/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2012 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2018 by Delphix. All rights reserved. */ #include <stdio.h> #include <stdlib.h> #include <errno.h> #include <string.h> #include <unistd.h> #include <uuid/uuid.h> #include <zlib.h> #include <libintl.h> #include <sys/types.h> #include <sys/dkio.h> #include <sys/mhd.h> #include <sys/param.h> #include <sys/dktp/fdisk.h> #include <sys/efi_partition.h> #include <sys/byteorder.h> #include <sys/vdev_disk.h> #include <linux/fs.h> #include <linux/blkpg.h> static struct uuid_to_ptag { struct uuid uuid; } conversion_array[] = { { EFI_UNUSED }, { EFI_BOOT }, { EFI_ROOT }, { EFI_SWAP }, { EFI_USR }, { EFI_BACKUP }, { EFI_UNUSED }, /* STAND is never used */ { EFI_VAR }, { EFI_HOME }, { EFI_ALTSCTR }, { EFI_UNUSED }, /* CACHE (cachefs) is never used */ { EFI_RESERVED }, { EFI_SYSTEM }, { EFI_LEGACY_MBR }, { EFI_SYMC_PUB }, { EFI_SYMC_CDS }, { EFI_MSFT_RESV }, { EFI_DELL_BASIC }, { EFI_DELL_RAID }, { EFI_DELL_SWAP }, { EFI_DELL_LVM }, { EFI_DELL_RESV }, { EFI_AAPL_HFS }, { EFI_AAPL_UFS }, { EFI_FREEBSD_BOOT }, { EFI_FREEBSD_SWAP }, { EFI_FREEBSD_UFS }, { EFI_FREEBSD_VINUM }, { EFI_FREEBSD_ZFS }, { EFI_BIOS_BOOT }, { EFI_INTC_RS }, { EFI_SNE_BOOT }, { EFI_LENOVO_BOOT }, { EFI_MSFT_LDMM }, { EFI_MSFT_LDMD }, { EFI_MSFT_RE }, { EFI_IBM_GPFS }, { EFI_MSFT_STORAGESPACES }, { EFI_HPQ_DATA }, { EFI_HPQ_SVC }, { EFI_RHT_DATA }, { EFI_RHT_HOME }, { EFI_RHT_SRV }, { EFI_RHT_DMCRYPT }, { EFI_RHT_LUKS }, { EFI_FREEBSD_DISKLABEL }, { EFI_AAPL_RAID }, { EFI_AAPL_RAIDOFFLINE }, { EFI_AAPL_BOOT }, { EFI_AAPL_LABEL }, { EFI_AAPL_TVRECOVERY }, { EFI_AAPL_CORESTORAGE }, { EFI_NETBSD_SWAP }, { EFI_NETBSD_FFS }, { EFI_NETBSD_LFS }, { EFI_NETBSD_RAID }, { EFI_NETBSD_CAT }, { EFI_NETBSD_CRYPT }, { EFI_GOOG_KERN }, { EFI_GOOG_ROOT }, { EFI_GOOG_RESV }, { EFI_HAIKU_BFS }, { EFI_MIDNIGHTBSD_BOOT }, { EFI_MIDNIGHTBSD_DATA }, { EFI_MIDNIGHTBSD_SWAP }, { EFI_MIDNIGHTBSD_UFS }, { EFI_MIDNIGHTBSD_VINUM }, { EFI_MIDNIGHTBSD_ZFS }, { EFI_CEPH_JOURNAL }, { EFI_CEPH_DMCRYPTJOURNAL }, { EFI_CEPH_OSD }, { EFI_CEPH_DMCRYPTOSD }, { EFI_CEPH_CREATE }, { EFI_CEPH_DMCRYPTCREATE }, { EFI_OPENBSD_DISKLABEL }, { EFI_BBRY_QNX }, { EFI_BELL_PLAN9 }, { EFI_VMW_KCORE }, { EFI_VMW_VMFS }, { EFI_VMW_RESV }, { EFI_RHT_ROOTX86 }, { EFI_RHT_ROOTAMD64 }, { EFI_RHT_ROOTARM }, { EFI_RHT_ROOTARM64 }, { EFI_ACRONIS_SECUREZONE }, { EFI_ONIE_BOOT }, { EFI_ONIE_CONFIG }, { EFI_IBM_PPRPBOOT }, { EFI_FREEDESKTOP_BOOT } }; int efi_debug = 0; static int efi_read(int, struct dk_gpt *); /* * Return a 32-bit CRC of the contents of the buffer. Pre-and-post * one's conditioning will be handled by crc32() internally. */ static uint32_t efi_crc32(const unsigned char *buf, unsigned int size) { uint32_t crc = crc32(0, Z_NULL, 0); crc = crc32(crc, buf, size); return (crc); } static int read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize) { int sector_size; unsigned long long capacity_size; if (ioctl(fd, BLKSSZGET, §or_size) < 0) return (-1); if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0) return (-1); *lbsize = (uint_t)sector_size; *capacity = (diskaddr_t)(capacity_size / sector_size); return (0); } /* * Return back the device name associated with the file descriptor. The * caller is responsible for freeing the memory associated with the * returned string. */ static char * efi_get_devname(int fd) { char path[32]; /* * The libefi API only provides the open fd and not the file path. * To handle this realpath(3) is used to resolve the block device * name from /proc/self/fd/<fd>. */ (void) snprintf(path, sizeof (path), "/proc/self/fd/%d", fd); return (realpath(path, NULL)); } static int efi_get_info(int fd, struct dk_cinfo *dki_info) { char *dev_path; int rval = 0; memset(dki_info, 0, sizeof (*dki_info)); /* * The simplest way to get the partition number under linux is * to parse it out of the /dev/<disk><partition> block device name. * The kernel creates this using the partition number when it * populates /dev/ so it may be trusted. The tricky bit here is * that the naming convention is based on the block device type. * So we need to take this in to account when parsing out the * partition information. Aside from the partition number we collect * some additional device info. */ dev_path = efi_get_devname(fd); if (dev_path == NULL) goto error; if ((strncmp(dev_path, "/dev/sd", 7) == 0)) { strcpy(dki_info->dki_cname, "sd"); dki_info->dki_ctype = DKC_SCSI_CCS; rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu", dki_info->dki_dname, &dki_info->dki_partition); } else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) { strcpy(dki_info->dki_cname, "hd"); dki_info->dki_ctype = DKC_DIRECT; rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu", dki_info->dki_dname, &dki_info->dki_partition); } else if ((strncmp(dev_path, "/dev/md", 7) == 0)) { strcpy(dki_info->dki_cname, "pseudo"); dki_info->dki_ctype = DKC_MD; strcpy(dki_info->dki_dname, "md"); rval = sscanf(dev_path, "/dev/md%[0-9]p%hu", dki_info->dki_dname + 2, &dki_info->dki_partition); } else if ((strncmp(dev_path, "/dev/vd", 7) == 0)) { strcpy(dki_info->dki_cname, "vd"); dki_info->dki_ctype = DKC_MD; rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu", dki_info->dki_dname, &dki_info->dki_partition); } else if ((strncmp(dev_path, "/dev/xvd", 8) == 0)) { strcpy(dki_info->dki_cname, "xvd"); dki_info->dki_ctype = DKC_MD; rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu", dki_info->dki_dname, &dki_info->dki_partition); } else if ((strncmp(dev_path, "/dev/zd", 7) == 0)) { strcpy(dki_info->dki_cname, "zd"); dki_info->dki_ctype = DKC_MD; strcpy(dki_info->dki_dname, "zd"); rval = sscanf(dev_path, "/dev/zd%[0-9]p%hu", dki_info->dki_dname + 2, &dki_info->dki_partition); } else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) { strcpy(dki_info->dki_cname, "pseudo"); dki_info->dki_ctype = DKC_VBD; strcpy(dki_info->dki_dname, "dm-"); rval = sscanf(dev_path, "/dev/dm-%[0-9]p%hu", dki_info->dki_dname + 3, &dki_info->dki_partition); } else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) { strcpy(dki_info->dki_cname, "pseudo"); dki_info->dki_ctype = DKC_PCMCIA_MEM; strcpy(dki_info->dki_dname, "ram"); rval = sscanf(dev_path, "/dev/ram%[0-9]p%hu", dki_info->dki_dname + 3, &dki_info->dki_partition); } else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) { strcpy(dki_info->dki_cname, "pseudo"); dki_info->dki_ctype = DKC_VBD; strcpy(dki_info->dki_dname, "loop"); rval = sscanf(dev_path, "/dev/loop%[0-9]p%hu", dki_info->dki_dname + 4, &dki_info->dki_partition); } else if ((strncmp(dev_path, "/dev/nvme", 9) == 0)) { strcpy(dki_info->dki_cname, "nvme"); dki_info->dki_ctype = DKC_SCSI_CCS; strcpy(dki_info->dki_dname, "nvme"); (void) sscanf(dev_path, "/dev/nvme%[0-9]", dki_info->dki_dname + 4); size_t controller_length = strlen( dki_info->dki_dname); strcpy(dki_info->dki_dname + controller_length, "n"); rval = sscanf(dev_path, "/dev/nvme%*[0-9]n%[0-9]p%hu", dki_info->dki_dname + controller_length + 1, &dki_info->dki_partition); } else { strcpy(dki_info->dki_dname, "unknown"); strcpy(dki_info->dki_cname, "unknown"); dki_info->dki_ctype = DKC_UNKNOWN; } switch (rval) { case 0: errno = EINVAL; goto error; case 1: dki_info->dki_partition = 0; } free(dev_path); return (0); error: if (efi_debug) (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); switch (errno) { case EIO: return (VT_EIO); case EINVAL: return (VT_EINVAL); default: return (VT_ERROR); } } /* * the number of blocks the EFI label takes up (round up to nearest * block) */ #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \ ((l) - 1)) / (l))) /* number of partitions -- limited by what we can malloc */ #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \ sizeof (struct dk_part)) int efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc) { diskaddr_t capacity = 0; uint_t lbsize = 0; uint_t nblocks; size_t length; struct dk_gpt *vptr; struct uuid uuid; struct dk_cinfo dki_info; if (read_disk_info(fd, &capacity, &lbsize) != 0) return (-1); if (efi_get_info(fd, &dki_info) != 0) return (-1); if (dki_info.dki_partition != 0) return (-1); if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) || (dki_info.dki_ctype == DKC_VBD) || (dki_info.dki_ctype == DKC_UNKNOWN)) return (-1); nblocks = NBLOCKS(nparts, lbsize); if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) { /* 16K plus one block for the GPT */ nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1; } if (nparts > MAX_PARTS) { if (efi_debug) { (void) fprintf(stderr, "the maximum number of partitions supported is %lu\n", MAX_PARTS); } return (-1); } length = sizeof (struct dk_gpt) + sizeof (struct dk_part) * (nparts - 1); vptr = calloc(1, length); if (vptr == NULL) return (-1); *vtoc = vptr; vptr->efi_version = EFI_VERSION_CURRENT; vptr->efi_lbasize = lbsize; vptr->efi_nparts = nparts; /* * add one block here for the PMBR; on disks with a 512 byte * block size and 128 or fewer partitions, efi_first_u_lba * should work out to "34" */ vptr->efi_first_u_lba = nblocks + 1; vptr->efi_last_lba = capacity - 1; vptr->efi_altern_lba = capacity -1; vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks; (void) uuid_generate((uchar_t *)&uuid); UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid); return (0); } /* * Read EFI - return partition number upon success. */ int efi_alloc_and_read(int fd, struct dk_gpt **vtoc) { int rval; uint32_t nparts; int length; struct dk_gpt *vptr; /* figure out the number of entries that would fit into 16K */ nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t); length = (int) sizeof (struct dk_gpt) + (int) sizeof (struct dk_part) * (nparts - 1); vptr = calloc(1, length); if (vptr == NULL) return (VT_ERROR); vptr->efi_nparts = nparts; rval = efi_read(fd, vptr); if ((rval == VT_EINVAL) && vptr->efi_nparts > nparts) { void *tmp; length = (int) sizeof (struct dk_gpt) + (int) sizeof (struct dk_part) * (vptr->efi_nparts - 1); if ((tmp = realloc(vptr, length)) == NULL) { /* cppcheck-suppress doubleFree */ free(vptr); *vtoc = NULL; return (VT_ERROR); } else { vptr = tmp; rval = efi_read(fd, vptr); } } if (rval < 0) { if (efi_debug) { (void) fprintf(stderr, "read of EFI table failed, rval=%d\n", rval); } free(vptr); *vtoc = NULL; } else { *vtoc = vptr; } return (rval); } static int efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc) { void *data = dk_ioc->dki_data; int error; diskaddr_t capacity; uint_t lbsize; /* * When the IO is not being performed in kernel as an ioctl we need * to know the sector size so we can seek to the proper byte offset. */ if (read_disk_info(fd, &capacity, &lbsize) == -1) { if (efi_debug) fprintf(stderr, "unable to read disk info: %d", errno); errno = EIO; return (-1); } switch (cmd) { case DKIOCGETEFI: if (lbsize == 0) { if (efi_debug) (void) fprintf(stderr, "DKIOCGETEFI assuming " "LBA %d bytes\n", DEV_BSIZE); lbsize = DEV_BSIZE; } error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET); if (error == -1) { if (efi_debug) (void) fprintf(stderr, "DKIOCGETEFI lseek " "error: %d\n", errno); return (error); } error = read(fd, data, dk_ioc->dki_length); if (error == -1) { if (efi_debug) (void) fprintf(stderr, "DKIOCGETEFI read " "error: %d\n", errno); return (error); } if (error != dk_ioc->dki_length) { if (efi_debug) (void) fprintf(stderr, "DKIOCGETEFI short " "read of %d bytes\n", error); errno = EIO; return (-1); } error = 0; break; case DKIOCSETEFI: if (lbsize == 0) { if (efi_debug) (void) fprintf(stderr, "DKIOCSETEFI unknown " "LBA size\n"); errno = EIO; return (-1); } error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET); if (error == -1) { if (efi_debug) (void) fprintf(stderr, "DKIOCSETEFI lseek " "error: %d\n", errno); return (error); } error = write(fd, data, dk_ioc->dki_length); if (error == -1) { if (efi_debug) (void) fprintf(stderr, "DKIOCSETEFI write " "error: %d\n", errno); return (error); } if (error != dk_ioc->dki_length) { if (efi_debug) (void) fprintf(stderr, "DKIOCSETEFI short " "write of %d bytes\n", error); errno = EIO; return (-1); } /* Sync the new EFI table to disk */ error = fsync(fd); if (error == -1) return (error); /* Ensure any local disk cache is also flushed */ if (ioctl(fd, BLKFLSBUF, 0) == -1) return (error); error = 0; break; default: if (efi_debug) (void) fprintf(stderr, "unsupported ioctl()\n"); errno = EIO; return (-1); } return (error); } int efi_rescan(int fd) { int retry = 10; /* Notify the kernel a devices partition table has been updated */ while (ioctl(fd, BLKRRPART) != 0) { if ((--retry == 0) || (errno != EBUSY)) { (void) fprintf(stderr, "the kernel failed to rescan " "the partition table: %d\n", errno); return (-1); } usleep(50000); } return (0); } static int check_label(int fd, dk_efi_t *dk_ioc) { efi_gpt_t *efi; uint_t crc; if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) { switch (errno) { case EIO: return (VT_EIO); default: return (VT_ERROR); } } efi = dk_ioc->dki_data; if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) { if (efi_debug) (void) fprintf(stderr, "Bad EFI signature: 0x%llx != 0x%llx\n", (long long)efi->efi_gpt_Signature, (long long)LE_64(EFI_SIGNATURE)); return (VT_EINVAL); } /* * check CRC of the header; the size of the header should * never be larger than one block */ crc = efi->efi_gpt_HeaderCRC32; efi->efi_gpt_HeaderCRC32 = 0; len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize); if (headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) { if (efi_debug) (void) fprintf(stderr, "Invalid EFI HeaderSize %llu. Assuming %d.\n", headerSize, EFI_MIN_LABEL_SIZE); } if ((headerSize > dk_ioc->dki_length) || crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) { if (efi_debug) (void) fprintf(stderr, "Bad EFI CRC: 0x%x != 0x%x\n", crc, LE_32(efi_crc32((unsigned char *)efi, headerSize))); return (VT_EINVAL); } return (0); } static int efi_read(int fd, struct dk_gpt *vtoc) { int i, j; int label_len; int rval = 0; int md_flag = 0; int vdc_flag = 0; diskaddr_t capacity = 0; uint_t lbsize = 0; struct dk_minfo disk_info; dk_efi_t dk_ioc; efi_gpt_t *efi; efi_gpe_t *efi_parts; struct dk_cinfo dki_info; uint32_t user_length; boolean_t legacy_label = B_FALSE; /* * get the partition number for this file descriptor. */ if ((rval = efi_get_info(fd, &dki_info)) != 0) return (rval); if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && (strncmp(dki_info.dki_dname, "md", 3) == 0)) { md_flag++; } else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) && (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) { /* * The controller and drive name "vdc" (virtual disk client) * indicates a LDoms virtual disk. */ vdc_flag++; } /* get the LBA size */ if (read_disk_info(fd, &capacity, &lbsize) == -1) { if (efi_debug) { (void) fprintf(stderr, "unable to read disk info: %d", errno); } return (VT_EINVAL); } disk_info.dki_lbsize = lbsize; disk_info.dki_capacity = capacity; if (disk_info.dki_lbsize == 0) { if (efi_debug) { (void) fprintf(stderr, "efi_read: assuming LBA 512 bytes\n"); } disk_info.dki_lbsize = DEV_BSIZE; } /* * Read the EFI GPT to figure out how many partitions we need * to deal with. */ dk_ioc.dki_lba = 1; if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) { label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize; } else { label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) + disk_info.dki_lbsize; if (label_len % disk_info.dki_lbsize) { /* pad to physical sector size */ label_len += disk_info.dki_lbsize; label_len &= ~(disk_info.dki_lbsize - 1); } } if (posix_memalign((void **)&dk_ioc.dki_data, disk_info.dki_lbsize, label_len)) return (VT_ERROR); memset(dk_ioc.dki_data, 0, label_len); dk_ioc.dki_length = disk_info.dki_lbsize; user_length = vtoc->efi_nparts; efi = dk_ioc.dki_data; if (md_flag) { dk_ioc.dki_length = label_len; if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { switch (errno) { case EIO: return (VT_EIO); default: return (VT_ERROR); } } } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) { /* * No valid label here; try the alternate. Note that here * we just read GPT header and save it into dk_ioc.data, * Later, we will read GUID partition entry array if we * can get valid GPT header. */ /* * This is a workaround for legacy systems. In the past, the * last sector of SCSI disk was invisible on x86 platform. At * that time, backup label was saved on the next to the last * sector. It is possible for users to move a disk from previous * solaris system to present system. Here, we attempt to search * legacy backup EFI label first. */ dk_ioc.dki_lba = disk_info.dki_capacity - 2; dk_ioc.dki_length = disk_info.dki_lbsize; rval = check_label(fd, &dk_ioc); if (rval == VT_EINVAL) { /* * we didn't find legacy backup EFI label, try to * search backup EFI label in the last block. */ dk_ioc.dki_lba = disk_info.dki_capacity - 1; dk_ioc.dki_length = disk_info.dki_lbsize; rval = check_label(fd, &dk_ioc); if (rval == 0) { legacy_label = B_TRUE; if (efi_debug) (void) fprintf(stderr, "efi_read: primary label corrupt; " "using EFI backup label located on" " the last block\n"); } } else { if ((efi_debug) && (rval == 0)) (void) fprintf(stderr, "efi_read: primary label" " corrupt; using legacy EFI backup label " " located on the next to last block\n"); } if (rval == 0) { dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT; vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); /* * Partition tables are between backup GPT header * table and ParitionEntryLBA (the starting LBA of * the GUID partition entries array). Now that we * already got valid GPT header and saved it in * dk_ioc.dki_data, we try to get GUID partition * entry array here. */ /* LINTED */ dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data + disk_info.dki_lbsize); if (legacy_label) dk_ioc.dki_length = disk_info.dki_capacity - 1 - dk_ioc.dki_lba; else dk_ioc.dki_length = disk_info.dki_capacity - 2 - dk_ioc.dki_lba; dk_ioc.dki_length *= disk_info.dki_lbsize; if (dk_ioc.dki_length > ((len_t)label_len - sizeof (*dk_ioc.dki_data))) { rval = VT_EINVAL; } else { /* * read GUID partition entry array */ rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); } } } else if (rval == 0) { dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); /* LINTED */ dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data + disk_info.dki_lbsize); dk_ioc.dki_length = label_len - disk_info.dki_lbsize; rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) { /* * When the device is a LDoms virtual disk, the DKIOCGETEFI * ioctl can fail with EINVAL if the virtual disk backend * is a ZFS volume serviced by a domain running an old version * of Solaris. This is because the DKIOCGETEFI ioctl was * initially incorrectly implemented for a ZFS volume and it * expected the GPT and GPE to be retrieved with a single ioctl. * So we try to read the GPT and the GPE using that old style * ioctl. */ dk_ioc.dki_lba = 1; dk_ioc.dki_length = label_len; rval = check_label(fd, &dk_ioc); } if (rval < 0) { free(efi); return (rval); } /* LINTED -- always longlong aligned */ efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize); /* * Assemble this into a "dk_gpt" struct for easier * digestibility by applications. */ vtoc->efi_version = LE_32(efi->efi_gpt_Revision); vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry); vtoc->efi_lbasize = disk_info.dki_lbsize; vtoc->efi_last_lba = disk_info.dki_capacity - 1; vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA); vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA); vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID); /* * If the array the user passed in is too small, set the length * to what it needs to be and return */ if (user_length < vtoc->efi_nparts) { return (VT_EINVAL); } for (i = 0; i < vtoc->efi_nparts; i++) { UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid, efi_parts[i].efi_gpe_PartitionTypeGUID); for (j = 0; j < sizeof (conversion_array) / sizeof (struct uuid_to_ptag); j++) { if (memcmp(&vtoc->efi_parts[i].p_guid, &conversion_array[j].uuid, sizeof (struct uuid)) == 0) { vtoc->efi_parts[i].p_tag = j; break; } } if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) continue; vtoc->efi_parts[i].p_flag = LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs); vtoc->efi_parts[i].p_start = LE_64(efi_parts[i].efi_gpe_StartingLBA); vtoc->efi_parts[i].p_size = LE_64(efi_parts[i].efi_gpe_EndingLBA) - vtoc->efi_parts[i].p_start + 1; for (j = 0; j < EFI_PART_NAME_LEN; j++) { vtoc->efi_parts[i].p_name[j] = (uchar_t)LE_16( efi_parts[i].efi_gpe_PartitionName[j]); } UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid, efi_parts[i].efi_gpe_UniquePartitionGUID); } free(efi); return (dki_info.dki_partition); } /* writes a "protective" MBR */ static int write_pmbr(int fd, struct dk_gpt *vtoc) { dk_efi_t dk_ioc; struct mboot mb; uchar_t *cp; diskaddr_t size_in_lba; uchar_t *buf; int len; len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize; if (posix_memalign((void **)&buf, len, len)) return (VT_ERROR); /* * Preserve any boot code and disk signature if the first block is * already an MBR. */ memset(buf, 0, len); dk_ioc.dki_lba = 0; dk_ioc.dki_length = len; /* LINTED -- always longlong aligned */ dk_ioc.dki_data = (efi_gpt_t *)buf; if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { memset(&mb, 0, sizeof (mb)); mb.signature = LE_16(MBB_MAGIC); } else { (void) memcpy(&mb, buf, sizeof (mb)); if (mb.signature != LE_16(MBB_MAGIC)) { memset(&mb, 0, sizeof (mb)); mb.signature = LE_16(MBB_MAGIC); } } memset(&mb.parts, 0, sizeof (mb.parts)); cp = (uchar_t *)&mb.parts[0]; /* bootable or not */ *cp++ = 0; /* beginning CHS; 0xffffff if not representable */ *cp++ = 0xff; *cp++ = 0xff; *cp++ = 0xff; /* OS type */ *cp++ = EFI_PMBR; /* ending CHS; 0xffffff if not representable */ *cp++ = 0xff; *cp++ = 0xff; *cp++ = 0xff; /* starting LBA: 1 (little endian format) by EFI definition */ *cp++ = 0x01; *cp++ = 0x00; *cp++ = 0x00; *cp++ = 0x00; /* ending LBA: last block on the disk (little endian format) */ size_in_lba = vtoc->efi_last_lba; if (size_in_lba < 0xffffffff) { *cp++ = (size_in_lba & 0x000000ff); *cp++ = (size_in_lba & 0x0000ff00) >> 8; *cp++ = (size_in_lba & 0x00ff0000) >> 16; *cp++ = (size_in_lba & 0xff000000) >> 24; } else { *cp++ = 0xff; *cp++ = 0xff; *cp++ = 0xff; *cp++ = 0xff; } (void) memcpy(buf, &mb, sizeof (mb)); /* LINTED -- always longlong aligned */ dk_ioc.dki_data = (efi_gpt_t *)buf; dk_ioc.dki_lba = 0; dk_ioc.dki_length = len; if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { free(buf); switch (errno) { case EIO: return (VT_EIO); case EINVAL: return (VT_EINVAL); default: return (VT_ERROR); } } free(buf); return (0); } /* make sure the user specified something reasonable */ static int check_input(struct dk_gpt *vtoc) { int resv_part = -1; int i, j; diskaddr_t istart, jstart, isize, jsize, endsect; /* * Sanity-check the input (make sure no partitions overlap) */ for (i = 0; i < vtoc->efi_nparts; i++) { /* It can't be unassigned and have an actual size */ if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && (vtoc->efi_parts[i].p_size != 0)) { if (efi_debug) { (void) fprintf(stderr, "partition %d is " "\"unassigned\" but has a size of %llu", i, vtoc->efi_parts[i].p_size); } return (VT_EINVAL); } if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid)) continue; /* we have encountered an unknown uuid */ vtoc->efi_parts[i].p_tag = 0xff; } if (vtoc->efi_parts[i].p_tag == V_RESERVED) { if (resv_part != -1) { if (efi_debug) { (void) fprintf(stderr, "found " "duplicate reserved partition " "at %d\n", i); } return (VT_EINVAL); } resv_part = i; } if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { if (efi_debug) { (void) fprintf(stderr, "Partition %d starts at %llu. ", i, vtoc->efi_parts[i].p_start); (void) fprintf(stderr, "It must be between %llu and %llu.\n", vtoc->efi_first_u_lba, vtoc->efi_last_u_lba); } return (VT_EINVAL); } if ((vtoc->efi_parts[i].p_start + vtoc->efi_parts[i].p_size < vtoc->efi_first_u_lba) || (vtoc->efi_parts[i].p_start + vtoc->efi_parts[i].p_size > vtoc->efi_last_u_lba + 1)) { if (efi_debug) { (void) fprintf(stderr, "Partition %d ends at %llu. ", i, vtoc->efi_parts[i].p_start + vtoc->efi_parts[i].p_size); (void) fprintf(stderr, "It must be between %llu and %llu.\n", vtoc->efi_first_u_lba, vtoc->efi_last_u_lba); } return (VT_EINVAL); } for (j = 0; j < vtoc->efi_nparts; j++) { isize = vtoc->efi_parts[i].p_size; jsize = vtoc->efi_parts[j].p_size; istart = vtoc->efi_parts[i].p_start; jstart = vtoc->efi_parts[j].p_start; if ((i != j) && (isize != 0) && (jsize != 0)) { endsect = jstart + jsize -1; if ((jstart <= istart) && (istart <= endsect)) { if (efi_debug) { (void) fprintf(stderr, "Partition %d overlaps " "partition %d.", i, j); } return (VT_EINVAL); } } } } /* just a warning for now */ if ((resv_part == -1) && efi_debug) { (void) fprintf(stderr, "no reserved partition found\n"); } return (0); } static int call_blkpg_ioctl(int fd, int command, diskaddr_t start, diskaddr_t size, uint_t pno) { struct blkpg_ioctl_arg ioctl_arg; struct blkpg_partition linux_part; memset(&linux_part, 0, sizeof (linux_part)); char *path = efi_get_devname(fd); if (path == NULL) { (void) fprintf(stderr, "failed to retrieve device name\n"); return (VT_EINVAL); } linux_part.start = start; linux_part.length = size; linux_part.pno = pno; snprintf(linux_part.devname, BLKPG_DEVNAMELTH - 1, "%s%u", path, pno); linux_part.devname[BLKPG_DEVNAMELTH - 1] = '\0'; free(path); ioctl_arg.op = command; ioctl_arg.flags = 0; ioctl_arg.datalen = sizeof (struct blkpg_partition); ioctl_arg.data = &linux_part; return (ioctl(fd, BLKPG, &ioctl_arg)); } /* * add all the unallocated space to the current label */ int efi_use_whole_disk(int fd) { struct dk_gpt *efi_label = NULL; int rval; int i; uint_t resv_index = 0, data_index = 0; diskaddr_t resv_start = 0, data_start = 0; diskaddr_t data_size, limit, difference; boolean_t sync_needed = B_FALSE; uint_t nblocks; rval = efi_alloc_and_read(fd, &efi_label); if (rval < 0) { if (efi_label != NULL) efi_free(efi_label); return (rval); } /* * Find the last physically non-zero partition. * This should be the reserved partition. */ for (i = 0; i < efi_label->efi_nparts; i ++) { if (resv_start < efi_label->efi_parts[i].p_start) { resv_start = efi_label->efi_parts[i].p_start; resv_index = i; } } /* * Find the last physically non-zero partition before that. * This is the data partition. */ for (i = 0; i < resv_index; i ++) { if (data_start < efi_label->efi_parts[i].p_start) { data_start = efi_label->efi_parts[i].p_start; data_index = i; } } data_size = efi_label->efi_parts[data_index].p_size; /* * See the "efi_alloc_and_init" function for more information * about where this "nblocks" value comes from. */ nblocks = efi_label->efi_first_u_lba - 1; /* * Determine if the EFI label is out of sync. We check that: * * 1. the data partition ends at the limit we set, and * 2. the reserved partition starts at the limit we set. * * If either of these conditions is not met, then we need to * resync the EFI label. * * The limit is the last usable LBA, determined by the last LBA * and the first usable LBA fields on the EFI label of the disk * (see the lines directly above). Additionally, we factor in * EFI_MIN_RESV_SIZE (per its use in "zpool_label_disk") and * P2ALIGN it to ensure the partition boundaries are aligned * (for performance reasons). The alignment should match the * alignment used by the "zpool_label_disk" function. */ limit = P2ALIGN(efi_label->efi_last_lba - nblocks - EFI_MIN_RESV_SIZE, PARTITION_END_ALIGNMENT); if (data_start + data_size != limit || resv_start != limit) sync_needed = B_TRUE; if (efi_debug && sync_needed) (void) fprintf(stderr, "efi_use_whole_disk: sync needed\n"); /* * If alter_lba is 1, we are using the backup label. * Since we can locate the backup label by disk capacity, * there must be no unallocated space. */ if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba >= efi_label->efi_last_lba && !sync_needed)) { if (efi_debug) { (void) fprintf(stderr, "efi_use_whole_disk: requested space not found\n"); } efi_free(efi_label); return (VT_ENOSPC); } /* * Verify that we've found the reserved partition by checking * that it looks the way it did when we created it in zpool_label_disk. * If we've found the incorrect partition, then we know that this * device was reformatted and no longer is solely used by ZFS. */ if ((efi_label->efi_parts[resv_index].p_size != EFI_MIN_RESV_SIZE) || (efi_label->efi_parts[resv_index].p_tag != V_RESERVED) || (resv_index != 8)) { if (efi_debug) { (void) fprintf(stderr, "efi_use_whole_disk: wholedisk not available\n"); } efi_free(efi_label); return (VT_ENOSPC); } if (data_start + data_size != resv_start) { if (efi_debug) { (void) fprintf(stderr, "efi_use_whole_disk: " "data_start (%lli) + " "data_size (%lli) != " "resv_start (%lli)\n", data_start, data_size, resv_start); } return (VT_EINVAL); } if (limit < resv_start) { if (efi_debug) { (void) fprintf(stderr, "efi_use_whole_disk: " "limit (%lli) < resv_start (%lli)\n", limit, resv_start); } return (VT_EINVAL); } difference = limit - resv_start; if (efi_debug) (void) fprintf(stderr, "efi_use_whole_disk: difference is %lli\n", difference); /* * Move the reserved partition. There is currently no data in * here except fabricated devids (which get generated via * efi_write()). So there is no need to copy data. */ efi_label->efi_parts[data_index].p_size += difference; efi_label->efi_parts[resv_index].p_start += difference; efi_label->efi_last_u_lba = efi_label->efi_last_lba - nblocks; /* * Rescanning the partition table in the kernel can result * in the device links to be removed (see comment in vdev_disk_open). * If BLKPG_RESIZE_PARTITION is available, then we can resize * the partition table online and avoid having to remove the device * links used by the pool. This provides a very deterministic * approach to resizing devices and does not require any * loops waiting for devices to reappear. */ #ifdef BLKPG_RESIZE_PARTITION /* * Delete the reserved partition since we're about to expand * the data partition and it would overlap with the reserved * partition. * NOTE: The starting index for the ioctl is 1 while for the * EFI partitions it's 0. For that reason we have to add one * whenever we make an ioctl call. */ rval = call_blkpg_ioctl(fd, BLKPG_DEL_PARTITION, 0, 0, resv_index + 1); if (rval != 0) goto out; /* * Expand the data partition */ rval = call_blkpg_ioctl(fd, BLKPG_RESIZE_PARTITION, efi_label->efi_parts[data_index].p_start * efi_label->efi_lbasize, efi_label->efi_parts[data_index].p_size * efi_label->efi_lbasize, data_index + 1); if (rval != 0) { (void) fprintf(stderr, "Unable to resize data " "partition: %d\n", rval); /* * Since we failed to resize, we need to reset the start * of the reserve partition and re-create it. */ efi_label->efi_parts[resv_index].p_start -= difference; } /* * Re-add the reserved partition. If we've expanded the data partition * then we'll move the reserve partition to the end of the data * partition. Otherwise, we'll recreate the partition in its original * location. Note that we do this as best-effort and ignore any * errors that may arise here. This will ensure that we finish writing * the EFI label. */ (void) call_blkpg_ioctl(fd, BLKPG_ADD_PARTITION, efi_label->efi_parts[resv_index].p_start * efi_label->efi_lbasize, efi_label->efi_parts[resv_index].p_size * efi_label->efi_lbasize, resv_index + 1); #endif /* * We're now ready to write the EFI label. */ if (rval == 0) { rval = efi_write(fd, efi_label); if (rval < 0 && efi_debug) { (void) fprintf(stderr, "efi_use_whole_disk:fail " "to write label, rval=%d\n", rval); } } out: efi_free(efi_label); return (rval); } /* * write EFI label and backup label */ int efi_write(int fd, struct dk_gpt *vtoc) { dk_efi_t dk_ioc; efi_gpt_t *efi; efi_gpe_t *efi_parts; int i, j; struct dk_cinfo dki_info; int rval; int md_flag = 0; int nblocks; diskaddr_t lba_backup_gpt_hdr; if ((rval = efi_get_info(fd, &dki_info)) != 0) return (rval); /* check if we are dealing with a metadevice */ if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && (strncmp(dki_info.dki_dname, "md", 3) == 0)) { md_flag = 1; } if (check_input(vtoc)) { /* * not valid; if it's a metadevice just pass it down * because SVM will do its own checking */ if (md_flag == 0) { return (VT_EINVAL); } } dk_ioc.dki_lba = 1; if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) { dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize; } else { dk_ioc.dki_length = (len_t)NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) * vtoc->efi_lbasize; } /* * the number of blocks occupied by GUID partition entry array */ nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1; /* * Backup GPT header is located on the block after GUID * partition entry array. Here, we calculate the address * for backup GPT header. */ lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks; if (posix_memalign((void **)&dk_ioc.dki_data, vtoc->efi_lbasize, dk_ioc.dki_length)) return (VT_ERROR); memset(dk_ioc.dki_data, 0, dk_ioc.dki_length); efi = dk_ioc.dki_data; /* stuff user's input into EFI struct */ efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE); efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */ efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt) - LEN_EFI_PAD); efi->efi_gpt_Reserved1 = 0; efi->efi_gpt_MyLBA = LE_64(1ULL); efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr); efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba); efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba); efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL); efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts); efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe)); UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid); /* LINTED -- always longlong aligned */ efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize); for (i = 0; i < vtoc->efi_nparts; i++) { for (j = 0; j < sizeof (conversion_array) / sizeof (struct uuid_to_ptag); j++) { if (vtoc->efi_parts[i].p_tag == j) { UUID_LE_CONVERT( efi_parts[i].efi_gpe_PartitionTypeGUID, conversion_array[j].uuid); break; } } if (j == sizeof (conversion_array) / sizeof (struct uuid_to_ptag)) { /* * If we didn't have a matching uuid match, bail here. * Don't write a label with unknown uuid. */ if (efi_debug) { (void) fprintf(stderr, "Unknown uuid for p_tag %d\n", vtoc->efi_parts[i].p_tag); } return (VT_EINVAL); } /* Zero's should be written for empty partitions */ if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) continue; efi_parts[i].efi_gpe_StartingLBA = LE_64(vtoc->efi_parts[i].p_start); efi_parts[i].efi_gpe_EndingLBA = LE_64(vtoc->efi_parts[i].p_start + vtoc->efi_parts[i].p_size - 1); efi_parts[i].efi_gpe_Attributes.PartitionAttrs = LE_16(vtoc->efi_parts[i].p_flag); for (j = 0; j < EFI_PART_NAME_LEN; j++) { efi_parts[i].efi_gpe_PartitionName[j] = LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]); } if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) && uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) { (void) uuid_generate((uchar_t *) &vtoc->efi_parts[i].p_uguid); } memcpy(&efi_parts[i].efi_gpe_UniquePartitionGUID, &vtoc->efi_parts[i].p_uguid, sizeof (uuid_t)); } efi->efi_gpt_PartitionEntryArrayCRC32 = LE_32(efi_crc32((unsigned char *)efi_parts, vtoc->efi_nparts * (int)sizeof (struct efi_gpe))); efi->efi_gpt_HeaderCRC32 = LE_32(efi_crc32((unsigned char *)efi, LE_32(efi->efi_gpt_HeaderSize))); if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { free(dk_ioc.dki_data); switch (errno) { case EIO: return (VT_EIO); case EINVAL: return (VT_EINVAL); default: return (VT_ERROR); } } /* if it's a metadevice we're done */ if (md_flag) { free(dk_ioc.dki_data); return (0); } /* write backup partition array */ dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1; dk_ioc.dki_length -= vtoc->efi_lbasize; /* LINTED */ dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize); if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { /* * we wrote the primary label okay, so don't fail */ if (efi_debug) { (void) fprintf(stderr, "write of backup partitions to block %llu " "failed, errno %d\n", vtoc->efi_last_u_lba + 1, errno); } } /* * now swap MyLBA and AlternateLBA fields and write backup * partition table header */ dk_ioc.dki_lba = lba_backup_gpt_hdr; dk_ioc.dki_length = vtoc->efi_lbasize; /* LINTED */ dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data - vtoc->efi_lbasize); efi->efi_gpt_AlternateLBA = LE_64(1ULL); efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr); efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1); efi->efi_gpt_HeaderCRC32 = 0; efi->efi_gpt_HeaderCRC32 = LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data, LE_32(efi->efi_gpt_HeaderSize))); if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { if (efi_debug) { (void) fprintf(stderr, "write of backup header to block %llu failed, " "errno %d\n", lba_backup_gpt_hdr, errno); } } /* write the PMBR */ (void) write_pmbr(fd, vtoc); free(dk_ioc.dki_data); return (0); } void efi_free(struct dk_gpt *ptr) { free(ptr); } void efi_err_check(struct dk_gpt *vtoc) { int resv_part = -1; int i, j; diskaddr_t istart, jstart, isize, jsize, endsect; int overlap = 0; /* * make sure no partitions overlap */ for (i = 0; i < vtoc->efi_nparts; i++) { /* It can't be unassigned and have an actual size */ if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && (vtoc->efi_parts[i].p_size != 0)) { (void) fprintf(stderr, "partition %d is \"unassigned\" but has a size " "of %llu\n", i, vtoc->efi_parts[i].p_size); } if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { continue; } if (vtoc->efi_parts[i].p_tag == V_RESERVED) { if (resv_part != -1) { (void) fprintf(stderr, "found duplicate reserved partition at " "%d\n", i); } resv_part = i; if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE) (void) fprintf(stderr, "Warning: reserved partition size must " "be %d sectors\n", EFI_MIN_RESV_SIZE); } if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { (void) fprintf(stderr, "Partition %d starts at %llu\n", i, vtoc->efi_parts[i].p_start); (void) fprintf(stderr, "It must be between %llu and %llu.\n", vtoc->efi_first_u_lba, vtoc->efi_last_u_lba); } if ((vtoc->efi_parts[i].p_start + vtoc->efi_parts[i].p_size < vtoc->efi_first_u_lba) || (vtoc->efi_parts[i].p_start + vtoc->efi_parts[i].p_size > vtoc->efi_last_u_lba + 1)) { (void) fprintf(stderr, "Partition %d ends at %llu\n", i, vtoc->efi_parts[i].p_start + vtoc->efi_parts[i].p_size); (void) fprintf(stderr, "It must be between %llu and %llu.\n", vtoc->efi_first_u_lba, vtoc->efi_last_u_lba); } for (j = 0; j < vtoc->efi_nparts; j++) { isize = vtoc->efi_parts[i].p_size; jsize = vtoc->efi_parts[j].p_size; istart = vtoc->efi_parts[i].p_start; jstart = vtoc->efi_parts[j].p_start; if ((i != j) && (isize != 0) && (jsize != 0)) { endsect = jstart + jsize -1; if ((jstart <= istart) && (istart <= endsect)) { if (!overlap) { (void) fprintf(stderr, "label error: EFI Labels do not " "support overlapping partitions\n"); } (void) fprintf(stderr, "Partition %d overlaps partition " "%d.\n", i, j); overlap = 1; } } } } /* make sure there is a reserved partition */ if (resv_part == -1) { (void) fprintf(stderr, "no reserved partition found\n"); } }