/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Based on public domain code in cppcrypto 0.10. * Copyright (c) 2022 Tino Reichardt */ #include #include #include #include /* * On i386, gcc brings this for sha512_generic(): * error: the frame size of 1040 bytes is larger than 1024 */ #if defined(__GNUC__) && defined(_ILP32) #pragma GCC diagnostic ignored "-Wframe-larger-than=" #endif /* SHA256 */ static const uint32_t SHA256_K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; #define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) #define Maj(x, y, z) (((y) & (z)) | (((y) | (z)) & (x))) #define rotr32(x, n) (((x) >> n) | ((x) << (32 - n))) #define sum0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22)) #define sum1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25)) #define sigma0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3)) #define sigma1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10)) #define WU(j) (W[j & 15] += sigma1(W[(j + 14) & 15]) \ + W[(j + 9) & 15] + sigma0(W[(j + 1) & 15])) #define COMPRESS(i, j, K) \ T1 = h + sum1(e) + Ch(e, f, g) + K[i + j] + (i? WU(j): W[j]); \ T2 = sum0(a) + Maj(a, b, c); \ h = g, g = f, f = e, e = d + T1; \ d = c, c = b, b = a, a = T1 + T2; static void sha256_generic(uint32_t state[8], const void *data, size_t num_blks) { uint64_t blk; for (blk = 0; blk < num_blks; blk++) { uint32_t W[16]; uint32_t a, b, c, d, e, f, g, h; uint32_t T1, T2; int i; for (i = 0; i < 16; i++) { W[i] = BE_32( \ (((const uint32_t *)(data))[blk * 16 + i])); } a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; for (i = 0; i <= 63; i += 16) { COMPRESS(i, 0, SHA256_K); COMPRESS(i, 1, SHA256_K); COMPRESS(i, 2, SHA256_K); COMPRESS(i, 3, SHA256_K); COMPRESS(i, 4, SHA256_K); COMPRESS(i, 5, SHA256_K); COMPRESS(i, 6, SHA256_K); COMPRESS(i, 7, SHA256_K); COMPRESS(i, 8, SHA256_K); COMPRESS(i, 9, SHA256_K); COMPRESS(i, 10, SHA256_K); COMPRESS(i, 11, SHA256_K); COMPRESS(i, 12, SHA256_K); COMPRESS(i, 13, SHA256_K); COMPRESS(i, 14, SHA256_K); COMPRESS(i, 15, SHA256_K); } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } } #undef sum0 #undef sum1 #undef sigma0 #undef sigma1 #define rotr64(x, n) (((x) >> n) | ((x) << (64 - n))) #define sum0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39)) #define sum1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41)) #define sigma0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7)) #define sigma1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6)) /* SHA512 */ static const uint64_t SHA512_K[80] = { 0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242, 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2, 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, 0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5, 0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725, 0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df, 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218, 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8, 0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec, 0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba, 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b, 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817 }; static void sha512_generic(uint64_t state[8], const void *data, size_t num_blks) { uint64_t blk; for (blk = 0; blk < num_blks; blk++) { uint64_t W[16]; uint64_t a, b, c, d, e, f, g, h; uint64_t T1, T2; int i; for (i = 0; i < 16; i++) { W[i] = BE_64( \ (((const uint64_t *)(data))[blk * 16 + i])); } a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; for (i = 0; i <= 79; i += 16) { COMPRESS(i, 0, SHA512_K); COMPRESS(i, 1, SHA512_K); COMPRESS(i, 2, SHA512_K); COMPRESS(i, 3, SHA512_K); COMPRESS(i, 4, SHA512_K); COMPRESS(i, 5, SHA512_K); COMPRESS(i, 6, SHA512_K); COMPRESS(i, 7, SHA512_K); COMPRESS(i, 8, SHA512_K); COMPRESS(i, 9, SHA512_K); COMPRESS(i, 10, SHA512_K); COMPRESS(i, 11, SHA512_K); COMPRESS(i, 12, SHA512_K); COMPRESS(i, 13, SHA512_K); COMPRESS(i, 14, SHA512_K); COMPRESS(i, 15, SHA512_K); } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } } static void sha256_update(sha256_ctx *ctx, const uint8_t *data, size_t len) { uint64_t pos = ctx->count[0]; uint64_t total = ctx->count[1]; uint8_t *m = ctx->wbuf; const sha256_ops_t *ops = ctx->ops; if (pos && pos + len >= 64) { memcpy(m + pos, data, 64 - pos); ops->transform(ctx->state, m, 1); len -= 64 - pos; total += (64 - pos) * 8; data += 64 - pos; pos = 0; } if (len >= 64) { uint32_t blocks = len / 64; uint32_t bytes = blocks * 64; ops->transform(ctx->state, data, blocks); len -= bytes; total += (bytes) * 8; data += bytes; } memcpy(m + pos, data, len); pos += len; total += len * 8; ctx->count[0] = pos; ctx->count[1] = total; } static void sha512_update(sha512_ctx *ctx, const uint8_t *data, size_t len) { uint64_t pos = ctx->count[0]; uint64_t total = ctx->count[1]; uint8_t *m = ctx->wbuf; const sha512_ops_t *ops = ctx->ops; if (pos && pos + len >= 128) { memcpy(m + pos, data, 128 - pos); ops->transform(ctx->state, m, 1); len -= 128 - pos; total += (128 - pos) * 8; data += 128 - pos; pos = 0; } if (len >= 128) { uint64_t blocks = len / 128; uint64_t bytes = blocks * 128; ops->transform(ctx->state, data, blocks); len -= bytes; total += (bytes) * 8; data += bytes; } memcpy(m + pos, data, len); pos += len; total += len * 8; ctx->count[0] = pos; ctx->count[1] = total; } static void sha256_final(sha256_ctx *ctx, uint8_t *result, int bits) { uint64_t mlen, pos = ctx->count[0]; uint8_t *m = ctx->wbuf; uint32_t *R = (uint32_t *)result; const sha256_ops_t *ops = ctx->ops; m[pos++] = 0x80; if (pos > 56) { memset(m + pos, 0, 64 - pos); ops->transform(ctx->state, m, 1); pos = 0; } memset(m + pos, 0, 64 - pos); mlen = BE_64(ctx->count[1]); memcpy(m + (64 - 8), &mlen, 64 / 8); ops->transform(ctx->state, m, 1); switch (bits) { case 224: /* 28 - unused currently /TR */ R[0] = BE_32(ctx->state[0]); R[1] = BE_32(ctx->state[1]); R[2] = BE_32(ctx->state[2]); R[3] = BE_32(ctx->state[3]); R[4] = BE_32(ctx->state[4]); R[5] = BE_32(ctx->state[5]); R[6] = BE_32(ctx->state[6]); break; case 256: /* 32 */ R[0] = BE_32(ctx->state[0]); R[1] = BE_32(ctx->state[1]); R[2] = BE_32(ctx->state[2]); R[3] = BE_32(ctx->state[3]); R[4] = BE_32(ctx->state[4]); R[5] = BE_32(ctx->state[5]); R[6] = BE_32(ctx->state[6]); R[7] = BE_32(ctx->state[7]); break; } memset(ctx, 0, sizeof (*ctx)); } static void sha512_final(sha512_ctx *ctx, uint8_t *result, int bits) { uint64_t mlen, pos = ctx->count[0]; uint8_t *m = ctx->wbuf, *r; uint64_t *R = (uint64_t *)result; const sha512_ops_t *ops = ctx->ops; m[pos++] = 0x80; if (pos > 112) { memset(m + pos, 0, 128 - pos); ops->transform(ctx->state, m, 1); pos = 0; } memset(m + pos, 0, 128 - pos); mlen = BE_64(ctx->count[1]); memcpy(m + (128 - 8), &mlen, 64 / 8); ops->transform(ctx->state, m, 1); switch (bits) { case 224: /* 28 => 3,5 x 8 */ r = result + 24; R[0] = BE_64(ctx->state[0]); R[1] = BE_64(ctx->state[1]); R[2] = BE_64(ctx->state[2]); /* last 4 bytes are special here */ *r++ = (uint8_t)(ctx->state[3] >> 56); *r++ = (uint8_t)(ctx->state[3] >> 48); *r++ = (uint8_t)(ctx->state[3] >> 40); *r++ = (uint8_t)(ctx->state[3] >> 32); break; case 256: /* 32 */ R[0] = BE_64(ctx->state[0]); R[1] = BE_64(ctx->state[1]); R[2] = BE_64(ctx->state[2]); R[3] = BE_64(ctx->state[3]); break; case 384: /* 48 */ R[0] = BE_64(ctx->state[0]); R[1] = BE_64(ctx->state[1]); R[2] = BE_64(ctx->state[2]); R[3] = BE_64(ctx->state[3]); R[4] = BE_64(ctx->state[4]); R[5] = BE_64(ctx->state[5]); break; case 512: /* 64 */ R[0] = BE_64(ctx->state[0]); R[1] = BE_64(ctx->state[1]); R[2] = BE_64(ctx->state[2]); R[3] = BE_64(ctx->state[3]); R[4] = BE_64(ctx->state[4]); R[5] = BE_64(ctx->state[5]); R[6] = BE_64(ctx->state[6]); R[7] = BE_64(ctx->state[7]); break; } memset(ctx, 0, sizeof (*ctx)); } /* SHA2 Init function */ void SHA2Init(int algotype, SHA2_CTX *ctx) { sha256_ctx *ctx256 = &ctx->sha256; sha512_ctx *ctx512 = &ctx->sha512; ASSERT3S(algotype, >=, SHA512_HMAC_MECH_INFO_TYPE); ASSERT3S(algotype, <=, SHA512_256); memset(ctx, 0, sizeof (*ctx)); ctx->algotype = algotype; switch (ctx->algotype) { case SHA256: ctx256->state[0] = 0x6a09e667; ctx256->state[1] = 0xbb67ae85; ctx256->state[2] = 0x3c6ef372; ctx256->state[3] = 0xa54ff53a; ctx256->state[4] = 0x510e527f; ctx256->state[5] = 0x9b05688c; ctx256->state[6] = 0x1f83d9ab; ctx256->state[7] = 0x5be0cd19; ctx256->count[0] = 0; ctx256->ops = sha256_get_ops(); break; case SHA512: case SHA512_HMAC_MECH_INFO_TYPE: ctx512->state[0] = 0x6a09e667f3bcc908ULL; ctx512->state[1] = 0xbb67ae8584caa73bULL; ctx512->state[2] = 0x3c6ef372fe94f82bULL; ctx512->state[3] = 0xa54ff53a5f1d36f1ULL; ctx512->state[4] = 0x510e527fade682d1ULL; ctx512->state[5] = 0x9b05688c2b3e6c1fULL; ctx512->state[6] = 0x1f83d9abfb41bd6bULL; ctx512->state[7] = 0x5be0cd19137e2179ULL; ctx512->count[0] = 0; ctx512->count[1] = 0; ctx512->ops = sha512_get_ops(); break; case SHA512_256: ctx512->state[0] = 0x22312194fc2bf72cULL; ctx512->state[1] = 0x9f555fa3c84c64c2ULL; ctx512->state[2] = 0x2393b86b6f53b151ULL; ctx512->state[3] = 0x963877195940eabdULL; ctx512->state[4] = 0x96283ee2a88effe3ULL; ctx512->state[5] = 0xbe5e1e2553863992ULL; ctx512->state[6] = 0x2b0199fc2c85b8aaULL; ctx512->state[7] = 0x0eb72ddc81c52ca2ULL; ctx512->count[0] = 0; ctx512->count[1] = 0; ctx512->ops = sha512_get_ops(); break; } } /* SHA2 Update function */ void SHA2Update(SHA2_CTX *ctx, const void *data, size_t len) { /* check for zero input length */ if (len == 0) return; ASSERT3P(data, !=, NULL); switch (ctx->algotype) { case SHA256: sha256_update(&ctx->sha256, data, len); break; case SHA512: case SHA512_HMAC_MECH_INFO_TYPE: sha512_update(&ctx->sha512, data, len); break; case SHA512_256: sha512_update(&ctx->sha512, data, len); break; } } /* SHA2Final function */ void SHA2Final(void *digest, SHA2_CTX *ctx) { switch (ctx->algotype) { case SHA256: sha256_final(&ctx->sha256, digest, 256); break; case SHA512: case SHA512_HMAC_MECH_INFO_TYPE: sha512_final(&ctx->sha512, digest, 512); break; case SHA512_256: sha512_final(&ctx->sha512, digest, 256); break; } } /* the generic implementation is always okay */ static boolean_t sha2_is_supported(void) { return (B_TRUE); } const sha256_ops_t sha256_generic_impl = { .name = "generic", .transform = sha256_generic, .is_supported = sha2_is_supported }; const sha512_ops_t sha512_generic_impl = { .name = "generic", .transform = sha512_generic, .is_supported = sha2_is_supported };