/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2016 by Delphix. All rights reserved. * Copyright (c) 2023, Klara Inc. */ #ifndef _SYS_DDT_H #define _SYS_DDT_H #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif struct abd; /* * DDT-wide feature flags. These are set in ddt_flags by ddt_configure(). */ #define DDT_FLAG_FLAT (1 << 0) /* single extensible phys */ #define DDT_FLAG_LOG (1 << 1) /* dedup log (journal) */ #define DDT_FLAG_MASK (DDT_FLAG_FLAT|DDT_FLAG_LOG) /* * DDT on-disk storage object types. Each one corresponds to specific * implementation, see ddt_ops_t. The value itself is not stored on disk. * * When searching for an entry, objects types will be searched in this order. * * Note that DDT_TYPES is used as the "no type" for new entries that have not * yet been written to a storage object. */ typedef enum { DDT_TYPE_ZAP = 0, /* ZAP storage object, ddt_zap */ DDT_TYPES } ddt_type_t; _Static_assert(DDT_TYPES <= UINT8_MAX, "ddt_type_t must fit in a uint8_t"); /* New and updated entries recieve this type, see ddt_sync_entry() */ #define DDT_TYPE_DEFAULT (DDT_TYPE_ZAP) /* * DDT storage classes. Each class has a separate storage object for each type. * The value itself is not stored on disk. * * When search for an entry, object classes will be searched in this order. * * Note that DDT_CLASSES is used as the "no class" for new entries that have not * yet been written to a storage object. */ typedef enum { DDT_CLASS_DITTO = 0, /* entry has ditto blocks (obsolete) */ DDT_CLASS_DUPLICATE, /* entry has multiple references */ DDT_CLASS_UNIQUE, /* entry has a single reference */ DDT_CLASSES } ddt_class_t; _Static_assert(DDT_CLASSES < UINT8_MAX, "ddt_class_t must fit in a uint8_t"); /* * The "key" part of an on-disk entry. This is the unique "name" for a block, * that is, that parts of the block pointer that will always be the same for * the same data. */ typedef struct { zio_cksum_t ddk_cksum; /* 256-bit block checksum */ /* * Encoded with logical & physical size, encryption, and compression, * as follows: * +-------+-------+-------+-------+-------+-------+-------+-------+ * | 0 | 0 | 0 |X| comp| PSIZE | LSIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ */ uint64_t ddk_prop; } ddt_key_t; /* * Macros for accessing parts of a ddt_key_t. These are similar to their BP_* * counterparts. */ #define DDK_GET_LSIZE(ddk) \ BF64_GET_SB((ddk)->ddk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1) #define DDK_SET_LSIZE(ddk, x) \ BF64_SET_SB((ddk)->ddk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1, x) #define DDK_GET_PSIZE(ddk) \ BF64_GET_SB((ddk)->ddk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1) #define DDK_SET_PSIZE(ddk, x) \ BF64_SET_SB((ddk)->ddk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1, x) #define DDK_GET_COMPRESS(ddk) BF64_GET((ddk)->ddk_prop, 32, 7) #define DDK_SET_COMPRESS(ddk, x) BF64_SET((ddk)->ddk_prop, 32, 7, x) #define DDK_GET_CRYPT(ddk) BF64_GET((ddk)->ddk_prop, 39, 1) #define DDK_SET_CRYPT(ddk, x) BF64_SET((ddk)->ddk_prop, 39, 1, x) /* * The "value" part for an on-disk entry. These are the "physical" * characteristics of the stored block, such as its location on disk (DVAs), * birth txg and ref count. * * The "traditional" entry has an array of four, one for each number of DVAs * (copies= property) and another for additional "ditto" copies. Users of the * traditional struct will specify the variant (index) of the one they want. * * The newer "flat" entry has only a single form that is specified using the * DDT_PHYS_FLAT variant. * * Since the value size varies, use one of the size macros when interfacing * with the ddt zap. */ #define DDT_PHYS_MAX (4) /* * Note - this can be used in a flexible array and allocated for * a specific size (ddp_trad or ddp_flat). So be careful not to * copy using "=" assignment but instead use ddt_phys_copy(). */ typedef union { /* * Traditional physical payload value for DDT zap (256 bytes) */ struct { dva_t ddp_dva[SPA_DVAS_PER_BP]; uint64_t ddp_refcnt; uint64_t ddp_phys_birth; } ddp_trad[DDT_PHYS_MAX]; /* * Flat physical payload value for DDT zap (72 bytes) */ struct { dva_t ddp_dva[SPA_DVAS_PER_BP]; uint64_t ddp_refcnt; uint64_t ddp_phys_birth; /* txg based from BP */ uint64_t ddp_class_start; /* in realtime seconds */ } ddp_flat; } ddt_univ_phys_t; /* * This enum denotes which variant of a ddt_univ_phys_t to target. For * a traditional DDT entry, it represents the indexes into the ddp_trad * array. Any consumer of a ddt_univ_phys_t needs to know which variant * is being targeted. * * Note, we no longer generate new DDT_PHYS_DITTO-type blocks. However, * we maintain the ability to free existing dedup-ditto blocks. */ typedef enum { DDT_PHYS_DITTO = 0, DDT_PHYS_SINGLE = 1, DDT_PHYS_DOUBLE = 2, DDT_PHYS_TRIPLE = 3, DDT_PHYS_FLAT = 4, DDT_PHYS_NONE = 5 } ddt_phys_variant_t; #define DDT_PHYS_VARIANT(ddt, p) \ (ASSERT((p) < DDT_PHYS_NONE), \ ((ddt)->ddt_flags & DDT_FLAG_FLAT ? DDT_PHYS_FLAT : (p))) #define DDT_TRAD_PHYS_SIZE sizeof (((ddt_univ_phys_t *)0)->ddp_trad) #define DDT_FLAT_PHYS_SIZE sizeof (((ddt_univ_phys_t *)0)->ddp_flat) #define _DDT_PHYS_SWITCH(ddt, flat, trad) \ (((ddt)->ddt_flags & DDT_FLAG_FLAT) ? (flat) : (trad)) #define DDT_PHYS_SIZE(ddt) _DDT_PHYS_SWITCH(ddt, \ DDT_FLAT_PHYS_SIZE, DDT_TRAD_PHYS_SIZE) #define DDT_NPHYS(ddt) _DDT_PHYS_SWITCH(ddt, 1, DDT_PHYS_MAX) #define DDT_PHYS_FOR_COPIES(ddt, p) _DDT_PHYS_SWITCH(ddt, 0, p) #define DDT_PHYS_IS_DITTO(ddt, p) _DDT_PHYS_SWITCH(ddt, 0, (p == 0)) /* * A "live" entry, holding changes to an entry made this txg, and other data to * support loading, updating and repairing the entry. */ /* State flags for dde_flags */ #define DDE_FLAG_LOADED (1 << 0) /* entry ready for use */ #define DDE_FLAG_OVERQUOTA (1 << 1) /* entry unusable, no space */ #define DDE_FLAG_LOGGED (1 << 2) /* loaded from log */ /* * Additional data to support entry update or repair. This is fixed size * because its relatively rarely used. */ typedef struct { /* copy of data after a repair read, to be rewritten */ abd_t *dde_repair_abd; /* original phys contents before update, for error handling */ ddt_univ_phys_t dde_orig_phys; /* in-flight update IOs */ zio_t *dde_lead_zio[DDT_PHYS_MAX]; } ddt_entry_io_t; typedef struct { /* key must be first for ddt_key_compare */ ddt_key_t dde_key; /* ddt_tree key */ avl_node_t dde_node; /* ddt_tree_node */ /* storage type and class the entry was loaded from */ ddt_type_t dde_type; ddt_class_t dde_class; uint8_t dde_flags; /* load state flags */ kcondvar_t dde_cv; /* signaled when load completes */ uint64_t dde_waiters; /* count of waiters on dde_cv */ ddt_entry_io_t *dde_io; /* IO support, when required */ ddt_univ_phys_t dde_phys[]; /* flexible -- allocated size varies */ } ddt_entry_t; /* * A lightweight entry is for short-lived or transient uses, like iterating or * inspecting, when you don't care where it came from. */ typedef struct { ddt_key_t ddlwe_key; ddt_type_t ddlwe_type; ddt_class_t ddlwe_class; ddt_univ_phys_t ddlwe_phys; } ddt_lightweight_entry_t; /* * In-core DDT log. A separate struct to make it easier to switch between the * appending and flushing logs. */ typedef struct { avl_tree_t ddl_tree; /* logged entries */ uint32_t ddl_flags; /* flags for this log */ uint64_t ddl_object; /* log object id */ uint64_t ddl_length; /* on-disk log size */ uint64_t ddl_first_txg; /* txg log became active */ ddt_key_t ddl_checkpoint; /* last checkpoint */ } ddt_log_t; /* * In-core DDT object. This covers all entries and stats for a the whole pool * for a given checksum type. */ typedef struct { kmutex_t ddt_lock; /* protects changes to all fields */ avl_tree_t ddt_tree; /* "live" (changed) entries this txg */ avl_tree_t ddt_log_tree; /* logged entries */ avl_tree_t ddt_repair_tree; /* entries being repaired */ ddt_log_t ddt_log[2]; /* active/flushing logs */ ddt_log_t *ddt_log_active; /* pointers into ddt_log */ ddt_log_t *ddt_log_flushing; /* swapped when flush starts */ hrtime_t ddt_flush_start; /* log flush start this txg */ uint32_t ddt_flush_pass; /* log flush pass this txg */ int32_t ddt_flush_count; /* entries flushed this txg */ int32_t ddt_flush_min; /* min rem entries to flush */ int32_t ddt_log_ingest_rate; /* rolling log ingest rate */ int32_t ddt_log_flush_rate; /* rolling log flush rate */ int32_t ddt_log_flush_time_rate; /* avg time spent flushing */ uint64_t ddt_flush_force_txg; /* flush hard before this txg */ enum zio_checksum ddt_checksum; /* checksum algorithm in use */ spa_t *ddt_spa; /* pool this ddt is on */ objset_t *ddt_os; /* ddt objset (always MOS) */ uint64_t ddt_dir_object; /* MOS dir holding ddt objects */ uint64_t ddt_version; /* DDT version */ uint64_t ddt_flags; /* FDT option flags */ /* per-type/per-class entry store objects */ uint64_t ddt_object[DDT_TYPES][DDT_CLASSES]; /* object ids for stored, logged and per-type/per-class stats */ uint64_t ddt_stat_object; ddt_object_t ddt_log_stats; ddt_object_t ddt_object_stats[DDT_TYPES][DDT_CLASSES]; /* type/class stats by power-2-sized referenced blocks */ ddt_histogram_t ddt_histogram[DDT_TYPES][DDT_CLASSES]; ddt_histogram_t ddt_histogram_cache[DDT_TYPES][DDT_CLASSES]; /* log stats power-2-sized referenced blocks */ ddt_histogram_t ddt_log_histogram; } ddt_t; /* * In-core and on-disk bookmark for DDT walks. This is a cursor for ddt_walk(), * and is stable across calls, even if the DDT is updated, the pool is * restarted or loaded on another system, or OpenZFS is upgraded. */ typedef struct { uint64_t ddb_class; uint64_t ddb_type; uint64_t ddb_checksum; uint64_t ddb_cursor; } ddt_bookmark_t; extern void ddt_bp_fill(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, blkptr_t *bp, uint64_t txg); extern void ddt_bp_create(enum zio_checksum checksum, const ddt_key_t *ddk, const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, blkptr_t *bp); extern void ddt_phys_extend(ddt_univ_phys_t *ddp, ddt_phys_variant_t v, const blkptr_t *bp); extern void ddt_phys_copy(ddt_univ_phys_t *dst, const ddt_univ_phys_t *src, ddt_phys_variant_t v); extern void ddt_phys_clear(ddt_univ_phys_t *ddp, ddt_phys_variant_t v); extern void ddt_phys_addref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v); extern uint64_t ddt_phys_decref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v); extern uint64_t ddt_phys_refcnt(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v); extern ddt_phys_variant_t ddt_phys_select(const ddt_t *ddt, const ddt_entry_t *dde, const blkptr_t *bp); extern uint64_t ddt_phys_birth(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v); extern int ddt_phys_dva_count(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, boolean_t encrypted); extern void ddt_histogram_add_entry(ddt_t *ddt, ddt_histogram_t *ddh, const ddt_lightweight_entry_t *ddlwe); extern void ddt_histogram_sub_entry(ddt_t *ddt, ddt_histogram_t *ddh, const ddt_lightweight_entry_t *ddlwe); extern void ddt_histogram_add(ddt_histogram_t *dst, const ddt_histogram_t *src); extern void ddt_histogram_total(ddt_stat_t *dds, const ddt_histogram_t *ddh); extern boolean_t ddt_histogram_empty(const ddt_histogram_t *ddh); extern void ddt_get_dedup_object_stats(spa_t *spa, ddt_object_t *ddo); extern uint64_t ddt_get_ddt_dsize(spa_t *spa); extern void ddt_get_dedup_histogram(spa_t *spa, ddt_histogram_t *ddh); extern void ddt_get_dedup_stats(spa_t *spa, ddt_stat_t *dds_total); extern uint64_t ddt_get_dedup_dspace(spa_t *spa); extern uint64_t ddt_get_pool_dedup_ratio(spa_t *spa); extern int ddt_get_pool_dedup_cached(spa_t *spa, uint64_t *psize); extern ddt_t *ddt_select(spa_t *spa, const blkptr_t *bp); extern void ddt_enter(ddt_t *ddt); extern void ddt_exit(ddt_t *ddt); extern void ddt_init(void); extern void ddt_fini(void); extern ddt_entry_t *ddt_lookup(ddt_t *ddt, const blkptr_t *bp); extern void ddt_remove(ddt_t *ddt, ddt_entry_t *dde); extern void ddt_prefetch(spa_t *spa, const blkptr_t *bp); extern void ddt_prefetch_all(spa_t *spa); extern boolean_t ddt_class_contains(spa_t *spa, ddt_class_t max_class, const blkptr_t *bp); extern void ddt_alloc_entry_io(ddt_entry_t *dde); extern ddt_entry_t *ddt_repair_start(ddt_t *ddt, const blkptr_t *bp); extern void ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde); extern int ddt_key_compare(const void *x1, const void *x2); extern void ddt_create(spa_t *spa); extern int ddt_load(spa_t *spa); extern void ddt_unload(spa_t *spa); extern void ddt_sync(spa_t *spa, uint64_t txg); extern void ddt_walk_init(spa_t *spa, uint64_t txg); extern boolean_t ddt_walk_ready(spa_t *spa); extern int ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_lightweight_entry_t *ddlwe); extern boolean_t ddt_addref(spa_t *spa, const blkptr_t *bp); #ifdef __cplusplus } #endif #endif /* _SYS_DDT_H */