/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011 Pawel Jakub Dawidek . * All rights reserved. * Copyright (c) 2012, 2015 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Nexenta Systems, Inc. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_comutil.h" #ifndef MNTK_VMSETSIZE_BUG #define MNTK_VMSETSIZE_BUG 0 #endif #ifndef MNTK_NOMSYNC #define MNTK_NOMSYNC 8 #endif struct mtx zfs_debug_mtx; MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF); SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system"); int zfs_super_owner; SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0, "File system owners can perform privileged operation on file systems"); int zfs_debug_level; SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RWTUN, &zfs_debug_level, 0, "Debug level"); struct zfs_jailparam { int mount_snapshot; }; static struct zfs_jailparam zfs_jailparam0 = { .mount_snapshot = 0, }; static int zfs_jailparam_slot; SYSCTL_JAIL_PARAM_SYS_NODE(zfs, CTLFLAG_RW, "Jail ZFS parameters"); SYSCTL_JAIL_PARAM(_zfs, mount_snapshot, CTLTYPE_INT | CTLFLAG_RW, "I", "Allow mounting snapshots in the .zfs directory for unjailed datasets"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions"); static int zfs_version_acl = ZFS_ACL_VERSION; SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0, "ZFS_ACL_VERSION"); static int zfs_version_spa = SPA_VERSION; SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0, "SPA_VERSION"); static int zfs_version_zpl = ZPL_VERSION; SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0, "ZPL_VERSION"); #if __FreeBSD_version >= 1400018 static int zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg, bool *mp_busy); #else static int zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg); #endif static int zfs_mount(vfs_t *vfsp); static int zfs_umount(vfs_t *vfsp, int fflag); static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp); static int zfs_statfs(vfs_t *vfsp, struct statfs *statp); static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp); static int zfs_sync(vfs_t *vfsp, int waitfor); #if __FreeBSD_version >= 1300098 static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, uint64_t *extflagsp, struct ucred **credanonp, int *numsecflavors, int *secflavors); #else static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp, struct ucred **credanonp, int *numsecflavors, int **secflavors); #endif static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp); static void zfs_freevfs(vfs_t *vfsp); struct vfsops zfs_vfsops = { .vfs_mount = zfs_mount, .vfs_unmount = zfs_umount, #if __FreeBSD_version >= 1300049 .vfs_root = vfs_cache_root, .vfs_cachedroot = zfs_root, #else .vfs_root = zfs_root, #endif .vfs_statfs = zfs_statfs, .vfs_vget = zfs_vget, .vfs_sync = zfs_sync, .vfs_checkexp = zfs_checkexp, .vfs_fhtovp = zfs_fhtovp, .vfs_quotactl = zfs_quotactl, }; VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN); /* * We need to keep a count of active fs's. * This is necessary to prevent our module * from being unloaded after a umount -f */ static uint32_t zfs_active_fs_count = 0; int zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val, char *setpoint) { int error; zfsvfs_t *zfvp; vfs_t *vfsp; objset_t *os; uint64_t tmp = *val; error = dmu_objset_from_ds(ds, &os); if (error != 0) return (error); error = getzfsvfs_impl(os, &zfvp); if (error != 0) return (error); if (zfvp == NULL) return (ENOENT); vfsp = zfvp->z_vfs; switch (zfs_prop) { case ZFS_PROP_ATIME: if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) tmp = 0; if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) tmp = 1; break; case ZFS_PROP_DEVICES: if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) tmp = 0; if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) tmp = 1; break; case ZFS_PROP_EXEC: if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) tmp = 0; if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) tmp = 1; break; case ZFS_PROP_SETUID: if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) tmp = 0; if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) tmp = 1; break; case ZFS_PROP_READONLY: if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) tmp = 0; if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) tmp = 1; break; case ZFS_PROP_XATTR: if (zfvp->z_flags & ZSB_XATTR) tmp = zfvp->z_xattr; break; case ZFS_PROP_NBMAND: if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) tmp = 0; if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) tmp = 1; break; default: vfs_unbusy(vfsp); return (ENOENT); } vfs_unbusy(vfsp); if (tmp != *val) { if (setpoint) (void) strcpy(setpoint, "temporary"); *val = tmp; } return (0); } static int zfs_getquota(zfsvfs_t *zfsvfs, uid_t id, int isgroup, struct dqblk64 *dqp) { int error = 0; char buf[32]; uint64_t usedobj, quotaobj; uint64_t quota, used = 0; timespec_t now; usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; if (quotaobj == 0 || zfsvfs->z_replay) { error = ENOENT; goto done; } (void) sprintf(buf, "%llx", (longlong_t)id); if ((error = zap_lookup(zfsvfs->z_os, quotaobj, buf, sizeof (quota), 1, "a)) != 0) { dprintf("%s(%d): quotaobj lookup failed\n", __FUNCTION__, __LINE__); goto done; } /* * quota(8) uses bsoftlimit as "quoota", and hardlimit as "limit". * So we set them to be the same. */ dqp->dqb_bsoftlimit = dqp->dqb_bhardlimit = btodb(quota); error = zap_lookup(zfsvfs->z_os, usedobj, buf, sizeof (used), 1, &used); if (error && error != ENOENT) { dprintf("%s(%d): usedobj failed; %d\n", __FUNCTION__, __LINE__, error); goto done; } dqp->dqb_curblocks = btodb(used); dqp->dqb_ihardlimit = dqp->dqb_isoftlimit = 0; vfs_timestamp(&now); /* * Setting this to 0 causes FreeBSD quota(8) to print * the number of days since the epoch, which isn't * particularly useful. */ dqp->dqb_btime = dqp->dqb_itime = now.tv_sec; done: return (error); } static int #if __FreeBSD_version >= 1400018 zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg, bool *mp_busy) #else zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg) #endif { zfsvfs_t *zfsvfs = vfsp->vfs_data; struct thread *td; int cmd, type, error = 0; int bitsize; zfs_userquota_prop_t quota_type; struct dqblk64 dqblk = { 0 }; td = curthread; cmd = cmds >> SUBCMDSHIFT; type = cmds & SUBCMDMASK; if ((error = zfs_enter(zfsvfs, FTAG)) != 0) return (error); if (id == -1) { switch (type) { case USRQUOTA: id = td->td_ucred->cr_ruid; break; case GRPQUOTA: id = td->td_ucred->cr_rgid; break; default: error = EINVAL; #if __FreeBSD_version < 1400018 if (cmd == Q_QUOTAON || cmd == Q_QUOTAOFF) vfs_unbusy(vfsp); #endif goto done; } } /* * Map BSD type to: * ZFS_PROP_USERUSED, * ZFS_PROP_USERQUOTA, * ZFS_PROP_GROUPUSED, * ZFS_PROP_GROUPQUOTA */ switch (cmd) { case Q_SETQUOTA: case Q_SETQUOTA32: if (type == USRQUOTA) quota_type = ZFS_PROP_USERQUOTA; else if (type == GRPQUOTA) quota_type = ZFS_PROP_GROUPQUOTA; else error = EINVAL; break; case Q_GETQUOTA: case Q_GETQUOTA32: if (type == USRQUOTA) quota_type = ZFS_PROP_USERUSED; else if (type == GRPQUOTA) quota_type = ZFS_PROP_GROUPUSED; else error = EINVAL; break; } /* * Depending on the cmd, we may need to get * the ruid and domain (see fuidstr_to_sid?), * the fuid (how?), or other information. * Create fuid using zfs_fuid_create(zfsvfs, id, * ZFS_OWNER or ZFS_GROUP, cr, &fuidp)? * I think I can use just the id? * * Look at zfs_id_overquota() to look up a quota. * zap_lookup(something, quotaobj, fuidstring, * sizeof (long long), 1, "a) * * See zfs_set_userquota() to set a quota. */ if ((uint32_t)type >= MAXQUOTAS) { error = EINVAL; goto done; } switch (cmd) { case Q_GETQUOTASIZE: bitsize = 64; error = copyout(&bitsize, arg, sizeof (int)); break; case Q_QUOTAON: // As far as I can tell, you can't turn quotas on or off on zfs error = 0; #if __FreeBSD_version < 1400018 vfs_unbusy(vfsp); #endif break; case Q_QUOTAOFF: error = ENOTSUP; #if __FreeBSD_version < 1400018 vfs_unbusy(vfsp); #endif break; case Q_SETQUOTA: error = copyin(arg, &dqblk, sizeof (dqblk)); if (error == 0) error = zfs_set_userquota(zfsvfs, quota_type, "", id, dbtob(dqblk.dqb_bhardlimit)); break; case Q_GETQUOTA: error = zfs_getquota(zfsvfs, id, type == GRPQUOTA, &dqblk); if (error == 0) error = copyout(&dqblk, arg, sizeof (dqblk)); break; default: error = EINVAL; break; } done: zfs_exit(zfsvfs, FTAG); return (error); } boolean_t zfs_is_readonly(zfsvfs_t *zfsvfs) { return (!!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)); } static int zfs_sync(vfs_t *vfsp, int waitfor) { /* * Data integrity is job one. We don't want a compromised kernel * writing to the storage pool, so we never sync during panic. */ if (panicstr) return (0); /* * Ignore the system syncher. ZFS already commits async data * at zfs_txg_timeout intervals. */ if (waitfor == MNT_LAZY) return (0); if (vfsp != NULL) { /* * Sync a specific filesystem. */ zfsvfs_t *zfsvfs = vfsp->vfs_data; dsl_pool_t *dp; int error; if ((error = zfs_enter(zfsvfs, FTAG)) != 0) return (error); dp = dmu_objset_pool(zfsvfs->z_os); /* * If the system is shutting down, then skip any * filesystems which may exist on a suspended pool. */ if (rebooting && spa_suspended(dp->dp_spa)) { zfs_exit(zfsvfs, FTAG); return (0); } if (zfsvfs->z_log != NULL) zil_commit(zfsvfs->z_log, 0); zfs_exit(zfsvfs, FTAG); } else { /* * Sync all ZFS filesystems. This is what happens when you * run sync(8). Unlike other filesystems, ZFS honors the * request by waiting for all pools to commit all dirty data. */ spa_sync_allpools(); } return (0); } static void atime_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == TRUE) { zfsvfs->z_atime = TRUE; zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); } else { zfsvfs->z_atime = FALSE; zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); } } static void xattr_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == ZFS_XATTR_OFF) { zfsvfs->z_flags &= ~ZSB_XATTR; } else { zfsvfs->z_flags |= ZSB_XATTR; if (newval == ZFS_XATTR_SA) zfsvfs->z_xattr_sa = B_TRUE; else zfsvfs->z_xattr_sa = B_FALSE; } } static void blksz_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); ASSERT(ISP2(newval)); zfsvfs->z_max_blksz = newval; zfsvfs->z_vfs->mnt_stat.f_iosize = newval; } static void readonly_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval) { /* XXX locking on vfs_flag? */ zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); } else { /* XXX locking on vfs_flag? */ zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); } } static void setuid_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); } else { zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); } } static void exec_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); } else { zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); } } /* * The nbmand mount option can be changed at mount time. * We can't allow it to be toggled on live file systems or incorrect * behavior may be seen from cifs clients * * This property isn't registered via dsl_prop_register(), but this callback * will be called when a file system is first mounted */ static void nbmand_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); } else { vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); } } static void snapdir_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_show_ctldir = newval; } static void acl_mode_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_acl_mode = newval; } static void acl_inherit_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_acl_inherit = newval; } static void acl_type_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_acl_type = newval; } static int zfs_register_callbacks(vfs_t *vfsp) { struct dsl_dataset *ds = NULL; objset_t *os = NULL; zfsvfs_t *zfsvfs = NULL; uint64_t nbmand; boolean_t readonly = B_FALSE; boolean_t do_readonly = B_FALSE; boolean_t setuid = B_FALSE; boolean_t do_setuid = B_FALSE; boolean_t exec = B_FALSE; boolean_t do_exec = B_FALSE; boolean_t xattr = B_FALSE; boolean_t atime = B_FALSE; boolean_t do_atime = B_FALSE; boolean_t do_xattr = B_FALSE; int error = 0; ASSERT3P(vfsp, !=, NULL); zfsvfs = vfsp->vfs_data; ASSERT3P(zfsvfs, !=, NULL); os = zfsvfs->z_os; /* * This function can be called for a snapshot when we update snapshot's * mount point, which isn't really supported. */ if (dmu_objset_is_snapshot(os)) return (EOPNOTSUPP); /* * The act of registering our callbacks will destroy any mount * options we may have. In order to enable temporary overrides * of mount options, we stash away the current values and * restore them after we register the callbacks. */ if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || !spa_writeable(dmu_objset_spa(os))) { readonly = B_TRUE; do_readonly = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { readonly = B_FALSE; do_readonly = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { setuid = B_FALSE; do_setuid = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { setuid = B_TRUE; do_setuid = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { exec = B_FALSE; do_exec = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { exec = B_TRUE; do_exec = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { zfsvfs->z_xattr = xattr = ZFS_XATTR_OFF; do_xattr = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { zfsvfs->z_xattr = xattr = ZFS_XATTR_DIR; do_xattr = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_DIRXATTR, NULL)) { zfsvfs->z_xattr = xattr = ZFS_XATTR_DIR; do_xattr = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_SAXATTR, NULL)) { zfsvfs->z_xattr = xattr = ZFS_XATTR_SA; do_xattr = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { atime = B_FALSE; do_atime = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { atime = B_TRUE; do_atime = B_TRUE; } /* * We need to enter pool configuration here, so that we can use * dsl_prop_get_int_ds() to handle the special nbmand property below. * dsl_prop_get_integer() can not be used, because it has to acquire * spa_namespace_lock and we can not do that because we already hold * z_teardown_lock. The problem is that spa_write_cachefile() is called * with spa_namespace_lock held and the function calls ZFS vnode * operations to write the cache file and thus z_teardown_lock is * acquired after spa_namespace_lock. */ ds = dmu_objset_ds(os); dsl_pool_config_enter(dmu_objset_pool(os), FTAG); /* * nbmand is a special property. It can only be changed at * mount time. * * This is weird, but it is documented to only be changeable * at mount time. */ if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { nbmand = B_FALSE; } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { nbmand = B_TRUE; } else if ((error = dsl_prop_get_int_ds(ds, "nbmand", &nbmand)) != 0) { dsl_pool_config_exit(dmu_objset_pool(os), FTAG); return (error); } /* * Register property callbacks. * * It would probably be fine to just check for i/o error from * the first prop_register(), but I guess I like to go * overboard... */ error = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ACLTYPE), acl_type_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, zfsvfs); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); if (error) goto unregister; /* * Invoke our callbacks to restore temporary mount options. */ if (do_readonly) readonly_changed_cb(zfsvfs, readonly); if (do_setuid) setuid_changed_cb(zfsvfs, setuid); if (do_exec) exec_changed_cb(zfsvfs, exec); if (do_xattr) xattr_changed_cb(zfsvfs, xattr); if (do_atime) atime_changed_cb(zfsvfs, atime); nbmand_changed_cb(zfsvfs, nbmand); return (0); unregister: dsl_prop_unregister_all(ds, zfsvfs); return (error); } /* * Associate this zfsvfs with the given objset, which must be owned. * This will cache a bunch of on-disk state from the objset in the * zfsvfs. */ static int zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os) { int error; uint64_t val; zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; zfsvfs->z_os = os; error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); if (error != 0) return (error); if (zfsvfs->z_version > zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { (void) printf("Can't mount a version %lld file system " "on a version %lld pool\n. Pool must be upgraded to mount " "this file system.", (u_longlong_t)zfsvfs->z_version, (u_longlong_t)spa_version(dmu_objset_spa(os))); return (SET_ERROR(ENOTSUP)); } error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val); if (error != 0) return (error); zfsvfs->z_norm = (int)val; error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val); if (error != 0) return (error); zfsvfs->z_utf8 = (val != 0); error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val); if (error != 0) return (error); zfsvfs->z_case = (uint_t)val; error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val); if (error != 0) return (error); zfsvfs->z_acl_type = (uint_t)val; /* * Fold case on file systems that are always or sometimes case * insensitive. */ if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || zfsvfs->z_case == ZFS_CASE_MIXED) zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); uint64_t sa_obj = 0; if (zfsvfs->z_use_sa) { /* should either have both of these objects or none */ error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); if (error != 0) return (error); error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val); if (error == 0 && val == ZFS_XATTR_SA) zfsvfs->z_xattr_sa = B_TRUE; } error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table); if (error != 0) return (error); if (zfsvfs->z_version >= ZPL_VERSION_SA) sa_register_update_callback(os, zfs_sa_upgrade); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &zfsvfs->z_root); if (error != 0) return (error); ASSERT3U(zfsvfs->z_root, !=, 0); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, &zfsvfs->z_unlinkedobj); if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 8, 1, &zfsvfs->z_userquota_obj); if (error == ENOENT) zfsvfs->z_userquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 8, 1, &zfsvfs->z_groupquota_obj); if (error == ENOENT) zfsvfs->z_groupquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA], 8, 1, &zfsvfs->z_projectquota_obj); if (error == ENOENT) zfsvfs->z_projectquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA], 8, 1, &zfsvfs->z_userobjquota_obj); if (error == ENOENT) zfsvfs->z_userobjquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA], 8, 1, &zfsvfs->z_groupobjquota_obj); if (error == ENOENT) zfsvfs->z_groupobjquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA], 8, 1, &zfsvfs->z_projectobjquota_obj); if (error == ENOENT) zfsvfs->z_projectobjquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj); if (error == ENOENT) zfsvfs->z_fuid_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, &zfsvfs->z_shares_dir); if (error == ENOENT) zfsvfs->z_shares_dir = 0; else if (error != 0) return (error); /* * Only use the name cache if we are looking for a * name on a file system that does not require normalization * or case folding. We can also look there if we happen to be * on a non-normalizing, mixed sensitivity file system IF we * are looking for the exact name (which is always the case on * FreeBSD). */ zfsvfs->z_use_namecache = !zfsvfs->z_norm || ((zfsvfs->z_case == ZFS_CASE_MIXED) && !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER)); return (0); } taskq_t *zfsvfs_taskq; static void zfsvfs_task_unlinked_drain(void *context, int pending __unused) { zfs_unlinked_drain((zfsvfs_t *)context); } int zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp) { objset_t *os; zfsvfs_t *zfsvfs; int error; boolean_t ro = (readonly || (strchr(osname, '@') != NULL)); /* * XXX: Fix struct statfs so this isn't necessary! * * The 'osname' is used as the filesystem's special node, which means * it must fit in statfs.f_mntfromname, or else it can't be * enumerated, so libzfs_mnttab_find() returns NULL, which causes * 'zfs unmount' to think it's not mounted when it is. */ if (strlen(osname) >= MNAMELEN) return (SET_ERROR(ENAMETOOLONG)); zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os); if (error != 0) { kmem_free(zfsvfs, sizeof (zfsvfs_t)); return (error); } error = zfsvfs_create_impl(zfvp, zfsvfs, os); return (error); } int zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os) { int error; zfsvfs->z_vfs = NULL; zfsvfs->z_parent = zfsvfs; mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), offsetof(znode_t, z_link_node)); TASK_INIT(&zfsvfs->z_unlinked_drain_task, 0, zfsvfs_task_unlinked_drain, zfsvfs); ZFS_TEARDOWN_INIT(zfsvfs); ZFS_TEARDOWN_INACTIVE_INIT(zfsvfs); rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++) mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); error = zfsvfs_init(zfsvfs, os); if (error != 0) { dmu_objset_disown(os, B_TRUE, zfsvfs); *zfvp = NULL; kmem_free(zfsvfs, sizeof (zfsvfs_t)); return (error); } *zfvp = zfsvfs; return (0); } static int zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) { int error; /* * Check for a bad on-disk format version now since we * lied about owning the dataset readonly before. */ if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) && dmu_objset_incompatible_encryption_version(zfsvfs->z_os)) return (SET_ERROR(EROFS)); error = zfs_register_callbacks(zfsvfs->z_vfs); if (error) return (error); /* * If we are not mounting (ie: online recv), then we don't * have to worry about replaying the log as we blocked all * operations out since we closed the ZIL. */ if (mounting) { boolean_t readonly; ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL); error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os); if (error) return (error); zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data, &zfsvfs->z_kstat.dk_zil_sums); /* * During replay we remove the read only flag to * allow replays to succeed. */ readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; if (readonly != 0) { zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; } else { dsl_dir_t *dd; zap_stats_t zs; if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj, &zs) == 0) { dataset_kstats_update_nunlinks_kstat( &zfsvfs->z_kstat, zs.zs_num_entries); dprintf_ds(zfsvfs->z_os->os_dsl_dataset, "num_entries in unlinked set: %llu", (u_longlong_t)zs.zs_num_entries); } zfs_unlinked_drain(zfsvfs); dd = zfsvfs->z_os->os_dsl_dataset->ds_dir; dd->dd_activity_cancelled = B_FALSE; } /* * Parse and replay the intent log. * * Because of ziltest, this must be done after * zfs_unlinked_drain(). (Further note: ziltest * doesn't use readonly mounts, where * zfs_unlinked_drain() isn't called.) This is because * ziltest causes spa_sync() to think it's committed, * but actually it is not, so the intent log contains * many txg's worth of changes. * * In particular, if object N is in the unlinked set in * the last txg to actually sync, then it could be * actually freed in a later txg and then reallocated * in a yet later txg. This would write a "create * object N" record to the intent log. Normally, this * would be fine because the spa_sync() would have * written out the fact that object N is free, before * we could write the "create object N" intent log * record. * * But when we are in ziltest mode, we advance the "open * txg" without actually spa_sync()-ing the changes to * disk. So we would see that object N is still * allocated and in the unlinked set, and there is an * intent log record saying to allocate it. */ if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { if (zil_replay_disable) { zil_destroy(zfsvfs->z_log, B_FALSE); } else { boolean_t use_nc = zfsvfs->z_use_namecache; zfsvfs->z_use_namecache = B_FALSE; zfsvfs->z_replay = B_TRUE; zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); zfsvfs->z_replay = B_FALSE; zfsvfs->z_use_namecache = use_nc; } } /* restore readonly bit */ if (readonly != 0) zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; } else { ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL); zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data, &zfsvfs->z_kstat.dk_zil_sums); } /* * Set the objset user_ptr to track its zfsvfs. */ mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); dmu_objset_set_user(zfsvfs->z_os, zfsvfs); mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); return (0); } void zfsvfs_free(zfsvfs_t *zfsvfs) { int i; zfs_fuid_destroy(zfsvfs); mutex_destroy(&zfsvfs->z_znodes_lock); mutex_destroy(&zfsvfs->z_lock); ASSERT3U(zfsvfs->z_nr_znodes, ==, 0); list_destroy(&zfsvfs->z_all_znodes); ZFS_TEARDOWN_DESTROY(zfsvfs); ZFS_TEARDOWN_INACTIVE_DESTROY(zfsvfs); rw_destroy(&zfsvfs->z_fuid_lock); for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) mutex_destroy(&zfsvfs->z_hold_mtx[i]); dataset_kstats_destroy(&zfsvfs->z_kstat); kmem_free(zfsvfs, sizeof (zfsvfs_t)); } static void zfs_set_fuid_feature(zfsvfs_t *zfsvfs) { zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); } static int zfs_domount(vfs_t *vfsp, char *osname) { uint64_t recordsize, fsid_guid; int error = 0; zfsvfs_t *zfsvfs; ASSERT3P(vfsp, !=, NULL); ASSERT3P(osname, !=, NULL); error = zfsvfs_create(osname, vfsp->mnt_flag & MNT_RDONLY, &zfsvfs); if (error) return (error); zfsvfs->z_vfs = vfsp; if ((error = dsl_prop_get_integer(osname, "recordsize", &recordsize, NULL))) goto out; zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE; zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize; vfsp->vfs_data = zfsvfs; vfsp->mnt_flag |= MNT_LOCAL; vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED; vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES; vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED; /* * This can cause a loss of coherence between ARC and page cache * on ZoF - unclear if the problem is in FreeBSD or ZoF */ vfsp->mnt_kern_flag |= MNTK_NO_IOPF; /* vn_io_fault can be used */ vfsp->mnt_kern_flag |= MNTK_NOMSYNC; vfsp->mnt_kern_flag |= MNTK_VMSETSIZE_BUG; #if defined(_KERNEL) && !defined(KMEM_DEBUG) vfsp->mnt_kern_flag |= MNTK_FPLOOKUP; #endif /* * The fsid is 64 bits, composed of an 8-bit fs type, which * separates our fsid from any other filesystem types, and a * 56-bit objset unique ID. The objset unique ID is unique to * all objsets open on this system, provided by unique_create(). * The 8-bit fs type must be put in the low bits of fsid[1] * because that's where other Solaris filesystems put it. */ fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); ASSERT3U((fsid_guid & ~((1ULL << 56) - 1)), ==, 0); vfsp->vfs_fsid.val[0] = fsid_guid; vfsp->vfs_fsid.val[1] = ((fsid_guid >> 32) << 8) | (vfsp->mnt_vfc->vfc_typenum & 0xFF); /* * Set features for file system. */ zfs_set_fuid_feature(zfsvfs); if (dmu_objset_is_snapshot(zfsvfs->z_os)) { uint64_t pval; atime_changed_cb(zfsvfs, B_FALSE); readonly_changed_cb(zfsvfs, B_TRUE); if ((error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))) goto out; xattr_changed_cb(zfsvfs, pval); if ((error = dsl_prop_get_integer(osname, "acltype", &pval, NULL))) goto out; acl_type_changed_cb(zfsvfs, pval); zfsvfs->z_issnap = B_TRUE; zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); dmu_objset_set_user(zfsvfs->z_os, zfsvfs); mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); } else { if ((error = zfsvfs_setup(zfsvfs, B_TRUE))) goto out; } vfs_mountedfrom(vfsp, osname); if (!zfsvfs->z_issnap) zfsctl_create(zfsvfs); out: if (error) { dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs); zfsvfs_free(zfsvfs); } else { atomic_inc_32(&zfs_active_fs_count); } return (error); } static void zfs_unregister_callbacks(zfsvfs_t *zfsvfs) { objset_t *os = zfsvfs->z_os; if (!dmu_objset_is_snapshot(os)) dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); } static int getpoolname(const char *osname, char *poolname) { char *p; p = strchr(osname, '/'); if (p == NULL) { if (strlen(osname) >= MAXNAMELEN) return (ENAMETOOLONG); (void) strcpy(poolname, osname); } else { if (p - osname >= MAXNAMELEN) return (ENAMETOOLONG); (void) strlcpy(poolname, osname, p - osname + 1); } return (0); } static void fetch_osname_options(char *name, bool *checkpointrewind) { if (name[0] == '!') { *checkpointrewind = true; memmove(name, name + 1, strlen(name)); } else { *checkpointrewind = false; } } static int zfs_mount(vfs_t *vfsp) { kthread_t *td = curthread; vnode_t *mvp = vfsp->mnt_vnodecovered; cred_t *cr = td->td_ucred; char *osname; int error = 0; int canwrite; bool checkpointrewind, isctlsnap = false; if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL)) return (SET_ERROR(EINVAL)); /* * If full-owner-access is enabled and delegated administration is * turned on, we must set nosuid. */ if (zfs_super_owner && dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) { secpolicy_fs_mount_clearopts(cr, vfsp); } fetch_osname_options(osname, &checkpointrewind); isctlsnap = (mvp != NULL && zfsctl_is_node(mvp) && strchr(osname, '@') != NULL); /* * Check for mount privilege? * * If we don't have privilege then see if * we have local permission to allow it */ error = secpolicy_fs_mount(cr, mvp, vfsp); if (error && isctlsnap) { secpolicy_fs_mount_clearopts(cr, vfsp); } else if (error) { if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0) goto out; if (!(vfsp->vfs_flag & MS_REMOUNT)) { vattr_t vattr; /* * Make sure user is the owner of the mount point * or has sufficient privileges. */ vattr.va_mask = AT_UID; vn_lock(mvp, LK_SHARED | LK_RETRY); if (VOP_GETATTR(mvp, &vattr, cr)) { VOP_UNLOCK1(mvp); goto out; } if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 && VOP_ACCESS(mvp, VWRITE, cr, td) != 0) { VOP_UNLOCK1(mvp); goto out; } VOP_UNLOCK1(mvp); } secpolicy_fs_mount_clearopts(cr, vfsp); } /* * Refuse to mount a filesystem if we are in a local zone and the * dataset is not visible. */ if (!INGLOBALZONE(curproc) && (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { boolean_t mount_snapshot = B_FALSE; /* * Snapshots may be mounted in .zfs for unjailed datasets * if allowed by the jail param zfs.mount_snapshot. */ if (isctlsnap) { struct prison *pr; struct zfs_jailparam *zjp; pr = curthread->td_ucred->cr_prison; mtx_lock(&pr->pr_mtx); zjp = osd_jail_get(pr, zfs_jailparam_slot); mtx_unlock(&pr->pr_mtx); if (zjp && zjp->mount_snapshot) mount_snapshot = B_TRUE; } if (!mount_snapshot) { error = SET_ERROR(EPERM); goto out; } } vfsp->vfs_flag |= MNT_NFS4ACLS; /* * When doing a remount, we simply refresh our temporary properties * according to those options set in the current VFS options. */ if (vfsp->vfs_flag & MS_REMOUNT) { zfsvfs_t *zfsvfs = vfsp->vfs_data; /* * Refresh mount options with z_teardown_lock blocking I/O while * the filesystem is in an inconsistent state. * The lock also serializes this code with filesystem * manipulations between entry to zfs_suspend_fs() and return * from zfs_resume_fs(). */ ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG); zfs_unregister_callbacks(zfsvfs); error = zfs_register_callbacks(vfsp); ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); goto out; } /* Initial root mount: try hard to import the requested root pool. */ if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 && (vfsp->vfs_flag & MNT_UPDATE) == 0) { char pname[MAXNAMELEN]; error = getpoolname(osname, pname); if (error == 0) error = spa_import_rootpool(pname, checkpointrewind); if (error) goto out; } DROP_GIANT(); error = zfs_domount(vfsp, osname); PICKUP_GIANT(); out: return (error); } static int zfs_statfs(vfs_t *vfsp, struct statfs *statp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; uint64_t refdbytes, availbytes, usedobjs, availobjs; int error; statp->f_version = STATFS_VERSION; if ((error = zfs_enter(zfsvfs, FTAG)) != 0) return (error); dmu_objset_space(zfsvfs->z_os, &refdbytes, &availbytes, &usedobjs, &availobjs); /* * The underlying storage pool actually uses multiple block sizes. * We report the fragsize as the smallest block size we support, * and we report our blocksize as the filesystem's maximum blocksize. */ statp->f_bsize = SPA_MINBLOCKSIZE; statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize; /* * The following report "total" blocks of various kinds in the * file system, but reported in terms of f_frsize - the * "fragment" size. */ statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; statp->f_bfree = availbytes / statp->f_bsize; statp->f_bavail = statp->f_bfree; /* no root reservation */ /* * statvfs() should really be called statufs(), because it assumes * static metadata. ZFS doesn't preallocate files, so the best * we can do is report the max that could possibly fit in f_files, * and that minus the number actually used in f_ffree. * For f_ffree, report the smaller of the number of object available * and the number of blocks (each object will take at least a block). */ statp->f_ffree = MIN(availobjs, statp->f_bfree); statp->f_files = statp->f_ffree + usedobjs; /* * We're a zfs filesystem. */ strlcpy(statp->f_fstypename, "zfs", sizeof (statp->f_fstypename)); strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname, sizeof (statp->f_mntfromname)); strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname, sizeof (statp->f_mntonname)); statp->f_namemax = MAXNAMELEN - 1; zfs_exit(zfsvfs, FTAG); return (0); } static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; znode_t *rootzp; int error; if ((error = zfs_enter(zfsvfs, FTAG)) != 0) return (error); error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); if (error == 0) *vpp = ZTOV(rootzp); zfs_exit(zfsvfs, FTAG); if (error == 0) { error = vn_lock(*vpp, flags); if (error != 0) { VN_RELE(*vpp); *vpp = NULL; } } return (error); } /* * Teardown the zfsvfs::z_os. * * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock' * and 'z_teardown_inactive_lock' held. */ static int zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) { znode_t *zp; dsl_dir_t *dd; /* * If someone has not already unmounted this file system, * drain the zrele_taskq to ensure all active references to the * zfsvfs_t have been handled only then can it be safely destroyed. */ if (zfsvfs->z_os) { /* * If we're unmounting we have to wait for the list to * drain completely. * * If we're not unmounting there's no guarantee the list * will drain completely, but zreles run from the taskq * may add the parents of dir-based xattrs to the taskq * so we want to wait for these. * * We can safely read z_nr_znodes without locking because the * VFS has already blocked operations which add to the * z_all_znodes list and thus increment z_nr_znodes. */ int round = 0; while (zfsvfs->z_nr_znodes > 0) { taskq_wait_outstanding(dsl_pool_zrele_taskq( dmu_objset_pool(zfsvfs->z_os)), 0); if (++round > 1 && !unmounting) break; } } ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG); if (!unmounting) { /* * We purge the parent filesystem's vfsp as the parent * filesystem and all of its snapshots have their vnode's * v_vfsp set to the parent's filesystem's vfsp. Note, * 'z_parent' is self referential for non-snapshots. */ #ifdef FREEBSD_NAMECACHE #if __FreeBSD_version >= 1300117 cache_purgevfs(zfsvfs->z_parent->z_vfs); #else cache_purgevfs(zfsvfs->z_parent->z_vfs, true); #endif #endif } /* * Close the zil. NB: Can't close the zil while zfs_inactive * threads are blocked as zil_close can call zfs_inactive. */ if (zfsvfs->z_log) { zil_close(zfsvfs->z_log); zfsvfs->z_log = NULL; } ZFS_TEARDOWN_INACTIVE_ENTER_WRITE(zfsvfs); /* * If we are not unmounting (ie: online recv) and someone already * unmounted this file system while we were doing the switcheroo, * or a reopen of z_os failed then just bail out now. */ if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs); ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); return (SET_ERROR(EIO)); } /* * At this point there are no vops active, and any new vops will * fail with EIO since we have z_teardown_lock for writer (only * relevant for forced unmount). * * Release all holds on dbufs. */ mutex_enter(&zfsvfs->z_znodes_lock); for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; zp = list_next(&zfsvfs->z_all_znodes, zp)) { if (zp->z_sa_hdl != NULL) { zfs_znode_dmu_fini(zp); } } mutex_exit(&zfsvfs->z_znodes_lock); /* * If we are unmounting, set the unmounted flag and let new vops * unblock. zfs_inactive will have the unmounted behavior, and all * other vops will fail with EIO. */ if (unmounting) { zfsvfs->z_unmounted = B_TRUE; ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs); ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); } /* * z_os will be NULL if there was an error in attempting to reopen * zfsvfs, so just return as the properties had already been * unregistered and cached data had been evicted before. */ if (zfsvfs->z_os == NULL) return (0); /* * Unregister properties. */ zfs_unregister_callbacks(zfsvfs); /* * Evict cached data */ if (!zfs_is_readonly(zfsvfs)) txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); dmu_objset_evict_dbufs(zfsvfs->z_os); dd = zfsvfs->z_os->os_dsl_dataset->ds_dir; dsl_dir_cancel_waiters(dd); return (0); } static int zfs_umount(vfs_t *vfsp, int fflag) { kthread_t *td = curthread; zfsvfs_t *zfsvfs = vfsp->vfs_data; objset_t *os; cred_t *cr = td->td_ucred; int ret; ret = secpolicy_fs_unmount(cr, vfsp); if (ret) { if (dsl_deleg_access((char *)vfsp->vfs_resource, ZFS_DELEG_PERM_MOUNT, cr)) return (ret); } /* * Unmount any snapshots mounted under .zfs before unmounting the * dataset itself. */ if (zfsvfs->z_ctldir != NULL) { if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) return (ret); } if (fflag & MS_FORCE) { /* * Mark file system as unmounted before calling * vflush(FORCECLOSE). This way we ensure no future vnops * will be called and risk operating on DOOMED vnodes. */ ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG); zfsvfs->z_unmounted = B_TRUE; ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); } /* * Flush all the files. */ ret = vflush(vfsp, 0, (fflag & MS_FORCE) ? FORCECLOSE : 0, td); if (ret != 0) return (ret); while (taskqueue_cancel(zfsvfs_taskq->tq_queue, &zfsvfs->z_unlinked_drain_task, NULL) != 0) taskqueue_drain(zfsvfs_taskq->tq_queue, &zfsvfs->z_unlinked_drain_task); VERIFY0(zfsvfs_teardown(zfsvfs, B_TRUE)); os = zfsvfs->z_os; /* * z_os will be NULL if there was an error in * attempting to reopen zfsvfs. */ if (os != NULL) { /* * Unset the objset user_ptr. */ mutex_enter(&os->os_user_ptr_lock); dmu_objset_set_user(os, NULL); mutex_exit(&os->os_user_ptr_lock); /* * Finally release the objset */ dmu_objset_disown(os, B_TRUE, zfsvfs); } /* * We can now safely destroy the '.zfs' directory node. */ if (zfsvfs->z_ctldir != NULL) zfsctl_destroy(zfsvfs); zfs_freevfs(vfsp); return (0); } static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; znode_t *zp; int err; /* * zfs_zget() can't operate on virtual entries like .zfs/ or * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP. * This will make NFS to switch to LOOKUP instead of using VGET. */ if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR || (zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir)) return (EOPNOTSUPP); if ((err = zfs_enter(zfsvfs, FTAG)) != 0) return (err); err = zfs_zget(zfsvfs, ino, &zp); if (err == 0 && zp->z_unlinked) { vrele(ZTOV(zp)); err = EINVAL; } if (err == 0) *vpp = ZTOV(zp); zfs_exit(zfsvfs, FTAG); if (err == 0) { err = vn_lock(*vpp, flags); if (err != 0) vrele(*vpp); } if (err != 0) *vpp = NULL; return (err); } static int #if __FreeBSD_version >= 1300098 zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, uint64_t *extflagsp, struct ucred **credanonp, int *numsecflavors, int *secflavors) #else zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp, struct ucred **credanonp, int *numsecflavors, int **secflavors) #endif { zfsvfs_t *zfsvfs = vfsp->vfs_data; /* * If this is regular file system vfsp is the same as * zfsvfs->z_parent->z_vfs, but if it is snapshot, * zfsvfs->z_parent->z_vfs represents parent file system * which we have to use here, because only this file system * has mnt_export configured. */ return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp, credanonp, numsecflavors, secflavors)); } _Static_assert(sizeof (struct fid) >= SHORT_FID_LEN, "struct fid bigger than SHORT_FID_LEN"); _Static_assert(sizeof (struct fid) >= LONG_FID_LEN, "struct fid bigger than LONG_FID_LEN"); static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp) { struct componentname cn; zfsvfs_t *zfsvfs = vfsp->vfs_data; znode_t *zp; vnode_t *dvp; uint64_t object = 0; uint64_t fid_gen = 0; uint64_t setgen = 0; uint64_t gen_mask; uint64_t zp_gen; int i, err; *vpp = NULL; if ((err = zfs_enter(zfsvfs, FTAG)) != 0) return (err); /* * On FreeBSD we can get snapshot's mount point or its parent file * system mount point depending if snapshot is already mounted or not. */ if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) { zfid_long_t *zlfid = (zfid_long_t *)fidp; uint64_t objsetid = 0; for (i = 0; i < sizeof (zlfid->zf_setid); i++) objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); for (i = 0; i < sizeof (zlfid->zf_setgen); i++) setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); zfs_exit(zfsvfs, FTAG); err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); if (err) return (SET_ERROR(EINVAL)); if ((err = zfs_enter(zfsvfs, FTAG)) != 0) return (err); } if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { zfid_short_t *zfid = (zfid_short_t *)fidp; for (i = 0; i < sizeof (zfid->zf_object); i++) object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); for (i = 0; i < sizeof (zfid->zf_gen); i++) fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); } else { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } if (fidp->fid_len == LONG_FID_LEN && setgen != 0) { zfs_exit(zfsvfs, FTAG); dprintf("snapdir fid: fid_gen (%llu) and setgen (%llu)\n", (u_longlong_t)fid_gen, (u_longlong_t)setgen); return (SET_ERROR(EINVAL)); } /* * A zero fid_gen means we are in .zfs or the .zfs/snapshot * directory tree. If the object == zfsvfs->z_shares_dir, then * we are in the .zfs/shares directory tree. */ if ((fid_gen == 0 && (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) || (zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) { zfs_exit(zfsvfs, FTAG); VERIFY0(zfsctl_root(zfsvfs, LK_SHARED, &dvp)); if (object == ZFSCTL_INO_SNAPDIR) { cn.cn_nameptr = "snapshot"; cn.cn_namelen = strlen(cn.cn_nameptr); cn.cn_nameiop = LOOKUP; cn.cn_flags = ISLASTCN | LOCKLEAF; cn.cn_lkflags = flags; VERIFY0(VOP_LOOKUP(dvp, vpp, &cn)); vput(dvp); } else if (object == zfsvfs->z_shares_dir) { /* * XXX This branch must not be taken, * if it is, then the lookup below will * explode. */ cn.cn_nameptr = "shares"; cn.cn_namelen = strlen(cn.cn_nameptr); cn.cn_nameiop = LOOKUP; cn.cn_flags = ISLASTCN; cn.cn_lkflags = flags; VERIFY0(VOP_LOOKUP(dvp, vpp, &cn)); vput(dvp); } else { *vpp = dvp; } return (err); } gen_mask = -1ULL >> (64 - 8 * i); dprintf("getting %llu [%llu mask %llx]\n", (u_longlong_t)object, (u_longlong_t)fid_gen, (u_longlong_t)gen_mask); if ((err = zfs_zget(zfsvfs, object, &zp))) { zfs_exit(zfsvfs, FTAG); return (err); } (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, sizeof (uint64_t)); zp_gen = zp_gen & gen_mask; if (zp_gen == 0) zp_gen = 1; if (zp->z_unlinked || zp_gen != fid_gen) { dprintf("znode gen (%llu) != fid gen (%llu)\n", (u_longlong_t)zp_gen, (u_longlong_t)fid_gen); vrele(ZTOV(zp)); zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } *vpp = ZTOV(zp); zfs_exit(zfsvfs, FTAG); err = vn_lock(*vpp, flags); if (err == 0) vnode_create_vobject(*vpp, zp->z_size, curthread); else *vpp = NULL; return (err); } /* * Block out VOPs and close zfsvfs_t::z_os * * Note, if successful, then we return with the 'z_teardown_lock' and * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying * dataset and objset intact so that they can be atomically handed off during * a subsequent rollback or recv operation and the resume thereafter. */ int zfs_suspend_fs(zfsvfs_t *zfsvfs) { int error; if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) return (error); return (0); } /* * Rebuild SA and release VOPs. Note that ownership of the underlying dataset * is an invariant across any of the operations that can be performed while the * filesystem was suspended. Whether it succeeded or failed, the preconditions * are the same: the relevant objset and associated dataset are owned by * zfsvfs, held, and long held on entry. */ int zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) { int err; znode_t *zp; ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs)); ASSERT(ZFS_TEARDOWN_INACTIVE_WRITE_HELD(zfsvfs)); /* * We already own this, so just update the objset_t, as the one we * had before may have been evicted. */ objset_t *os; VERIFY3P(ds->ds_owner, ==, zfsvfs); VERIFY(dsl_dataset_long_held(ds)); dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); dsl_pool_config_enter(dp, FTAG); VERIFY0(dmu_objset_from_ds(ds, &os)); dsl_pool_config_exit(dp, FTAG); err = zfsvfs_init(zfsvfs, os); if (err != 0) goto bail; ds->ds_dir->dd_activity_cancelled = B_FALSE; VERIFY0(zfsvfs_setup(zfsvfs, B_FALSE)); zfs_set_fuid_feature(zfsvfs); /* * Attempt to re-establish all the active znodes with * their dbufs. If a zfs_rezget() fails, then we'll let * any potential callers discover that via zfs_enter_verify_zp * when they try to use their znode. */ mutex_enter(&zfsvfs->z_znodes_lock); for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = list_next(&zfsvfs->z_all_znodes, zp)) { (void) zfs_rezget(zp); } mutex_exit(&zfsvfs->z_znodes_lock); bail: /* release the VOPs */ ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs); ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); if (err) { /* * Since we couldn't setup the sa framework, try to force * unmount this file system. */ if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) { vfs_ref(zfsvfs->z_vfs); (void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread); } } return (err); } static void zfs_freevfs(vfs_t *vfsp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; zfsvfs_free(zfsvfs); atomic_dec_32(&zfs_active_fs_count); } #ifdef __i386__ static int desiredvnodes_backup; #include #include #include #include #include #endif static void zfs_vnodes_adjust(void) { #ifdef __i386__ int newdesiredvnodes; desiredvnodes_backup = desiredvnodes; /* * We calculate newdesiredvnodes the same way it is done in * vntblinit(). If it is equal to desiredvnodes, it means that * it wasn't tuned by the administrator and we can tune it down. */ newdesiredvnodes = min(maxproc + vm_cnt.v_page_count / 4, 2 * vm_kmem_size / (5 * (sizeof (struct vm_object) + sizeof (struct vnode)))); if (newdesiredvnodes == desiredvnodes) desiredvnodes = (3 * newdesiredvnodes) / 4; #endif } static void zfs_vnodes_adjust_back(void) { #ifdef __i386__ desiredvnodes = desiredvnodes_backup; #endif } void zfs_init(void) { printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n"); /* * Initialize .zfs directory structures */ zfsctl_init(); /* * Initialize znode cache, vnode ops, etc... */ zfs_znode_init(); /* * Reduce number of vnodes. Originally number of vnodes is calculated * with UFS inode in mind. We reduce it here, because it's too big for * ZFS/i386. */ zfs_vnodes_adjust(); dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info); zfsvfs_taskq = taskq_create("zfsvfs", 1, minclsyspri, 0, 0, 0); } void zfs_fini(void) { taskq_destroy(zfsvfs_taskq); zfsctl_fini(); zfs_znode_fini(); zfs_vnodes_adjust_back(); } int zfs_busy(void) { return (zfs_active_fs_count != 0); } /* * Release VOPs and unmount a suspended filesystem. */ int zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) { ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs)); ASSERT(ZFS_TEARDOWN_INACTIVE_WRITE_HELD(zfsvfs)); /* * We already own this, so just hold and rele it to update the * objset_t, as the one we had before may have been evicted. */ objset_t *os; VERIFY3P(ds->ds_owner, ==, zfsvfs); VERIFY(dsl_dataset_long_held(ds)); dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); dsl_pool_config_enter(dp, FTAG); VERIFY0(dmu_objset_from_ds(ds, &os)); dsl_pool_config_exit(dp, FTAG); zfsvfs->z_os = os; /* release the VOPs */ ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs); ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); /* * Try to force unmount this file system. */ (void) zfs_umount(zfsvfs->z_vfs, 0); zfsvfs->z_unmounted = B_TRUE; return (0); } int zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) { int error; objset_t *os = zfsvfs->z_os; dmu_tx_t *tx; if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) return (SET_ERROR(EINVAL)); if (newvers < zfsvfs->z_version) return (SET_ERROR(EINVAL)); if (zfs_spa_version_map(newvers) > spa_version(dmu_objset_spa(zfsvfs->z_os))) return (SET_ERROR(ENOTSUP)); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, ZFS_SA_ATTRS); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); } error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &newvers, tx); if (error) { dmu_tx_commit(tx); return (error); } if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { uint64_t sa_obj; ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, SPA_VERSION_SA); sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, DMU_OT_NONE, 0, tx); error = zap_add(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); ASSERT0(error); VERIFY0(sa_set_sa_object(os, sa_obj)); sa_register_update_callback(os, zfs_sa_upgrade); } spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, "from %ju to %ju", (uintmax_t)zfsvfs->z_version, (uintmax_t)newvers); dmu_tx_commit(tx); zfsvfs->z_version = newvers; os->os_version = newvers; zfs_set_fuid_feature(zfsvfs); return (0); } /* * Read a property stored within the master node. */ int zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) { uint64_t *cached_copy = NULL; /* * Figure out where in the objset_t the cached copy would live, if it * is available for the requested property. */ if (os != NULL) { switch (prop) { case ZFS_PROP_VERSION: cached_copy = &os->os_version; break; case ZFS_PROP_NORMALIZE: cached_copy = &os->os_normalization; break; case ZFS_PROP_UTF8ONLY: cached_copy = &os->os_utf8only; break; case ZFS_PROP_CASE: cached_copy = &os->os_casesensitivity; break; default: break; } } if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) { *value = *cached_copy; return (0); } /* * If the property wasn't cached, look up the file system's value for * the property. For the version property, we look up a slightly * different string. */ const char *pname; int error = ENOENT; if (prop == ZFS_PROP_VERSION) { pname = ZPL_VERSION_STR; } else { pname = zfs_prop_to_name(prop); } if (os != NULL) { ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS); error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); } if (error == ENOENT) { /* No value set, use the default value */ switch (prop) { case ZFS_PROP_VERSION: *value = ZPL_VERSION; break; case ZFS_PROP_NORMALIZE: case ZFS_PROP_UTF8ONLY: *value = 0; break; case ZFS_PROP_CASE: *value = ZFS_CASE_SENSITIVE; break; case ZFS_PROP_ACLTYPE: *value = ZFS_ACLTYPE_NFSV4; break; default: return (error); } error = 0; } /* * If one of the methods for getting the property value above worked, * copy it into the objset_t's cache. */ if (error == 0 && cached_copy != NULL) { *cached_copy = *value; } return (error); } /* * Return true if the corresponding vfs's unmounted flag is set. * Otherwise return false. * If this function returns true we know VFS unmount has been initiated. */ boolean_t zfs_get_vfs_flag_unmounted(objset_t *os) { zfsvfs_t *zfvp; boolean_t unmounted = B_FALSE; ASSERT3U(dmu_objset_type(os), ==, DMU_OST_ZFS); mutex_enter(&os->os_user_ptr_lock); zfvp = dmu_objset_get_user(os); if (zfvp != NULL && zfvp->z_vfs != NULL && (zfvp->z_vfs->mnt_kern_flag & MNTK_UNMOUNT)) unmounted = B_TRUE; mutex_exit(&os->os_user_ptr_lock); return (unmounted); } #ifdef _KERNEL void zfsvfs_update_fromname(const char *oldname, const char *newname) { char tmpbuf[MAXPATHLEN]; struct mount *mp; char *fromname; size_t oldlen; oldlen = strlen(oldname); mtx_lock(&mountlist_mtx); TAILQ_FOREACH(mp, &mountlist, mnt_list) { fromname = mp->mnt_stat.f_mntfromname; if (strcmp(fromname, oldname) == 0) { (void) strlcpy(fromname, newname, sizeof (mp->mnt_stat.f_mntfromname)); continue; } if (strncmp(fromname, oldname, oldlen) == 0 && (fromname[oldlen] == '/' || fromname[oldlen] == '@')) { (void) snprintf(tmpbuf, sizeof (tmpbuf), "%s%s", newname, fromname + oldlen); (void) strlcpy(fromname, tmpbuf, sizeof (mp->mnt_stat.f_mntfromname)); continue; } } mtx_unlock(&mountlist_mtx); } #endif /* * Find a prison with ZFS info. * Return the ZFS info and the (locked) prison. */ static struct zfs_jailparam * zfs_jailparam_find(struct prison *spr, struct prison **prp) { struct prison *pr; struct zfs_jailparam *zjp; for (pr = spr; ; pr = pr->pr_parent) { mtx_lock(&pr->pr_mtx); if (pr == &prison0) { zjp = &zfs_jailparam0; break; } zjp = osd_jail_get(pr, zfs_jailparam_slot); if (zjp != NULL) break; mtx_unlock(&pr->pr_mtx); } *prp = pr; return (zjp); } /* * Ensure a prison has its own ZFS info. If zjpp is non-null, point it to the * ZFS info and lock the prison. */ static void zfs_jailparam_alloc(struct prison *pr, struct zfs_jailparam **zjpp) { struct prison *ppr; struct zfs_jailparam *zjp, *nzjp; void **rsv; /* If this prison already has ZFS info, return that. */ zjp = zfs_jailparam_find(pr, &ppr); if (ppr == pr) goto done; /* * Allocate a new info record. Then check again, in case something * changed during the allocation. */ mtx_unlock(&ppr->pr_mtx); nzjp = malloc(sizeof (struct zfs_jailparam), M_PRISON, M_WAITOK); rsv = osd_reserve(zfs_jailparam_slot); zjp = zfs_jailparam_find(pr, &ppr); if (ppr == pr) { free(nzjp, M_PRISON); osd_free_reserved(rsv); goto done; } /* Inherit the initial values from the ancestor. */ mtx_lock(&pr->pr_mtx); (void) osd_jail_set_reserved(pr, zfs_jailparam_slot, rsv, nzjp); (void) memcpy(nzjp, zjp, sizeof (*zjp)); zjp = nzjp; mtx_unlock(&ppr->pr_mtx); done: if (zjpp != NULL) *zjpp = zjp; else mtx_unlock(&pr->pr_mtx); } /* * Jail OSD methods for ZFS VFS info. */ static int zfs_jailparam_create(void *obj, void *data) { struct prison *pr = obj; struct vfsoptlist *opts = data; int jsys; if (vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys)) == 0 && jsys == JAIL_SYS_INHERIT) return (0); /* * Inherit a prison's initial values from its parent * (different from JAIL_SYS_INHERIT which also inherits changes). */ zfs_jailparam_alloc(pr, NULL); return (0); } static int zfs_jailparam_get(void *obj, void *data) { struct prison *ppr, *pr = obj; struct vfsoptlist *opts = data; struct zfs_jailparam *zjp; int jsys, error; zjp = zfs_jailparam_find(pr, &ppr); jsys = (ppr == pr) ? JAIL_SYS_NEW : JAIL_SYS_INHERIT; error = vfs_setopt(opts, "zfs", &jsys, sizeof (jsys)); if (error != 0 && error != ENOENT) goto done; if (jsys == JAIL_SYS_NEW) { error = vfs_setopt(opts, "zfs.mount_snapshot", &zjp->mount_snapshot, sizeof (zjp->mount_snapshot)); if (error != 0 && error != ENOENT) goto done; } else { /* * If this prison is inheriting its ZFS info, report * empty/zero parameters. */ static int mount_snapshot = 0; error = vfs_setopt(opts, "zfs.mount_snapshot", &mount_snapshot, sizeof (mount_snapshot)); if (error != 0 && error != ENOENT) goto done; } error = 0; done: mtx_unlock(&ppr->pr_mtx); return (error); } static int zfs_jailparam_set(void *obj, void *data) { struct prison *pr = obj; struct prison *ppr; struct vfsoptlist *opts = data; int error, jsys, mount_snapshot; /* Set the parameters, which should be correct. */ error = vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys)); if (error == ENOENT) jsys = -1; error = vfs_copyopt(opts, "zfs.mount_snapshot", &mount_snapshot, sizeof (mount_snapshot)); if (error == ENOENT) mount_snapshot = -1; else jsys = JAIL_SYS_NEW; switch (jsys) { case JAIL_SYS_NEW: { /* "zfs=new" or "zfs.*": the prison gets its own ZFS info. */ struct zfs_jailparam *zjp; /* * A child jail cannot have more permissions than its parent */ if (pr->pr_parent != &prison0) { zjp = zfs_jailparam_find(pr->pr_parent, &ppr); mtx_unlock(&ppr->pr_mtx); if (zjp->mount_snapshot < mount_snapshot) { return (EPERM); } } zfs_jailparam_alloc(pr, &zjp); if (mount_snapshot != -1) zjp->mount_snapshot = mount_snapshot; mtx_unlock(&pr->pr_mtx); break; } case JAIL_SYS_INHERIT: /* "zfs=inherit": inherit the parent's ZFS info. */ mtx_lock(&pr->pr_mtx); osd_jail_del(pr, zfs_jailparam_slot); mtx_unlock(&pr->pr_mtx); break; case -1: /* * If the setting being changed is not ZFS related * then do nothing. */ break; } return (0); } static int zfs_jailparam_check(void *obj __unused, void *data) { struct vfsoptlist *opts = data; int error, jsys, mount_snapshot; /* Check that the parameters are correct. */ error = vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys)); if (error != ENOENT) { if (error != 0) return (error); if (jsys != JAIL_SYS_NEW && jsys != JAIL_SYS_INHERIT) return (EINVAL); } error = vfs_copyopt(opts, "zfs.mount_snapshot", &mount_snapshot, sizeof (mount_snapshot)); if (error != ENOENT) { if (error != 0) return (error); if (mount_snapshot != 0 && mount_snapshot != 1) return (EINVAL); } return (0); } static void zfs_jailparam_destroy(void *data) { free(data, M_PRISON); } static void zfs_jailparam_sysinit(void *arg __unused) { struct prison *pr; osd_method_t methods[PR_MAXMETHOD] = { [PR_METHOD_CREATE] = zfs_jailparam_create, [PR_METHOD_GET] = zfs_jailparam_get, [PR_METHOD_SET] = zfs_jailparam_set, [PR_METHOD_CHECK] = zfs_jailparam_check, }; zfs_jailparam_slot = osd_jail_register(zfs_jailparam_destroy, methods); /* Copy the defaults to any existing prisons. */ sx_slock(&allprison_lock); TAILQ_FOREACH(pr, &allprison, pr_list) zfs_jailparam_alloc(pr, NULL); sx_sunlock(&allprison_lock); } static void zfs_jailparam_sysuninit(void *arg __unused) { osd_jail_deregister(zfs_jailparam_slot); } SYSINIT(zfs_jailparam_sysinit, SI_SUB_DRIVERS, SI_ORDER_ANY, zfs_jailparam_sysinit, NULL); SYSUNINIT(zfs_jailparam_sysuninit, SI_SUB_DRIVERS, SI_ORDER_ANY, zfs_jailparam_sysuninit, NULL);