it is undesirable to hold * mutexes for long periods of time, the following lock ordering applies: * - take zvol_state_lock if necessary, to protect zvol_state_list * - take zv_suspend_lock if necessary, by the code path in question * - take zv_state_lock to protect zvol_state_t * * The minor operations are issued to spa->spa_zvol_taskq queues, that are * single-threaded (to preserve order of minor operations), and are executed * through the zvol_task_cb that dispatches the specific operations. Therefore, * these operations are serialized per pool. Consequently, we can be certain * that for a given zvol, there is only one operation at a time in progress. * That is why one can be sure that first, zvol_state_t for a given zvol is * allocated and placed on zvol_state_list, and then other minor operations * for this zvol are going to proceed in the order of issue. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include unsigned int zvol_inhibit_dev = 0; unsigned int zvol_volmode = ZFS_VOLMODE_GEOM; struct hlist_head *zvol_htable; static list_t zvol_state_list; krwlock_t zvol_state_lock; typedef enum { ZVOL_ASYNC_REMOVE_MINORS, ZVOL_ASYNC_RENAME_MINORS, ZVOL_ASYNC_SET_SNAPDEV, ZVOL_ASYNC_SET_VOLMODE, ZVOL_ASYNC_MAX } zvol_async_op_t; typedef struct { zvol_async_op_t op; char name1[MAXNAMELEN]; char name2[MAXNAMELEN]; uint64_t value; } zvol_task_t; uint64_t zvol_name_hash(const char *name) { int i; uint64_t crc = -1ULL; const uint8_t *p = (const uint8_t *)name; ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) { crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF]; } return (crc); } /* * Find a zvol_state_t given the name and hash generated by zvol_name_hash. * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise, * return (NULL) without the taking locks. The zv_suspend_lock is always taken * before zv_state_lock. The mode argument indicates the mode (including none) * for zv_suspend_lock to be taken. */ zvol_state_t * zvol_find_by_name_hash(const char *name, uint64_t hash, int mode) { zvol_state_t *zv; struct hlist_node *p = NULL; rw_enter(&zvol_state_lock, RW_READER); hlist_for_each(p, ZVOL_HT_HEAD(hash)) { zv = hlist_entry(p, zvol_state_t, zv_hlink); mutex_enter(&zv->zv_state_lock); if (zv->zv_hash == hash && strncmp(zv->zv_name, name, MAXNAMELEN) == 0) { /* * this is the right zvol, take the locks in the * right order */ if (mode != RW_NONE && !rw_tryenter(&zv->zv_suspend_lock, mode)) { mutex_exit(&zv->zv_state_lock); rw_enter(&zv->zv_suspend_lock, mode); mutex_enter(&zv->zv_state_lock); /* * zvol cannot be renamed as we continue * to hold zvol_state_lock */ ASSERT(zv->zv_hash == hash && strncmp(zv->zv_name, name, MAXNAMELEN) == 0); } rw_exit(&zvol_state_lock); return (zv); } mutex_exit(&zv->zv_state_lock); } rw_exit(&zvol_state_lock); return (NULL); } /* * Find a zvol_state_t given the name. * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise, * return (NULL) without the taking locks. The zv_suspend_lock is always taken * before zv_state_lock. The mode argument indicates the mode (including none) * for zv_suspend_lock to be taken. */ static zvol_state_t * zvol_find_by_name(const char *name, int mode) { return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode)); } /* * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation. */ void zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { zfs_creat_t *zct = arg; nvlist_t *nvprops = zct->zct_props; int error; uint64_t volblocksize, volsize; VERIFY(nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0); if (nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); /* * These properties must be removed from the list so the generic * property setting step won't apply to them. */ VERIFY(nvlist_remove_all(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0); (void) nvlist_remove_all(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE)); error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize, DMU_OT_NONE, 0, tx); ASSERT(error == 0); error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP, DMU_OT_NONE, 0, tx); ASSERT(error == 0); error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); ASSERT(error == 0); } /* * ZFS_IOC_OBJSET_STATS entry point. */ int zvol_get_stats(objset_t *os, nvlist_t *nv) { int error; dmu_object_info_t *doi; uint64_t val; error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val); if (error) return (SET_ERROR(error)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val); doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP); error = dmu_object_info(os, ZVOL_OBJ, doi); if (error == 0) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE, doi->doi_data_block_size); } kmem_free(doi, sizeof (dmu_object_info_t)); return (SET_ERROR(error)); } /* * Sanity check volume size. */ int zvol_check_volsize(uint64_t volsize, uint64_t blocksize) { if (volsize == 0) return (SET_ERROR(EINVAL)); if (volsize % blocksize != 0) return (SET_ERROR(EINVAL)); #ifdef _ILP32 if (volsize - 1 > SPEC_MAXOFFSET_T) return (SET_ERROR(EOVERFLOW)); #endif return (0); } /* * Ensure the zap is flushed then inform the VFS of the capacity change. */ static int zvol_update_volsize(uint64_t volsize, objset_t *os) { dmu_tx_t *tx; int error; uint64_t txg; tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (SET_ERROR(error)); } txg = dmu_tx_get_txg(tx); error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); dmu_tx_commit(tx); txg_wait_synced(dmu_objset_pool(os), txg); if (error == 0) error = dmu_free_long_range(os, ZVOL_OBJ, volsize, DMU_OBJECT_END); return (error); } /* * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume * size will result in a udev "change" event being generated. */ int zvol_set_volsize(const char *name, uint64_t volsize) { objset_t *os = NULL; uint64_t readonly; int error; boolean_t owned = B_FALSE; error = dsl_prop_get_integer(name, zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL); if (error != 0) return (SET_ERROR(error)); if (readonly) return (SET_ERROR(EROFS)); zvol_state_t *zv = zvol_find_by_name(name, RW_READER); ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) && RW_READ_HELD(&zv->zv_suspend_lock))); if (zv == NULL || zv->zv_objset == NULL) { if (zv != NULL) rw_exit(&zv->zv_suspend_lock); if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE, FTAG, &os)) != 0) { if (zv != NULL) mutex_exit(&zv->zv_state_lock); return (SET_ERROR(error)); } owned = B_TRUE; if (zv != NULL) zv->zv_objset = os; } else { os = zv->zv_objset; } dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP); if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) || (error = zvol_check_volsize(volsize, doi->doi_data_block_size))) goto out; error = zvol_update_volsize(volsize, os); if (error == 0 && zv != NULL) { zv->zv_volsize = volsize; zv->zv_changed = 1; } out: kmem_free(doi, sizeof (dmu_object_info_t)); if (owned) { dmu_objset_disown(os, B_TRUE, FTAG); if (zv != NULL) zv->zv_objset = NULL; } else { rw_exit(&zv->zv_suspend_lock); } if (zv != NULL) mutex_exit(&zv->zv_state_lock); if (error == 0 && zv != NULL) zvol_os_update_volsize(zv, volsize); return (SET_ERROR(error)); } /* * Sanity check volume block size. */ int zvol_check_volblocksize(const char *name, uint64_t volblocksize) { /* Record sizes above 128k need the feature to be enabled */ if (volblocksize > SPA_OLD_MAXBLOCKSIZE) { spa_t *spa; int error; if ((error = spa_open(name, &spa, FTAG)) != 0) return (error); if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } /* * We don't allow setting the property above 1MB, * unless the tunable has been changed. */ if (volblocksize > zfs_max_recordsize) return (SET_ERROR(EDOM)); spa_close(spa, FTAG); } if (volblocksize < SPA_MINBLOCKSIZE || volblocksize > SPA_MAXBLOCKSIZE || !ISP2(volblocksize)) return (SET_ERROR(EDOM)); return (0); } /* * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we * implement DKIOCFREE/free-long-range. */ static int zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) { zvol_state_t *zv = arg1; lr_truncate_t *lr = arg2; uint64_t offset, length; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); offset = lr->lr_offset; length = lr->lr_length; dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); dmu_tx_mark_netfree(tx); int error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) { dmu_tx_abort(tx); } else { zil_replaying(zv->zv_zilog, tx); dmu_tx_commit(tx); error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, length); } return (error); } /* * Replay a TX_WRITE ZIL transaction that didn't get committed * after a system failure */ static int zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap) { zvol_state_t *zv = arg1; lr_write_t *lr = arg2; objset_t *os = zv->zv_objset; char *data = (char *)(lr + 1); /* data follows lr_write_t */ uint64_t offset, length; dmu_tx_t *tx; int error; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); offset = lr->lr_offset; length = lr->lr_length; /* If it's a dmu_sync() block, write the whole block */ if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); if (length < blocksize) { offset -= offset % blocksize; length = blocksize; } } tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { dmu_write(os, ZVOL_OBJ, offset, length, data, tx); zil_replaying(zv->zv_zilog, tx); dmu_tx_commit(tx); } return (error); } static int zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap) { (void) arg1, (void) arg2, (void) byteswap; return (SET_ERROR(ENOTSUP)); } /* * Callback vectors for replaying records. * Only TX_WRITE and TX_TRUNCATE are needed for zvol. */ zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = { zvol_replay_err, /* no such transaction type */ zvol_replay_err, /* TX_CREATE */ zvol_replay_err, /* TX_MKDIR */ zvol_replay_err, /* TX_MKXATTR */ zvol_replay_err, /* TX_SYMLINK */ zvol_replay_err, /* TX_REMOVE */ zvol_replay_err, /* TX_RMDIR */ zvol_replay_err, /* TX_LINK */ zvol_replay_err, /* TX_RENAME */ zvol_replay_write, /* TX_WRITE */ zvol_replay_truncate, /* TX_TRUNCATE */ zvol_replay_err, /* TX_SETATTR */ zvol_replay_err, /* TX_ACL */ zvol_replay_err, /* TX_CREATE_ATTR */ zvol_replay_err, /* TX_CREATE_ACL_ATTR */ zvol_replay_err, /* TX_MKDIR_ACL */ zvol_replay_err, /* TX_MKDIR_ATTR */ zvol_replay_err, /* TX_MKDIR_ACL_ATTR */ zvol_replay_err, /* TX_WRITE2 */ zvol_replay_err, /* TX_SETSAXATTR */ }; /* * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions. * * We store data in the log buffers if it's small enough. * Otherwise we will later flush the data out via dmu_sync(). */ static const ssize_t zvol_immediate_write_sz = 32768; void zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset, uint64_t size, int sync) { uint32_t blocksize = zv->zv_volblocksize; zilog_t *zilog = zv->zv_zilog; itx_wr_state_t write_state; uint64_t sz = size; if (zil_replaying(zilog, tx)) return; if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) write_state = WR_INDIRECT; else if (!spa_has_slogs(zilog->zl_spa) && size >= blocksize && blocksize > zvol_immediate_write_sz) write_state = WR_INDIRECT; else if (sync) write_state = WR_COPIED; else write_state = WR_NEED_COPY; while (size) { itx_t *itx; lr_write_t *lr; itx_wr_state_t wr_state = write_state; ssize_t len = size; if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog)) wr_state = WR_NEED_COPY; else if (wr_state == WR_INDIRECT) len = MIN(blocksize - P2PHASE(offset, blocksize), size); itx = zil_itx_create(TX_WRITE, sizeof (*lr) + (wr_state == WR_COPIED ? len : 0)); lr = (lr_write_t *)&itx->itx_lr; if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn, offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) { zil_itx_destroy(itx); itx = zil_itx_create(TX_WRITE, sizeof (*lr)); lr = (lr_write_t *)&itx->itx_lr; wr_state = WR_NEED_COPY; } itx->itx_wr_state = wr_state; lr->lr_foid = ZVOL_OBJ; lr->lr_offset = offset; lr->lr_length = len; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); itx->itx_private = zv; itx->itx_sync = sync; (void) zil_itx_assign(zilog, itx, tx); offset += len; size -= len; } if (write_state == WR_COPIED || write_state == WR_NEED_COPY) { dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg); } } /* * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE. */ void zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len, boolean_t sync) { itx_t *itx; lr_truncate_t *lr; zilog_t *zilog = zv->zv_zilog; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); lr = (lr_truncate_t *)&itx->itx_lr; lr->lr_foid = ZVOL_OBJ; lr->lr_offset = off; lr->lr_length = len; itx->itx_sync = sync; zil_itx_assign(zilog, itx, tx); } static void zvol_get_done(zgd_t *zgd, int error) { (void) error; if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); zfs_rangelock_exit(zgd->zgd_lr); kmem_free(zgd, sizeof (zgd_t)); } /* * Get data to generate a TX_WRITE intent log record. */ int zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) { zvol_state_t *zv = arg; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; dmu_buf_t *db; zgd_t *zgd; int error; ASSERT3P(lwb, !=, NULL); ASSERT3P(zio, !=, NULL); ASSERT3U(size, !=, 0); zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); zgd->zgd_lwb = lwb; /* * Write records come in two flavors: immediate and indirect. * For small writes it's cheaper to store the data with the * log record (immediate); for large writes it's cheaper to * sync the data and get a pointer to it (indirect) so that * we don't have to write the data twice. */ if (buf != NULL) { /* immediate write */ zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset, size, RL_READER); error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf, DMU_READ_NO_PREFETCH); } else { /* indirect write */ /* * Have to lock the whole block to ensure when it's written out * and its checksum is being calculated that no one can change * the data. Contrarily to zfs_get_data we need not re-check * blocksize after we get the lock because it cannot be changed. */ size = zv->zv_volblocksize; offset = P2ALIGN_TYPED(offset, size, uint64_t); zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset, size, RL_READER); error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db, DMU_READ_NO_PREFETCH); if (error == 0) { blkptr_t *bp = &lr->lr_blkptr; zgd->zgd_db = db; zgd->zgd_bp = bp; ASSERT(db != NULL); ASSERT(db->db_offset == offset); ASSERT(db->db_size == size); error = dmu_sync(zio, lr->lr_common.lrc_txg, zvol_get_done, zgd); if (error == 0) return (0); } } zvol_get_done(zgd, error); return (SET_ERROR(error)); } /* * The zvol_state_t's are inserted into zvol_state_list and zvol_htable. */ void zvol_insert(zvol_state_t *zv) { ASSERT(RW_WRITE_HELD(&zvol_state_lock)); list_insert_head(&zvol_state_list, zv); hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash)); } /* * Simply remove the zvol from to list of zvols. */ static void zvol_remove(zvol_state_t *zv) { ASSERT(RW_WRITE_HELD(&zvol_state_lock)); list_remove(&zvol_state_list, zv); hlist_del(&zv->zv_hlink); } /* * Setup zv after we just own the zv->objset */ static int zvol_setup_zv(zvol_state_t *zv) { uint64_t volsize; int error; uint64_t ro; objset_t *os = zv->zv_objset; ASSERT(MUTEX_HELD(&zv->zv_state_lock)); ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock)); zv->zv_zilog = NULL; zv->zv_flags &= ~ZVOL_WRITTEN_TO; error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL); if (error) return (SET_ERROR(error)); error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); if (error) return (SET_ERROR(error)); error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn); if (error) return (SET_ERROR(error)); zvol_os_set_capacity(zv, volsize >> 9); zv->zv_volsize = volsize; if (ro || dmu_objset_is_snapshot(os) || !spa_writeable(dmu_objset_spa(os))) { zvol_os_set_disk_ro(zv, 1); zv->zv_flags |= ZVOL_RDONLY; } else { zvol_os_set_disk_ro(zv, 0); zv->zv_flags &= ~ZVOL_RDONLY; } return (0); } /* * Shutdown every zv_objset related stuff except zv_objset itself. * The is the reverse of zvol_setup_zv. */ static void zvol_shutdown_zv(zvol_state_t *zv) { ASSERT(MUTEX_HELD(&zv->zv_state_lock) && RW_LOCK_HELD(&zv->zv_suspend_lock)); if (zv->zv_flags & ZVOL_WRITTEN_TO) { ASSERT(zv->zv_zilog != NULL); zil_close(zv->zv_zilog); } zv->zv_zilog = NULL; dnode_rele(zv->zv_dn, zv); zv->zv_dn = NULL; /* * Evict cached data. We must write out any dirty data before * disowning the dataset. */ if (zv->zv_flags & ZVOL_WRITTEN_TO) txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); (void) dmu_objset_evict_dbufs(zv->zv_objset); } /* * return the proper tag for rollback and recv */ void * zvol_tag(zvol_state_t *zv) { ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); return (zv->zv_open_count > 0 ? zv : NULL); } /* * Suspend the zvol for recv and rollback. */ zvol_state_t * zvol_suspend(const char *name) { zvol_state_t *zv; zv = zvol_find_by_name(name, RW_WRITER); if (zv == NULL) return (NULL); /* block all I/O, release in zvol_resume. */ ASSERT(MUTEX_HELD(&zv->zv_state_lock)); ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); atomic_inc(&zv->zv_suspend_ref); if (zv->zv_open_count > 0) zvol_shutdown_zv(zv); /* * do not hold zv_state_lock across suspend/resume to * avoid locking up zvol lookups */ mutex_exit(&zv->zv_state_lock); /* zv_suspend_lock is released in zvol_resume() */ return (zv); } int zvol_resume(zvol_state_t *zv) { int error = 0; ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); mutex_enter(&zv->zv_state_lock); if (zv->zv_open_count > 0) { VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset)); VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv); VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset)); dmu_objset_rele(zv->zv_objset, zv); error = zvol_setup_zv(zv); } mutex_exit(&zv->zv_state_lock); rw_exit(&zv->zv_suspend_lock); /* * We need this because we don't hold zvol_state_lock while releasing * zv_suspend_lock. zvol_remove_minors_impl thus cannot check * zv_suspend_lock to determine it is safe to free because rwlock is * not inherent atomic. */ atomic_dec(&zv->zv_suspend_ref); return (SET_ERROR(error)); } int zvol_first_open(zvol_state_t *zv, boolean_t readonly) { objset_t *os; int error; ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); ASSERT(MUTEX_HELD(&zv->zv_state_lock)); ASSERT(mutex_owned(&spa_namespace_lock)); boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL)); error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os); if (error) return (SET_ERROR(error)); zv->zv_objset = os; error = zvol_setup_zv(zv); if (error) { dmu_objset_disown(os, 1, zv); zv->zv_objset = NULL; } return (error); } void zvol_last_close(zvol_state_t *zv) { ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); ASSERT(MUTEX_HELD(&zv->zv_state_lock)); zvol_shutdown_zv(zv); dmu_objset_disown(zv->zv_objset, 1, zv); zv->zv_objset = NULL; } typedef struct minors_job { list_t *list; list_node_t link; /* input */ char *name; /* output */ int error; } minors_job_t; /* * Prefetch zvol dnodes for the minors_job */ static void zvol_prefetch_minors_impl(void *arg) { minors_job_t *job = arg; char *dsname = job->name; objset_t *os = NULL; job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os); if (job->error == 0) { dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ); dmu_objset_disown(os, B_TRUE, FTAG); } } /* * Mask errors to continue dmu_objset_find() traversal */ static int zvol_create_snap_minor_cb(const char *dsname, void *arg) { minors_job_t *j = arg; list_t *minors_list = j->list; const char *name = j->name; ASSERT0(MUTEX_HELD(&spa_namespace_lock)); /* skip the designated dataset */ if (name && strcmp(dsname, name) == 0) return (0); /* at this point, the dsname should name a snapshot */ if (strchr(dsname, '@') == 0) { dprintf("zvol_create_snap_minor_cb(): " "%s is not a snapshot name\n", dsname); } else { minors_job_t *job; char *n = kmem_strdup(dsname); if (n == NULL) return (0); job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); job->name = n; job->list = minors_list; job->error = 0; list_insert_tail(minors_list, job); /* don't care if dispatch fails, because job->error is 0 */ taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job, TQ_SLEEP); } return (0); } /* * If spa_keystore_load_wkey() is called for an encrypted zvol, * we need to look for any clones also using the key. This function * is "best effort" - so we just skip over it if there are failures. */ static void zvol_add_clones(const char *dsname, list_t *minors_list) { /* Also check if it has clones */ dsl_dir_t *dd = NULL; dsl_pool_t *dp = NULL; if (dsl_pool_hold(dsname, FTAG, &dp) != 0) return; if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) goto out; if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0) goto out; if (dsl_dir_phys(dd)->dd_clones == 0) goto out; zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); objset_t *mos = dd->dd_pool->dp_meta_objset; for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones); zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { dsl_dataset_t *clone; minors_job_t *job; if (dsl_dataset_hold_obj(dd->dd_pool, za->za_first_integer, FTAG, &clone) == 0) { char name[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_name(clone, name); char *n = kmem_strdup(name); job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); job->name = n; job->list = minors_list; job->error = 0; list_insert_tail(minors_list, job); dsl_dataset_rele(clone, FTAG); } } zap_cursor_fini(zc); kmem_free(za, sizeof (zap_attribute_t)); kmem_free(zc, sizeof (zap_cursor_t)); out: if (dd != NULL) dsl_dir_rele(dd, FTAG); if (dp != NULL) dsl_pool_rele(dp, FTAG); } /* * Mask errors to continue dmu_objset_find() traversal */ static int zvol_create_minors_cb(const char *dsname, void *arg) { uint64_t snapdev; int error; list_t *minors_list = arg; ASSERT0(MUTEX_HELD(&spa_namespace_lock)); error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL); if (error) return (0); /* * Given the name and the 'snapdev' property, create device minor nodes * with the linkages to zvols/snapshots as needed. * If the name represents a zvol, create a minor node for the zvol, then * check if its snapshots are 'visible', and if so, iterate over the * snapshots and create device minor nodes for those. */ if (strchr(dsname, '@') == 0) { minors_job_t *job; char *n = kmem_strdup(dsname); if (n == NULL) return (0); job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); job->name = n; job->list = minors_list; job->error = 0; list_insert_tail(minors_list, job); /* don't care if dispatch fails, because job->error is 0 */ taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job, TQ_SLEEP); zvol_add_clones(dsname, minors_list); if (snapdev == ZFS_SNAPDEV_VISIBLE) { /* * traverse snapshots only, do not traverse children, * and skip the 'dsname' */ error = dmu_objset_find(dsname, zvol_create_snap_minor_cb, (void *)job, DS_FIND_SNAPSHOTS); } } else { dprintf("zvol_create_minors_cb(): %s is not a zvol name\n", dsname); } return (0); } /* * Create minors for the specified dataset, including children and snapshots. * Pay attention to the 'snapdev' property and iterate over the snapshots * only if they are 'visible'. This approach allows one to assure that the * snapshot metadata is read from disk only if it is needed. * * The name can represent a dataset to be recursively scanned for zvols and * their snapshots, or a single zvol snapshot. If the name represents a * dataset, the scan is performed in two nested stages: * - scan the dataset for zvols, and * - for each zvol, create a minor node, then check if the zvol's snapshots * are 'visible', and only then iterate over the snapshots if needed * * If the name represents a snapshot, a check is performed if the snapshot is * 'visible' (which also verifies that the parent is a zvol), and if so, * a minor node for that snapshot is created. */ void zvol_create_minors_recursive(const char *name) { list_t minors_list; minors_job_t *job; if (zvol_inhibit_dev) return; /* * This is the list for prefetch jobs. Whenever we found a match * during dmu_objset_find, we insert a minors_job to the list and do * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need * any lock because all list operation is done on the current thread. * * We will use this list to do zvol_os_create_minor after prefetch * so we don't have to traverse using dmu_objset_find again. */ list_create(&minors_list, sizeof (minors_job_t), offsetof(minors_job_t, link)); if (strchr(name, '@') != NULL) { uint64_t snapdev; int error = dsl_prop_get_integer(name, "snapdev", &snapdev, NULL); if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) (void) zvol_os_create_minor(name); } else { fstrans_cookie_t cookie = spl_fstrans_mark(); (void) dmu_objset_find(name, zvol_create_minors_cb, &minors_list, DS_FIND_CHILDREN); spl_fstrans_unmark(cookie); } taskq_wait_outstanding(system_taskq, 0); /* * Prefetch is completed, we can do zvol_os_create_minor * sequentially. */ while ((job = list_head(&minors_list)) != NULL) { list_remove(&minors_list, job); if (!job->error) (void) zvol_os_create_minor(job->name); kmem_strfree(job->name); kmem_free(job, sizeof (minors_job_t)); } list_destroy(&minors_list); } void zvol_create_minor(const char *name) { /* * Note: the dsl_pool_config_lock must not be held. * Minor node creation needs to obtain the zvol_state_lock. * zvol_open() obtains the zvol_state_lock and then the dsl pool * config lock. Therefore, we can't have the config lock now if * we are going to wait for the zvol_state_lock, because it * would be a lock order inversion which could lead to deadlock. */ if (zvol_inhibit_dev) return; if (strchr(name, '@') != NULL) { uint64_t snapdev; int error = dsl_prop_get_integer(name, "snapdev", &snapdev, NULL); if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) (void) zvol_os_create_minor(name); } else { (void) zvol_os_create_minor(name); } } /* * Remove minors for specified dataset including children and snapshots. */ static void zvol_free_task(void *arg) { zvol_os_free(arg); } void zvol_remove_minors_impl(const char *name) { zvol_state_t *zv, *zv_next; int namelen = ((name) ? strlen(name) : 0); taskqid_t t; list_t free_list; if (zvol_inhibit_dev) return; list_create(&free_list, sizeof (zvol_state_t), offsetof(zvol_state_t, zv_next)); rw_enter(&zvol_state_lock, RW_WRITER); for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { zv_next = list_next(&zvol_state_list, zv); mutex_enter(&zv->zv_state_lock); if (name == NULL || strcmp(zv->zv_name, name) == 0 || (strncmp(zv->zv_name, name, namelen) == 0 && (zv->zv_name[namelen] == '/' || zv->zv_name[namelen] == '@'))) { /* * By holding zv_state_lock here, we guarantee that no * one is currently using this zv */ /* If in use, leave alone */ if (zv->zv_open_count > 0 || atomic_read(&zv->zv_suspend_ref)) { mutex_exit(&zv->zv_state_lock); continue; } zvol_remove(zv); /* * Cleared while holding zvol_state_lock as a writer * which will prevent zvol_open() from opening it. */ zvol_os_clear_private(zv); /* Drop zv_state_lock before zvol_free() */ mutex_exit(&zv->zv_state_lock); /* Try parallel zv_free, if failed do it in place */ t = taskq_dispatch(system_taskq, zvol_free_task, zv, TQ_SLEEP); if (t == TASKQID_INVALID) list_insert_head(&free_list, zv); } else { mutex_exit(&zv->zv_state_lock); } } rw_exit(&zvol_state_lock); /* Drop zvol_state_lock before calling zvol_free() */ while ((zv = list_head(&free_list)) != NULL) { list_remove(&free_list, zv); zvol_os_free(zv); } } /* Remove minor for this specific volume only */ static void zvol_remove_minor_impl(const char *name) { zvol_state_t *zv = NULL, *zv_next; if (zvol_inhibit_dev) return; rw_enter(&zvol_state_lock, RW_WRITER); for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { zv_next = list_next(&zvol_state_list, zv); mutex_enter(&zv->zv_state_lock); if (strcmp(zv->zv_name, name) == 0) { /* * By holding zv_state_lock here, we guarantee that no * one is currently using this zv */ /* If in use, leave alone */ if (zv->zv_open_count > 0 || atomic_read(&zv->zv_suspend_ref)) { mutex_exit(&zv->zv_state_lock); continue; } zvol_remove(zv); zvol_os_clear_private(zv); mutex_exit(&zv->zv_state_lock); break; } else { mutex_exit(&zv->zv_state_lock); } } /* Drop zvol_state_lock before calling zvol_free() */ rw_exit(&zvol_state_lock); if (zv != NULL) zvol_os_free(zv); } /* * Rename minors for specified dataset including children and snapshots. */ static void zvol_rename_minors_impl(const char *oldname, const char *newname) { zvol_state_t *zv, *zv_next; int oldnamelen; if (zvol_inhibit_dev) return; oldnamelen = strlen(oldname); rw_enter(&zvol_state_lock, RW_READER); for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { zv_next = list_next(&zvol_state_list, zv); mutex_enter(&zv->zv_state_lock); if (strcmp(zv->zv_name, oldname) == 0) { zvol_os_rename_minor(zv, newname); } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 && (zv->zv_name[oldnamelen] == '/' || zv->zv_name[oldnamelen] == '@')) { char *name = kmem_asprintf("%s%c%s", newname, zv->zv_name[oldnamelen], zv->zv_name + oldnamelen + 1); zvol_os_rename_minor(zv, name); kmem_strfree(name); } mutex_exit(&zv->zv_state_lock); } rw_exit(&zvol_state_lock); } typedef struct zvol_snapdev_cb_arg { uint64_t snapdev; } zvol_snapdev_cb_arg_t; static int zvol_set_snapdev_cb(const char *dsname, void *param) { zvol_snapdev_cb_arg_t *arg = param; if (strchr(dsname, '@') == NULL) return (0); switch (arg->snapdev) { case ZFS_SNAPDEV_VISIBLE: (void) zvol_os_create_minor(dsname); break; case ZFS_SNAPDEV_HIDDEN: (void) zvol_remove_minor_impl(dsname); break; } return (0); } static void zvol_set_snapdev_impl(char *name, uint64_t snapdev) { zvol_snapdev_cb_arg_t arg = {snapdev}; fstrans_cookie_t cookie = spl_fstrans_mark(); /* * The zvol_set_snapdev_sync() sets snapdev appropriately * in the dataset hierarchy. Here, we only scan snapshots. */ dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS); spl_fstrans_unmark(cookie); } static void zvol_set_volmode_impl(char *name, uint64_t volmode) { fstrans_cookie_t cookie; uint64_t old_volmode; zvol_state_t *zv; if (strchr(name, '@') != NULL) return; /* * It's unfortunate we need to remove minors before we create new ones: * this is necessary because our backing gendisk (zvol_state->zv_disk) * could be different when we set, for instance, volmode from "geom" * to "dev" (or vice versa). */ zv = zvol_find_by_name(name, RW_NONE); if (zv == NULL && volmode == ZFS_VOLMODE_NONE) return; if (zv != NULL) { old_volmode = zv->zv_volmode; mutex_exit(&zv->zv_state_lock); if (old_volmode == volmode) return; zvol_wait_close(zv); } cookie = spl_fstrans_mark(); switch (volmode) { case ZFS_VOLMODE_NONE: (void) zvol_remove_minor_impl(name); break; case ZFS_VOLMODE_GEOM: case ZFS_VOLMODE_DEV: (void) zvol_remove_minor_impl(name); (void) zvol_os_create_minor(name); break; case ZFS_VOLMODE_DEFAULT: (void) zvol_remove_minor_impl(name); if (zvol_volmode == ZFS_VOLMODE_NONE) break; else /* if zvol_volmode is invalid defaults to "geom" */ (void) zvol_os_create_minor(name); break; } spl_fstrans_unmark(cookie); } static zvol_task_t * zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2, uint64_t value) { zvol_task_t *task; /* Never allow tasks on hidden names. */ if (name1[0] == '$') return (NULL); task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP); task->op = op; task->value = value; strlcpy(task->name1, name1, MAXNAMELEN); if (name2 != NULL) strlcpy(task->name2, name2, MAXNAMELEN); return (task); } static void zvol_task_free(zvol_task_t *task) { kmem_free(task, sizeof (zvol_task_t)); } /* * The worker thread function performed asynchronously. */ static void zvol_task_cb(void *arg) { zvol_task_t *task = arg; switch (task->op) { case ZVOL_ASYNC_REMOVE_MINORS: zvol_remove_minors_impl(task->name1); break; case ZVOL_ASYNC_RENAME_MINORS: zvol_rename_minors_impl(task->name1, task->name2); break; case ZVOL_ASYNC_SET_SNAPDEV: zvol_set_snapdev_impl(task->name1, task->value); break; case ZVOL_ASYNC_SET_VOLMODE: zvol_set_volmode_impl(task->name1, task->value); break; default: VERIFY(0); break; } zvol_task_free(task); } typedef struct zvol_set_prop_int_arg { const char *zsda_name; uint64_t zsda_value; zprop_source_t zsda_source; dmu_tx_t *zsda_tx; } zvol_set_prop_int_arg_t; /* * Sanity check the dataset for safe use by the sync task. No additional * conditions are imposed. */ static int zvol_set_snapdev_check(void *arg, dmu_tx_t *tx) { zvol_set_prop_int_arg_t *zsda = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *dd; int error; error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL); if (error != 0) return (error); dsl_dir_rele(dd, FTAG); return (error); } static int zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) { (void) arg; char dsname[MAXNAMELEN]; zvol_task_t *task; uint64_t snapdev; dsl_dataset_name(ds, dsname); if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0) return (0); task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev); if (task == NULL) return (0); (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); return (0); } /* * Traverse all child datasets and apply snapdev appropriately. * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel * dataset and read the effective "snapdev" on every child in the callback * function: this is because the value is not guaranteed to be the same in the * whole dataset hierarchy. */ static void zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx) { zvol_set_prop_int_arg_t *zsda = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *dd; dsl_dataset_t *ds; int error; VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL)); zsda->zsda_tx = tx; error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds); if (error == 0) { dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV), zsda->zsda_source, sizeof (zsda->zsda_value), 1, &zsda->zsda_value, zsda->zsda_tx); dsl_dataset_rele(ds, FTAG); } dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb, zsda, DS_FIND_CHILDREN); dsl_dir_rele(dd, FTAG); } int zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev) { zvol_set_prop_int_arg_t zsda; zsda.zsda_name = ddname; zsda.zsda_source = source; zsda.zsda_value = snapdev; return (dsl_sync_task(ddname, zvol_set_snapdev_check, zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE)); } /* * Sanity check the dataset for safe use by the sync task. No additional * conditions are imposed. */ static int zvol_set_volmode_check(void *arg, dmu_tx_t *tx) { zvol_set_prop_int_arg_t *zsda = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *dd; int error; error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL); if (error != 0) return (error); dsl_dir_rele(dd, FTAG); return (error); } static int zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) { (void) arg; char dsname[MAXNAMELEN]; zvol_task_t *task; uint64_t volmode; dsl_dataset_name(ds, dsname); if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0) return (0); task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode); if (task == NULL) return (0); (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); return (0); } /* * Traverse all child datasets and apply volmode appropriately. * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel * dataset and read the effective "volmode" on every child in the callback * function: this is because the value is not guaranteed to be the same in the * whole dataset hierarchy. */ static void zvol_set_volmode_sync(void *arg, dmu_tx_t *tx) { zvol_set_prop_int_arg_t *zsda = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *dd; dsl_dataset_t *ds; int error; VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL)); zsda->zsda_tx = tx; error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds); if (error == 0) { dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE), zsda->zsda_source, sizeof (zsda->zsda_value), 1, &zsda->zsda_value, zsda->zsda_tx); dsl_dataset_rele(ds, FTAG); } dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb, zsda, DS_FIND_CHILDREN); dsl_dir_rele(dd, FTAG); } int zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode) { zvol_set_prop_int_arg_t zsda; zsda.zsda_name = ddname; zsda.zsda_source = source; zsda.zsda_value = volmode; return (dsl_sync_task(ddname, zvol_set_volmode_check, zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE)); } void zvol_remove_minors(spa_t *spa, const char *name, boolean_t async) { zvol_task_t *task; taskqid_t id; task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL); if (task == NULL) return; id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); if ((async == B_FALSE) && (id != TASKQID_INVALID)) taskq_wait_id(spa->spa_zvol_taskq, id); } void zvol_rename_minors(spa_t *spa, const char *name1, const char *name2, boolean_t async) { zvol_task_t *task; taskqid_t id; task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL); if (task == NULL) return; id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); if ((async == B_FALSE) && (id != TASKQID_INVALID)) taskq_wait_id(spa->spa_zvol_taskq, id); } boolean_t zvol_is_zvol(const char *name) { return (zvol_os_is_zvol(name)); } int zvol_init_impl(void) { int i; list_create(&zvol_state_list, sizeof (zvol_state_t), offsetof(zvol_state_t, zv_next)); rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL); zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head), KM_SLEEP); for (i = 0; i < ZVOL_HT_SIZE; i++) INIT_HLIST_HEAD(&zvol_htable[i]); return (0); } void zvol_fini_impl(void) { zvol_remove_minors_impl(NULL); /* * The call to "zvol_remove_minors_impl" may dispatch entries to * the system_taskq, but it doesn't wait for those entries to * complete before it returns. Thus, we must wait for all of the * removals to finish, before we can continue. */ taskq_wait_outstanding(system_taskq, 0); kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head)); list_destroy(&zvol_state_list); rw_destroy(&zvol_state_lock); }