/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2016 by Delphix. All rights reserved. * Copyright 2017 Jason King * Copyright (c) 2017, Intel Corporation. */ #include #include #include #include #include #include #include #include #include #include /* * Routines needed by more than one client of libzpool. */ /* The largest suffix that can fit, aka an exabyte (2^60 / 10^18) */ #define INDEX_MAX (6) /* Verify INDEX_MAX fits */ CTASSERT_GLOBAL(INDEX_MAX * 10 < sizeof (uint64_t) * 8); void nicenum_scale(uint64_t n, size_t units, char *buf, size_t buflen, uint32_t flags) { uint64_t divamt = 1024; uint64_t divisor = 1; int index = 0; int rc = 0; char u; if (units == 0) units = 1; if (n > 0) { n *= units; if (n < units) goto overflow; } if (flags & NN_DIVISOR_1000) divamt = 1000; /* * This tries to find the suffix S(n) such that * S(n) <= n < S(n+1), where S(n) = 2^(n*10) | 10^(3*n) * (i.e. 1024/1000, 1,048,576/1,000,000, etc). Stop once S(n) * is the largest prefix supported (i.e. don't bother computing * and checking S(n+1). Since INDEX_MAX should be the largest * suffix that fits (currently an exabyte), S(INDEX_MAX + 1) is * never checked as it would overflow. */ while (index < INDEX_MAX) { uint64_t newdiv = divisor * divamt; /* CTASSERT() guarantee these never trip */ VERIFY3U(newdiv, >=, divamt); VERIFY3U(newdiv, >=, divisor); if (n < newdiv) break; divisor = newdiv; index++; } u = " KMGTPE"[index]; if (index == 0) { rc = snprintf(buf, buflen, "%llu", (u_longlong_t)n); } else if (n % divisor == 0) { /* * If this is an even multiple of the base, always display * without any decimal precision. */ rc = snprintf(buf, buflen, "%llu%c", (u_longlong_t)(n / divisor), u); } else { /* * We want to choose a precision that reflects the best choice * for fitting in 5 characters. This can get rather tricky * when we have numbers that are very close to an order of * magnitude. For example, when displaying 10239 (which is * really 9.999K), we want only a single place of precision * for 10.0K. We could develop some complex heuristics for * this, but it's much easier just to try each combination * in turn. */ int i; for (i = 2; i >= 0; i--) { if ((rc = snprintf(buf, buflen, "%.*f%c", i, (double)n / divisor, u)) <= 5) break; } } if (rc + 1 > buflen || rc < 0) goto overflow; return; overflow: /* prefer a more verbose message if possible */ if (buflen > 10) (void) strlcpy(buf, "", buflen); else (void) strlcpy(buf, "??", buflen); } void nicenum(uint64_t num, char *buf, size_t buflen) { nicenum_scale(num, 1, buf, buflen, 0); } static void show_vdev_stats(const char *desc, const char *ctype, nvlist_t *nv, int indent) { vdev_stat_t *vs; vdev_stat_t *v0 = { 0 }; uint64_t sec; uint64_t is_log = 0; nvlist_t **child; uint_t c, children; char used[6], avail[6]; char rops[6], wops[6], rbytes[6], wbytes[6], rerr[6], werr[6], cerr[6]; v0 = umem_zalloc(sizeof (*v0), UMEM_NOFAIL); if (indent == 0 && desc != NULL) { (void) printf(" " " capacity operations bandwidth ---- errors ----\n"); (void) printf("description " "used avail read write read write read write cksum\n"); } if (desc != NULL) { char *suffix = "", *bias = NULL; char bias_suffix[32]; (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log); (void) nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, &bias); if (nvlist_lookup_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c) != 0) vs = v0; if (bias != NULL) { (void) snprintf(bias_suffix, sizeof (bias_suffix), " (%s)", bias); suffix = bias_suffix; } else if (is_log) { suffix = " (log)"; } sec = MAX(1, vs->vs_timestamp / NANOSEC); nicenum(vs->vs_alloc, used, sizeof (used)); nicenum(vs->vs_space - vs->vs_alloc, avail, sizeof (avail)); nicenum(vs->vs_ops[ZIO_TYPE_READ] / sec, rops, sizeof (rops)); nicenum(vs->vs_ops[ZIO_TYPE_WRITE] / sec, wops, sizeof (wops)); nicenum(vs->vs_bytes[ZIO_TYPE_READ] / sec, rbytes, sizeof (rbytes)); nicenum(vs->vs_bytes[ZIO_TYPE_WRITE] / sec, wbytes, sizeof (wbytes)); nicenum(vs->vs_read_errors, rerr, sizeof (rerr)); nicenum(vs->vs_write_errors, werr, sizeof (werr)); nicenum(vs->vs_checksum_errors, cerr, sizeof (cerr)); (void) printf("%*s%s%*s%*s%*s %5s %5s %5s %5s %5s %5s %5s\n", indent, "", desc, (int)(indent+strlen(desc)-25-(vs->vs_space ? 0 : 12)), suffix, vs->vs_space ? 6 : 0, vs->vs_space ? used : "", vs->vs_space ? 6 : 0, vs->vs_space ? avail : "", rops, wops, rbytes, wbytes, rerr, werr, cerr); } free(v0); if (nvlist_lookup_nvlist_array(nv, ctype, &child, &children) != 0) return; for (c = 0; c < children; c++) { nvlist_t *cnv = child[c]; char *cname = NULL, *tname; uint64_t np; int len; if (nvlist_lookup_string(cnv, ZPOOL_CONFIG_PATH, &cname) && nvlist_lookup_string(cnv, ZPOOL_CONFIG_TYPE, &cname)) cname = ""; len = strlen(cname) + 2; tname = umem_zalloc(len, UMEM_NOFAIL); (void) strlcpy(tname, cname, len); if (nvlist_lookup_uint64(cnv, ZPOOL_CONFIG_NPARITY, &np) == 0) tname[strlen(tname)] = '0' + np; show_vdev_stats(tname, ctype, cnv, indent + 2); free(tname); } } void show_pool_stats(spa_t *spa) { nvlist_t *config, *nvroot; char *name; VERIFY(spa_get_stats(spa_name(spa), &config, NULL, 0) == 0); VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); show_vdev_stats(name, ZPOOL_CONFIG_CHILDREN, nvroot, 0); show_vdev_stats(NULL, ZPOOL_CONFIG_L2CACHE, nvroot, 0); show_vdev_stats(NULL, ZPOOL_CONFIG_SPARES, nvroot, 0); nvlist_free(config); } /* * Sets given global variable in libzpool to given unsigned 32-bit value. * arg: "=" */ int set_global_var(char *arg) { void *zpoolhdl; char *varname = arg, *varval; u_longlong_t val; #ifndef _LITTLE_ENDIAN /* * On big endian systems changing a 64-bit variable would set the high * 32 bits instead of the low 32 bits, which could cause unexpected * results. */ fprintf(stderr, "Setting global variables is only supported on " "little-endian systems\n"); return (ENOTSUP); #endif if (arg != NULL && (varval = strchr(arg, '=')) != NULL) { *varval = '\0'; varval++; val = strtoull(varval, NULL, 0); if (val > UINT32_MAX) { fprintf(stderr, "Value for global variable '%s' must " "be a 32-bit unsigned integer\n", varname); return (EOVERFLOW); } } else { return (EINVAL); } zpoolhdl = dlopen("libzpool.so", RTLD_LAZY); if (zpoolhdl != NULL) { uint32_t *var; var = dlsym(zpoolhdl, varname); if (var == NULL) { fprintf(stderr, "Global variable '%s' does not exist " "in libzpool.so\n", varname); return (EINVAL); } *var = (uint32_t)val; dlclose(zpoolhdl); } else { fprintf(stderr, "Failed to open libzpool.so to set global " "variable\n"); return (EIO); } return (0); }