/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013, 2019 by Delphix. All rights reserved. * Copyright 2014 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2019 Datto Inc. */ #include <stdio.h> #include <stdlib.h> #include <strings.h> #include <unistd.h> #include <stddef.h> #include <libintl.h> #include <libzfs.h> #include <libzutil.h> #include <sys/mntent.h> #include "libzfs_impl.h" static int zfs_iter_clones(zfs_handle_t *zhp, zfs_iter_f func, void *data) { nvlist_t *nvl = zfs_get_clones_nvl(zhp); nvpair_t *pair; if (nvl == NULL) return (0); for (pair = nvlist_next_nvpair(nvl, NULL); pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) { zfs_handle_t *clone = zfs_open(zhp->zfs_hdl, nvpair_name(pair), ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (clone != NULL) { int err = func(clone, data); if (err != 0) return (err); } } return (0); } static int zfs_do_list_ioctl(zfs_handle_t *zhp, int arg, zfs_cmd_t *zc) { int rc; uint64_t orig_cookie; orig_cookie = zc->zc_cookie; top: (void) strlcpy(zc->zc_name, zhp->zfs_name, sizeof (zc->zc_name)); rc = zfs_ioctl(zhp->zfs_hdl, arg, zc); if (rc == -1) { switch (errno) { case ENOMEM: /* expand nvlist memory and try again */ if (zcmd_expand_dst_nvlist(zhp->zfs_hdl, zc) != 0) { zcmd_free_nvlists(zc); return (-1); } zc->zc_cookie = orig_cookie; goto top; /* * An errno value of ESRCH indicates normal completion. * If ENOENT is returned, then the underlying dataset * has been removed since we obtained the handle. */ case ESRCH: case ENOENT: rc = 1; break; default: rc = zfs_standard_error(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot iterate filesystems")); break; } } return (rc); } /* * Iterate over all child filesystems */ int zfs_iter_filesystems(zfs_handle_t *zhp, zfs_iter_f func, void *data) { zfs_cmd_t zc = {"\0"}; zfs_handle_t *nzhp; int ret; if (zhp->zfs_type != ZFS_TYPE_FILESYSTEM) return (0); if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); while ((ret = zfs_do_list_ioctl(zhp, ZFS_IOC_DATASET_LIST_NEXT, &zc)) == 0) { /* * Silently ignore errors, as the only plausible explanation is * that the pool has since been removed. */ if ((nzhp = make_dataset_handle_zc(zhp->zfs_hdl, &zc)) == NULL) { continue; } if ((ret = func(nzhp, data)) != 0) { zcmd_free_nvlists(&zc); return (ret); } } zcmd_free_nvlists(&zc); return ((ret < 0) ? ret : 0); } /* * Iterate over all snapshots */ int zfs_iter_snapshots(zfs_handle_t *zhp, boolean_t simple, zfs_iter_f func, void *data, uint64_t min_txg, uint64_t max_txg) { zfs_cmd_t zc = {"\0"}; zfs_handle_t *nzhp; int ret; nvlist_t *range_nvl = NULL; if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT || zhp->zfs_type == ZFS_TYPE_BOOKMARK) return (0); zc.zc_simple = simple; if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); if (min_txg != 0) { range_nvl = fnvlist_alloc(); fnvlist_add_uint64(range_nvl, SNAP_ITER_MIN_TXG, min_txg); } if (max_txg != 0) { if (range_nvl == NULL) range_nvl = fnvlist_alloc(); fnvlist_add_uint64(range_nvl, SNAP_ITER_MAX_TXG, max_txg); } if (range_nvl != NULL && zcmd_write_src_nvlist(zhp->zfs_hdl, &zc, range_nvl) != 0) { zcmd_free_nvlists(&zc); fnvlist_free(range_nvl); return (-1); } while ((ret = zfs_do_list_ioctl(zhp, ZFS_IOC_SNAPSHOT_LIST_NEXT, &zc)) == 0) { if (simple) nzhp = make_dataset_simple_handle_zc(zhp, &zc); else nzhp = make_dataset_handle_zc(zhp->zfs_hdl, &zc); if (nzhp == NULL) continue; if ((ret = func(nzhp, data)) != 0) { zcmd_free_nvlists(&zc); fnvlist_free(range_nvl); return (ret); } } zcmd_free_nvlists(&zc); fnvlist_free(range_nvl); return ((ret < 0) ? ret : 0); } /* * Iterate over all bookmarks */ int zfs_iter_bookmarks(zfs_handle_t *zhp, zfs_iter_f func, void *data) { zfs_handle_t *nzhp; nvlist_t *props = NULL; nvlist_t *bmarks = NULL; int err; nvpair_t *pair; if ((zfs_get_type(zhp) & (ZFS_TYPE_SNAPSHOT | ZFS_TYPE_BOOKMARK)) != 0) return (0); /* Setup the requested properties nvlist. */ props = fnvlist_alloc(); for (zfs_prop_t p = 0; p < ZFS_NUM_PROPS; p++) { if (zfs_prop_valid_for_type(p, ZFS_TYPE_BOOKMARK, B_FALSE)) { fnvlist_add_boolean(props, zfs_prop_to_name(p)); } } fnvlist_add_boolean(props, "redact_complete"); if ((err = lzc_get_bookmarks(zhp->zfs_name, props, &bmarks)) != 0) goto out; for (pair = nvlist_next_nvpair(bmarks, NULL); pair != NULL; pair = nvlist_next_nvpair(bmarks, pair)) { char name[ZFS_MAX_DATASET_NAME_LEN]; char *bmark_name; nvlist_t *bmark_props; bmark_name = nvpair_name(pair); bmark_props = fnvpair_value_nvlist(pair); if (snprintf(name, sizeof (name), "%s#%s", zhp->zfs_name, bmark_name) >= sizeof (name)) { err = EINVAL; goto out; } nzhp = make_bookmark_handle(zhp, name, bmark_props); if (nzhp == NULL) continue; if ((err = func(nzhp, data)) != 0) goto out; } out: fnvlist_free(props); fnvlist_free(bmarks); return (err); } /* * Routines for dealing with the sorted snapshot functionality */ typedef struct zfs_node { zfs_handle_t *zn_handle; avl_node_t zn_avlnode; } zfs_node_t; static int zfs_sort_snaps(zfs_handle_t *zhp, void *data) { avl_tree_t *avl = data; zfs_node_t *node; zfs_node_t search; search.zn_handle = zhp; node = avl_find(avl, &search, NULL); if (node) { /* * If this snapshot was renamed while we were creating the * AVL tree, it's possible that we already inserted it under * its old name. Remove the old handle before adding the new * one. */ zfs_close(node->zn_handle); avl_remove(avl, node); free(node); } node = zfs_alloc(zhp->zfs_hdl, sizeof (zfs_node_t)); node->zn_handle = zhp; avl_add(avl, node); return (0); } static int zfs_snapshot_compare(const void *larg, const void *rarg) { zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle; zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle; uint64_t lcreate, rcreate; /* * Sort them according to creation time. We use the hidden * CREATETXG property to get an absolute ordering of snapshots. */ lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG); rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG); return (TREE_CMP(lcreate, rcreate)); } int zfs_iter_snapshots_sorted(zfs_handle_t *zhp, zfs_iter_f callback, void *data, uint64_t min_txg, uint64_t max_txg) { int ret = 0; zfs_node_t *node; avl_tree_t avl; void *cookie = NULL; avl_create(&avl, zfs_snapshot_compare, sizeof (zfs_node_t), offsetof(zfs_node_t, zn_avlnode)); ret = zfs_iter_snapshots(zhp, B_FALSE, zfs_sort_snaps, &avl, min_txg, max_txg); for (node = avl_first(&avl); node != NULL; node = AVL_NEXT(&avl, node)) ret |= callback(node->zn_handle, data); while ((node = avl_destroy_nodes(&avl, &cookie)) != NULL) free(node); avl_destroy(&avl); return (ret); } typedef struct { char *ssa_first; char *ssa_last; boolean_t ssa_seenfirst; boolean_t ssa_seenlast; zfs_iter_f ssa_func; void *ssa_arg; } snapspec_arg_t; static int snapspec_cb(zfs_handle_t *zhp, void *arg) { snapspec_arg_t *ssa = arg; const char *shortsnapname; int err = 0; if (ssa->ssa_seenlast) return (0); shortsnapname = strchr(zfs_get_name(zhp), '@') + 1; if (!ssa->ssa_seenfirst && strcmp(shortsnapname, ssa->ssa_first) == 0) ssa->ssa_seenfirst = B_TRUE; if (strcmp(shortsnapname, ssa->ssa_last) == 0) ssa->ssa_seenlast = B_TRUE; if (ssa->ssa_seenfirst) { err = ssa->ssa_func(zhp, ssa->ssa_arg); } else { zfs_close(zhp); } return (err); } /* * spec is a string like "A,B%C,D" * * <snaps>, where <snaps> can be: * <snap> (single snapshot) * <snap>%<snap> (range of snapshots, inclusive) * %<snap> (range of snapshots, starting with earliest) * <snap>% (range of snapshots, ending with last) * % (all snapshots) * <snaps>[,...] (comma separated list of the above) * * If a snapshot can not be opened, continue trying to open the others, but * return ENOENT at the end. */ int zfs_iter_snapspec(zfs_handle_t *fs_zhp, const char *spec_orig, zfs_iter_f func, void *arg) { char *buf, *comma_separated, *cp; int err = 0; int ret = 0; buf = zfs_strdup(fs_zhp->zfs_hdl, spec_orig); cp = buf; while ((comma_separated = strsep(&cp, ",")) != NULL) { char *pct = strchr(comma_separated, '%'); if (pct != NULL) { snapspec_arg_t ssa = { 0 }; ssa.ssa_func = func; ssa.ssa_arg = arg; if (pct == comma_separated) ssa.ssa_seenfirst = B_TRUE; else ssa.ssa_first = comma_separated; *pct = '\0'; ssa.ssa_last = pct + 1; /* * If there is a lastname specified, make sure it * exists. */ if (ssa.ssa_last[0] != '\0') { char snapname[ZFS_MAX_DATASET_NAME_LEN]; (void) snprintf(snapname, sizeof (snapname), "%s@%s", zfs_get_name(fs_zhp), ssa.ssa_last); if (!zfs_dataset_exists(fs_zhp->zfs_hdl, snapname, ZFS_TYPE_SNAPSHOT)) { ret = ENOENT; continue; } } err = zfs_iter_snapshots_sorted(fs_zhp, snapspec_cb, &ssa, 0, 0); if (ret == 0) ret = err; if (ret == 0 && (!ssa.ssa_seenfirst || (ssa.ssa_last[0] != '\0' && !ssa.ssa_seenlast))) { ret = ENOENT; } } else { char snapname[ZFS_MAX_DATASET_NAME_LEN]; zfs_handle_t *snap_zhp; (void) snprintf(snapname, sizeof (snapname), "%s@%s", zfs_get_name(fs_zhp), comma_separated); snap_zhp = make_dataset_handle(fs_zhp->zfs_hdl, snapname); if (snap_zhp == NULL) { ret = ENOENT; continue; } err = func(snap_zhp, arg); if (ret == 0) ret = err; } } free(buf); return (ret); } /* * Iterate over all children, snapshots and filesystems * Process snapshots before filesystems because they are nearer the input * handle: this is extremely important when used with zfs_iter_f functions * looking for data, following the logic that we would like to find it as soon * and as close as possible. */ int zfs_iter_children(zfs_handle_t *zhp, zfs_iter_f func, void *data) { int ret; if ((ret = zfs_iter_snapshots(zhp, B_FALSE, func, data, 0, 0)) != 0) return (ret); return (zfs_iter_filesystems(zhp, func, data)); } typedef struct iter_stack_frame { struct iter_stack_frame *next; zfs_handle_t *zhp; } iter_stack_frame_t; typedef struct iter_dependents_arg { boolean_t first; boolean_t allowrecursion; iter_stack_frame_t *stack; zfs_iter_f func; void *data; } iter_dependents_arg_t; static int iter_dependents_cb(zfs_handle_t *zhp, void *arg) { iter_dependents_arg_t *ida = arg; int err = 0; boolean_t first = ida->first; ida->first = B_FALSE; if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) { err = zfs_iter_clones(zhp, iter_dependents_cb, ida); } else if (zhp->zfs_type != ZFS_TYPE_BOOKMARK) { iter_stack_frame_t isf; iter_stack_frame_t *f; /* * check if there is a cycle by seeing if this fs is already * on the stack. */ for (f = ida->stack; f != NULL; f = f->next) { if (f->zhp->zfs_dmustats.dds_guid == zhp->zfs_dmustats.dds_guid) { if (ida->allowrecursion) { zfs_close(zhp); return (0); } else { zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "recursive dependency at '%s'"), zfs_get_name(zhp)); err = zfs_error(zhp->zfs_hdl, EZFS_RECURSIVE, dgettext(TEXT_DOMAIN, "cannot determine dependent " "datasets")); zfs_close(zhp); return (err); } } } isf.zhp = zhp; isf.next = ida->stack; ida->stack = &isf; err = zfs_iter_filesystems(zhp, iter_dependents_cb, ida); if (err == 0) err = zfs_iter_snapshots(zhp, B_FALSE, iter_dependents_cb, ida, 0, 0); ida->stack = isf.next; } if (!first && err == 0) err = ida->func(zhp, ida->data); else zfs_close(zhp); return (err); } int zfs_iter_dependents(zfs_handle_t *zhp, boolean_t allowrecursion, zfs_iter_f func, void *data) { iter_dependents_arg_t ida; ida.allowrecursion = allowrecursion; ida.stack = NULL; ida.func = func; ida.data = data; ida.first = B_TRUE; return (iter_dependents_cb(zfs_handle_dup(zhp), &ida)); } /* * Iterate over mounted children of the specified dataset */ int zfs_iter_mounted(zfs_handle_t *zhp, zfs_iter_f func, void *data) { char mnt_prop[ZFS_MAXPROPLEN]; struct mnttab entry; zfs_handle_t *mtab_zhp; size_t namelen = strlen(zhp->zfs_name); FILE *mnttab; int err = 0; if ((mnttab = fopen(MNTTAB, "r")) == NULL) return (ENOENT); while (err == 0 && getmntent(mnttab, &entry) == 0) { /* Ignore non-ZFS entries */ if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) continue; /* Ignore datasets not within the provided dataset */ if (strncmp(entry.mnt_special, zhp->zfs_name, namelen) != 0 || (entry.mnt_special[namelen] != '/' && entry.mnt_special[namelen] != '@')) continue; if ((mtab_zhp = zfs_open(zhp->zfs_hdl, entry.mnt_special, ZFS_TYPE_FILESYSTEM)) == NULL) continue; /* Ignore legacy mounts as they are user managed */ verify(zfs_prop_get(mtab_zhp, ZFS_PROP_MOUNTPOINT, mnt_prop, sizeof (mnt_prop), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(mnt_prop, "legacy") == 0) { zfs_close(mtab_zhp); continue; } err = func(mtab_zhp, data); } fclose(mnttab); return (err); }