/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2011, 2020 by Delphix. All rights reserved. * Copyright (c) 2014, Joyent, Inc. All rights reserved. * Copyright 2014 HybridCluster. All rights reserved. * Copyright (c) 2018, loli10K . All rights reserved. * Copyright (c) 2019, Klara Inc. * Copyright (c) 2019, Allan Jude */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #endif #include static int zfs_recv_queue_length = SPA_MAXBLOCKSIZE; static int zfs_recv_queue_ff = 20; static int zfs_recv_write_batch_size = 1024 * 1024; static void *const dmu_recv_tag = "dmu_recv_tag"; const char *const recv_clone_name = "%recv"; static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len, void *buf); struct receive_record_arg { dmu_replay_record_t header; void *payload; /* Pointer to a buffer containing the payload */ /* * If the record is a WRITE or SPILL, pointer to the abd containing the * payload. */ abd_t *abd; int payload_size; uint64_t bytes_read; /* bytes read from stream when record created */ boolean_t eos_marker; /* Marks the end of the stream */ bqueue_node_t node; }; struct receive_writer_arg { objset_t *os; boolean_t byteswap; bqueue_t q; /* * These three members are used to signal to the main thread when * we're done. */ kmutex_t mutex; kcondvar_t cv; boolean_t done; int err; boolean_t resumable; boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */ boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */ boolean_t full; /* this is a full send stream */ uint64_t last_object; uint64_t last_offset; uint64_t max_object; /* highest object ID referenced in stream */ uint64_t bytes_read; /* bytes read when current record created */ list_t write_batch; /* Encryption parameters for the last received DRR_OBJECT_RANGE */ boolean_t or_crypt_params_present; uint64_t or_firstobj; uint64_t or_numslots; uint8_t or_salt[ZIO_DATA_SALT_LEN]; uint8_t or_iv[ZIO_DATA_IV_LEN]; uint8_t or_mac[ZIO_DATA_MAC_LEN]; boolean_t or_byteorder; }; typedef struct dmu_recv_begin_arg { const char *drba_origin; dmu_recv_cookie_t *drba_cookie; cred_t *drba_cred; proc_t *drba_proc; dsl_crypto_params_t *drba_dcp; } dmu_recv_begin_arg_t; static void byteswap_record(dmu_replay_record_t *drr) { #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) drr->drr_type = BSWAP_32(drr->drr_type); drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); switch (drr->drr_type) { case DRR_BEGIN: DO64(drr_begin.drr_magic); DO64(drr_begin.drr_versioninfo); DO64(drr_begin.drr_creation_time); DO32(drr_begin.drr_type); DO32(drr_begin.drr_flags); DO64(drr_begin.drr_toguid); DO64(drr_begin.drr_fromguid); break; case DRR_OBJECT: DO64(drr_object.drr_object); DO32(drr_object.drr_type); DO32(drr_object.drr_bonustype); DO32(drr_object.drr_blksz); DO32(drr_object.drr_bonuslen); DO32(drr_object.drr_raw_bonuslen); DO64(drr_object.drr_toguid); DO64(drr_object.drr_maxblkid); break; case DRR_FREEOBJECTS: DO64(drr_freeobjects.drr_firstobj); DO64(drr_freeobjects.drr_numobjs); DO64(drr_freeobjects.drr_toguid); break; case DRR_WRITE: DO64(drr_write.drr_object); DO32(drr_write.drr_type); DO64(drr_write.drr_offset); DO64(drr_write.drr_logical_size); DO64(drr_write.drr_toguid); ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); DO64(drr_write.drr_key.ddk_prop); DO64(drr_write.drr_compressed_size); break; case DRR_WRITE_EMBEDDED: DO64(drr_write_embedded.drr_object); DO64(drr_write_embedded.drr_offset); DO64(drr_write_embedded.drr_length); DO64(drr_write_embedded.drr_toguid); DO32(drr_write_embedded.drr_lsize); DO32(drr_write_embedded.drr_psize); break; case DRR_FREE: DO64(drr_free.drr_object); DO64(drr_free.drr_offset); DO64(drr_free.drr_length); DO64(drr_free.drr_toguid); break; case DRR_SPILL: DO64(drr_spill.drr_object); DO64(drr_spill.drr_length); DO64(drr_spill.drr_toguid); DO64(drr_spill.drr_compressed_size); DO32(drr_spill.drr_type); break; case DRR_OBJECT_RANGE: DO64(drr_object_range.drr_firstobj); DO64(drr_object_range.drr_numslots); DO64(drr_object_range.drr_toguid); break; case DRR_REDACT: DO64(drr_redact.drr_object); DO64(drr_redact.drr_offset); DO64(drr_redact.drr_length); DO64(drr_redact.drr_toguid); break; case DRR_END: DO64(drr_end.drr_toguid); ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); break; default: break; } if (drr->drr_type != DRR_BEGIN) { ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); } #undef DO64 #undef DO32 } static boolean_t redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid) { for (int i = 0; i < num_snaps; i++) { if (snaps[i] == guid) return (B_TRUE); } return (B_FALSE); } /* * Check that the new stream we're trying to receive is redacted with respect to * a subset of the snapshots that the origin was redacted with respect to. For * the reasons behind this, see the man page on redacted zfs sends and receives. */ static boolean_t compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps, uint64_t *redact_snaps, uint64_t num_redact_snaps) { /* * Short circuit the comparison; if we are redacted with respect to * more snapshots than the origin, we can't be redacted with respect * to a subset. */ if (num_redact_snaps > origin_num_snaps) { return (B_FALSE); } for (int i = 0; i < num_redact_snaps; i++) { if (!redact_snaps_contains(origin_snaps, origin_num_snaps, redact_snaps[i])) { return (B_FALSE); } } return (B_TRUE); } static boolean_t redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin) { uint64_t *origin_snaps; uint64_t origin_num_snaps; dmu_recv_cookie_t *drc = drba->drba_cookie; struct drr_begin *drrb = drc->drc_drrb; int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); int err = 0; boolean_t ret = B_TRUE; uint64_t *redact_snaps; uint_t numredactsnaps; /* * If this is a full send stream, we're safe no matter what. */ if (drrb->drr_fromguid == 0) return (ret); VERIFY(dsl_dataset_get_uint64_array_feature(origin, SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps)); if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) == 0) { /* * If the send stream was sent from the redaction bookmark or * the redacted version of the dataset, then we're safe. Verify * that this is from the a compatible redaction bookmark or * redacted dataset. */ if (!compatible_redact_snaps(origin_snaps, origin_num_snaps, redact_snaps, numredactsnaps)) { err = EINVAL; } } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { /* * If the stream is redacted, it must be redacted with respect * to a subset of what the origin is redacted with respect to. * See case number 2 in the zfs man page section on redacted zfs * send. */ err = nvlist_lookup_uint64_array(drc->drc_begin_nvl, BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps); if (err != 0 || !compatible_redact_snaps(origin_snaps, origin_num_snaps, redact_snaps, numredactsnaps)) { err = EINVAL; } } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps, drrb->drr_toguid)) { /* * If the stream isn't redacted but the origin is, this must be * one of the snapshots the origin is redacted with respect to. * See case number 1 in the zfs man page section on redacted zfs * send. */ err = EINVAL; } if (err != 0) ret = B_FALSE; return (ret); } /* * If we previously received a stream with --large-block, we don't support * receiving an incremental on top of it without --large-block. This avoids * forcing a read-modify-write or trying to re-aggregate a string of WRITE * records. */ static int recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags) { if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) && !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS)) return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH)); return (0); } static int recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, uint64_t fromguid, uint64_t featureflags) { uint64_t val; uint64_t children; int error; dsl_pool_t *dp = ds->ds_dir->dd_pool; boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; /* Temporary clone name must not exist. */ error = zap_lookup(dp->dp_meta_objset, dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 8, 1, &val); if (error != ENOENT) return (error == 0 ? SET_ERROR(EBUSY) : error); /* Resume state must not be set. */ if (dsl_dataset_has_resume_receive_state(ds)) return (SET_ERROR(EBUSY)); /* New snapshot name must not exist. */ error = zap_lookup(dp->dp_meta_objset, dsl_dataset_phys(ds)->ds_snapnames_zapobj, drba->drba_cookie->drc_tosnap, 8, 1, &val); if (error != ENOENT) return (error == 0 ? SET_ERROR(EEXIST) : error); /* Must not have children if receiving a ZVOL. */ error = zap_count(dp->dp_meta_objset, dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children); if (error != 0) return (error); if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS && children > 0) return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); /* * Check snapshot limit before receiving. We'll recheck again at the * end, but might as well abort before receiving if we're already over * the limit. * * Note that we do not check the file system limit with * dsl_dir_fscount_check because the temporary %clones don't count * against that limit. */ error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred, drba->drba_proc); if (error != 0) return (error); if (fromguid != 0) { dsl_dataset_t *snap; uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; /* Can't perform a raw receive on top of a non-raw receive */ if (!encrypted && raw) return (SET_ERROR(EINVAL)); /* Encryption is incompatible with embedded data */ if (encrypted && embed) return (SET_ERROR(EINVAL)); /* Find snapshot in this dir that matches fromguid. */ while (obj != 0) { error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap); if (error != 0) return (SET_ERROR(ENODEV)); if (snap->ds_dir != ds->ds_dir) { dsl_dataset_rele(snap, FTAG); return (SET_ERROR(ENODEV)); } if (dsl_dataset_phys(snap)->ds_guid == fromguid) break; obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; dsl_dataset_rele(snap, FTAG); } if (obj == 0) return (SET_ERROR(ENODEV)); if (drba->drba_cookie->drc_force) { drba->drba_cookie->drc_fromsnapobj = obj; } else { /* * If we are not forcing, there must be no * changes since fromsnap. Raw sends have an * additional constraint that requires that * no "noop" snapshots exist between fromsnap * and tosnap for the IVset checking code to * work properly. */ if (dsl_dataset_modified_since_snap(ds, snap) || (raw && dsl_dataset_phys(ds)->ds_prev_snap_obj != snap->ds_object)) { dsl_dataset_rele(snap, FTAG); return (SET_ERROR(ETXTBSY)); } drba->drba_cookie->drc_fromsnapobj = ds->ds_prev->ds_object; } if (dsl_dataset_feature_is_active(snap, SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba, snap)) { dsl_dataset_rele(snap, FTAG); return (SET_ERROR(EINVAL)); } error = recv_check_large_blocks(snap, featureflags); if (error != 0) { dsl_dataset_rele(snap, FTAG); return (error); } dsl_dataset_rele(snap, FTAG); } else { /* if full, then must be forced */ if (!drba->drba_cookie->drc_force) return (SET_ERROR(EEXIST)); /* * We don't support using zfs recv -F to blow away * encrypted filesystems. This would require the * dsl dir to point to the old encryption key and * the new one at the same time during the receive. */ if ((!encrypted && raw) || encrypted) return (SET_ERROR(EINVAL)); /* * Perform the same encryption checks we would if * we were creating a new dataset from scratch. */ if (!raw) { boolean_t will_encrypt; error = dmu_objset_create_crypt_check( ds->ds_dir->dd_parent, drba->drba_dcp, &will_encrypt); if (error != 0) return (error); if (will_encrypt && embed) return (SET_ERROR(EINVAL)); } } return (0); } /* * Check that any feature flags used in the data stream we're receiving are * supported by the pool we are receiving into. * * Note that some of the features we explicitly check here have additional * (implicit) features they depend on, but those dependencies are enforced * through the zfeature_register() calls declaring the features that we * explicitly check. */ static int recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa) { /* * Check if there are any unsupported feature flags. */ if (!DMU_STREAM_SUPPORTED(featureflags)) { return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE)); } /* Verify pool version supports SA if SA_SPILL feature set */ if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && spa_version(spa) < SPA_VERSION_SA) return (SET_ERROR(ENOTSUP)); /* * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks, * and large_dnodes in the stream can only be used if those pool * features are enabled because we don't attempt to decompress / * un-embed / un-mooch / split up the blocks / dnodes during the * receive process. */ if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS)) return (SET_ERROR(ENOTSUP)); if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) && !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS)) return (SET_ERROR(ENOTSUP)); if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) return (SET_ERROR(ENOTSUP)); if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) return (SET_ERROR(ENOTSUP)); if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) return (SET_ERROR(ENOTSUP)); /* * Receiving redacted streams requires that redacted datasets are * enabled. */ if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) && !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS)) return (SET_ERROR(ENOTSUP)); return (0); } static int dmu_recv_begin_check(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dsl_pool_t *dp = dmu_tx_pool(tx); struct drr_begin *drrb = drba->drba_cookie->drc_drrb; uint64_t fromguid = drrb->drr_fromguid; int flags = drrb->drr_flags; ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; int error; uint64_t featureflags = drba->drba_cookie->drc_featureflags; dsl_dataset_t *ds; const char *tofs = drba->drba_cookie->drc_tofs; /* already checked */ ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM || drrb->drr_type >= DMU_OST_NUMTYPES || ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) return (SET_ERROR(EINVAL)); error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa); if (error != 0) return (error); /* Resumable receives require extensible datasets */ if (drba->drba_cookie->drc_resumable && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) return (SET_ERROR(ENOTSUP)); if (featureflags & DMU_BACKUP_FEATURE_RAW) { /* raw receives require the encryption feature */ if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) return (SET_ERROR(ENOTSUP)); /* embedded data is incompatible with encryption and raw recv */ if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) return (SET_ERROR(EINVAL)); /* raw receives require spill block allocation flag */ if (!(flags & DRR_FLAG_SPILL_BLOCK)) return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); } else { /* * We support unencrypted datasets below encrypted ones now, * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing * with a dataset we may encrypt. */ if (drba->drba_dcp != NULL && drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) { dsflags |= DS_HOLD_FLAG_DECRYPT; } } error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); if (error == 0) { /* target fs already exists; recv into temp clone */ /* Can't recv a clone into an existing fs */ if (flags & DRR_FLAG_CLONE || drba->drba_origin) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } error = recv_begin_check_existing_impl(drba, ds, fromguid, featureflags); dsl_dataset_rele_flags(ds, dsflags, FTAG); } else if (error == ENOENT) { /* target fs does not exist; must be a full backup or clone */ char buf[ZFS_MAX_DATASET_NAME_LEN]; objset_t *os; /* * If it's a non-clone incremental, we are missing the * target fs, so fail the recv. */ if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) || drba->drba_origin)) return (SET_ERROR(ENOENT)); /* * If we're receiving a full send as a clone, and it doesn't * contain all the necessary free records and freeobject * records, reject it. */ if (fromguid == 0 && drba->drba_origin != NULL && !(flags & DRR_FLAG_FREERECORDS)) return (SET_ERROR(EINVAL)); /* Open the parent of tofs */ ASSERT3U(strlen(tofs), <, sizeof (buf)); (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); error = dsl_dataset_hold(dp, buf, FTAG, &ds); if (error != 0) return (error); if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && drba->drba_origin == NULL) { boolean_t will_encrypt; /* * Check that we aren't breaking any encryption rules * and that we have all the parameters we need to * create an encrypted dataset if necessary. If we are * making an encrypted dataset the stream can't have * embedded data. */ error = dmu_objset_create_crypt_check(ds->ds_dir, drba->drba_dcp, &will_encrypt); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (will_encrypt && (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } } /* * Check filesystem and snapshot limits before receiving. We'll * recheck snapshot limits again at the end (we create the * filesystems and increment those counts during begin_sync). */ error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred, drba->drba_proc); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred, drba->drba_proc); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } /* can't recv below anything but filesystems (eg. no ZVOLs) */ error = dmu_objset_from_ds(ds, &os); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (dmu_objset_type(os) != DMU_OST_ZFS) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); } if (drba->drba_origin != NULL) { dsl_dataset_t *origin; error = dsl_dataset_hold_flags(dp, drba->drba_origin, dsflags, FTAG, &origin); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (!origin->ds_is_snapshot) { dsl_dataset_rele_flags(origin, dsflags, FTAG); dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } if (dsl_dataset_phys(origin)->ds_guid != fromguid && fromguid != 0) { dsl_dataset_rele_flags(origin, dsflags, FTAG); dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENODEV)); } if (origin->ds_dir->dd_crypto_obj != 0 && (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { dsl_dataset_rele_flags(origin, dsflags, FTAG); dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } /* * If the origin is redacted we need to verify that this * send stream can safely be received on top of the * origin. */ if (dsl_dataset_feature_is_active(origin, SPA_FEATURE_REDACTED_DATASETS)) { if (!redact_check(drba, origin)) { dsl_dataset_rele_flags(origin, dsflags, FTAG); dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } } error = recv_check_large_blocks(ds, featureflags); if (error != 0) { dsl_dataset_rele_flags(origin, dsflags, FTAG); dsl_dataset_rele_flags(ds, dsflags, FTAG); return (error); } dsl_dataset_rele_flags(origin, dsflags, FTAG); } dsl_dataset_rele(ds, FTAG); error = 0; } return (error); } static void dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dsl_pool_t *dp = dmu_tx_pool(tx); objset_t *mos = dp->dp_meta_objset; dmu_recv_cookie_t *drc = drba->drba_cookie; struct drr_begin *drrb = drc->drc_drrb; const char *tofs = drc->drc_tofs; uint64_t featureflags = drc->drc_featureflags; dsl_dataset_t *ds, *newds; objset_t *os; uint64_t dsobj; ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; int error; uint64_t crflags = 0; dsl_crypto_params_t dummy_dcp = { 0 }; dsl_crypto_params_t *dcp = drba->drba_dcp; if (drrb->drr_flags & DRR_FLAG_CI_DATA) crflags |= DS_FLAG_CI_DATASET; if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) dsflags |= DS_HOLD_FLAG_DECRYPT; /* * Raw, non-incremental recvs always use a dummy dcp with * the raw cmd set. Raw incremental recvs do not use a dcp * since the encryption parameters are already set in stone. */ if (dcp == NULL && drrb->drr_fromguid == 0 && drba->drba_origin == NULL) { ASSERT3P(dcp, ==, NULL); dcp = &dummy_dcp; if (featureflags & DMU_BACKUP_FEATURE_RAW) dcp->cp_cmd = DCP_CMD_RAW_RECV; } error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); if (error == 0) { /* create temporary clone */ dsl_dataset_t *snap = NULL; if (drba->drba_cookie->drc_fromsnapobj != 0) { VERIFY0(dsl_dataset_hold_obj(dp, drba->drba_cookie->drc_fromsnapobj, FTAG, &snap)); ASSERT3P(dcp, ==, NULL); } dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, snap, crflags, drba->drba_cred, dcp, tx); if (drba->drba_cookie->drc_fromsnapobj != 0) dsl_dataset_rele(snap, FTAG); dsl_dataset_rele_flags(ds, dsflags, FTAG); } else { dsl_dir_t *dd; const char *tail; dsl_dataset_t *origin = NULL; VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); if (drba->drba_origin != NULL) { VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, FTAG, &origin)); ASSERT3P(dcp, ==, NULL); } /* Create new dataset. */ dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, origin, crflags, drba->drba_cred, dcp, tx); if (origin != NULL) dsl_dataset_rele(origin, FTAG); dsl_dir_rele(dd, FTAG); drc->drc_newfs = B_TRUE; } VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag, &newds)); if (dsl_dataset_feature_is_active(newds, SPA_FEATURE_REDACTED_DATASETS)) { /* * If the origin dataset is redacted, the child will be redacted * when we create it. We clear the new dataset's * redaction info; if it should be redacted, we'll fill * in its information later. */ dsl_dataset_deactivate_feature(newds, SPA_FEATURE_REDACTED_DATASETS, tx); } VERIFY0(dmu_objset_from_ds(newds, &os)); if (drc->drc_resumable) { dsl_dataset_zapify(newds, tx); if (drrb->drr_fromguid != 0) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 8, 1, &drrb->drr_fromguid, tx)); } VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 8, 1, &drrb->drr_toguid, tx)); VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); uint64_t one = 1; uint64_t zero = 0; VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 8, 1, &one, tx)); VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 8, 1, &zero, tx)); VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 8, 1, &zero, tx)); if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 8, 1, &one, tx)); } if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 8, 1, &one, tx)); } if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 8, 1, &one, tx)); } if (featureflags & DMU_BACKUP_FEATURE_RAW) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, 8, 1, &one, tx)); } uint64_t *redact_snaps; uint_t numredactsnaps; if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) == 0) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, sizeof (*redact_snaps), numredactsnaps, redact_snaps, tx)); } } /* * Usually the os->os_encrypted value is tied to the presence of a * DSL Crypto Key object in the dd. However, that will not be received * until dmu_recv_stream(), so we set the value manually for now. */ if (featureflags & DMU_BACKUP_FEATURE_RAW) { os->os_encrypted = B_TRUE; drba->drba_cookie->drc_raw = B_TRUE; } if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { uint64_t *redact_snaps; uint_t numredactsnaps; VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl, BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps)); dsl_dataset_activate_redaction(newds, redact_snaps, numredactsnaps, tx); } dmu_buf_will_dirty(newds->ds_dbuf, tx); dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; /* * If we actually created a non-clone, we need to create the objset * in our new dataset. If this is a raw send we postpone this until * dmu_recv_stream() so that we can allocate the metadnode with the * properties from the DRR_BEGIN payload. */ rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) { (void) dmu_objset_create_impl(dp->dp_spa, newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); } rrw_exit(&newds->ds_bp_rwlock, FTAG); drba->drba_cookie->drc_ds = newds; drba->drba_cookie->drc_os = os; spa_history_log_internal_ds(newds, "receive", tx, " "); } static int dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dmu_recv_cookie_t *drc = drba->drba_cookie; dsl_pool_t *dp = dmu_tx_pool(tx); struct drr_begin *drrb = drc->drc_drrb; int error; ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; dsl_dataset_t *ds; const char *tofs = drc->drc_tofs; /* already checked */ ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING); if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM || drrb->drr_type >= DMU_OST_NUMTYPES) return (SET_ERROR(EINVAL)); /* * This is mostly a sanity check since we should have already done these * checks during a previous attempt to receive the data. */ error = recv_begin_check_feature_flags_impl(drc->drc_featureflags, dp->dp_spa); if (error != 0) return (error); /* 6 extra bytes for /%recv */ char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, recv_clone_name); if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { /* raw receives require spill block allocation flag */ if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)) return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); } else { dsflags |= DS_HOLD_FLAG_DECRYPT; } if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { /* %recv does not exist; continue in tofs */ error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); if (error != 0) return (error); } /* check that ds is marked inconsistent */ if (!DS_IS_INCONSISTENT(ds)) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } /* check that there is resuming data, and that the toguid matches */ if (!dsl_dataset_is_zapified(ds)) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } uint64_t val; error = zap_lookup(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); if (error != 0 || drrb->drr_toguid != val) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } /* * Check if the receive is still running. If so, it will be owned. * Note that nothing else can own the dataset (e.g. after the receive * fails) because it will be marked inconsistent. */ if (dsl_dataset_has_owner(ds)) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EBUSY)); } /* There should not be any snapshots of this fs yet. */ if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } /* * Note: resume point will be checked when we process the first WRITE * record. */ /* check that the origin matches */ val = 0; (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); if (drrb->drr_fromguid != val) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } if (ds->ds_prev != NULL && drrb->drr_fromguid != 0) drc->drc_fromsnapobj = ds->ds_prev->ds_object; /* * If we're resuming, and the send is redacted, then the original send * must have been redacted, and must have been redacted with respect to * the same snapshots. */ if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) { uint64_t num_ds_redact_snaps; uint64_t *ds_redact_snaps; uint_t num_stream_redact_snaps; uint64_t *stream_redact_snaps; if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, BEGINNV_REDACT_SNAPS, &stream_redact_snaps, &num_stream_redact_snaps) != 0) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } if (!dsl_dataset_get_uint64_array_feature(ds, SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps, &ds_redact_snaps)) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } for (int i = 0; i < num_ds_redact_snaps; i++) { if (!redact_snaps_contains(ds_redact_snaps, num_ds_redact_snaps, stream_redact_snaps[i])) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } } } error = recv_check_large_blocks(ds, drc->drc_featureflags); if (error != 0) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (error); } dsl_dataset_rele_flags(ds, dsflags, FTAG); return (0); } static void dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dsl_pool_t *dp = dmu_tx_pool(tx); const char *tofs = drba->drba_cookie->drc_tofs; uint64_t featureflags = drba->drba_cookie->drc_featureflags; dsl_dataset_t *ds; ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; /* 6 extra bytes for /%recv */ char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, recv_clone_name); if (featureflags & DMU_BACKUP_FEATURE_RAW) { drba->drba_cookie->drc_raw = B_TRUE; } else { dsflags |= DS_HOLD_FLAG_DECRYPT; } if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds) != 0) { /* %recv does not exist; continue in tofs */ VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag, &ds)); drba->drba_cookie->drc_newfs = B_TRUE; } ASSERT(DS_IS_INCONSISTENT(ds)); rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || drba->drba_cookie->drc_raw); rrw_exit(&ds->ds_bp_rwlock, FTAG); drba->drba_cookie->drc_ds = ds; VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os)); drba->drba_cookie->drc_should_save = B_TRUE; spa_history_log_internal_ds(ds, "resume receive", tx, " "); } /* * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() * succeeds; otherwise we will leak the holds on the datasets. */ int dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, boolean_t force, boolean_t resumable, nvlist_t *localprops, nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc, zfs_file_t *fp, offset_t *voffp) { dmu_recv_begin_arg_t drba = { 0 }; int err; bzero(drc, sizeof (dmu_recv_cookie_t)); drc->drc_drr_begin = drr_begin; drc->drc_drrb = &drr_begin->drr_u.drr_begin; drc->drc_tosnap = tosnap; drc->drc_tofs = tofs; drc->drc_force = force; drc->drc_resumable = resumable; drc->drc_cred = CRED(); drc->drc_proc = curproc; drc->drc_clone = (origin != NULL); if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { drc->drc_byteswap = B_TRUE; (void) fletcher_4_incremental_byteswap(drr_begin, sizeof (dmu_replay_record_t), &drc->drc_cksum); byteswap_record(drr_begin); } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { (void) fletcher_4_incremental_native(drr_begin, sizeof (dmu_replay_record_t), &drc->drc_cksum); } else { return (SET_ERROR(EINVAL)); } drc->drc_fp = fp; drc->drc_voff = *voffp; drc->drc_featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; void *payload = NULL; if (payloadlen != 0) payload = kmem_alloc(payloadlen, KM_SLEEP); err = receive_read_payload_and_next_header(drc, payloadlen, payload); if (err != 0) { kmem_free(payload, payloadlen); return (err); } if (payloadlen != 0) { err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl, KM_SLEEP); kmem_free(payload, payloadlen); if (err != 0) { kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); return (err); } } if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK) drc->drc_spill = B_TRUE; drba.drba_origin = origin; drba.drba_cookie = drc; drba.drba_cred = CRED(); drba.drba_proc = curproc; if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { err = dsl_sync_task(tofs, dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, &drba, 5, ZFS_SPACE_CHECK_NORMAL); } else { /* * For non-raw, non-incremental, non-resuming receives the * user can specify encryption parameters on the command line * with "zfs recv -o". For these receives we create a dcp and * pass it to the sync task. Creating the dcp will implicitly * remove the encryption params from the localprops nvlist, * which avoids errors when trying to set these normally * read-only properties. Any other kind of receive that * attempts to set these properties will fail as a result. */ if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & DMU_BACKUP_FEATURE_RAW) == 0 && origin == NULL && drc->drc_drrb->drr_fromguid == 0) { err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, localprops, hidden_args, &drba.drba_dcp); } if (err == 0) { err = dsl_sync_task(tofs, dmu_recv_begin_check, dmu_recv_begin_sync, &drba, 5, ZFS_SPACE_CHECK_NORMAL); dsl_crypto_params_free(drba.drba_dcp, !!err); } } if (err != 0) { kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); nvlist_free(drc->drc_begin_nvl); } return (err); } static int receive_read(dmu_recv_cookie_t *drc, int len, void *buf) { int done = 0; /* * The code doesn't rely on this (lengths being multiples of 8). See * comment in dump_bytes. */ ASSERT(len % 8 == 0 || (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0); while (done < len) { ssize_t resid; zfs_file_t *fp = drc->drc_fp; int err = zfs_file_read(fp, (char *)buf + done, len - done, &resid); if (resid == len - done) { /* * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates * that the receive was interrupted and can * potentially be resumed. */ err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED); } drc->drc_voff += len - done - resid; done = len - resid; if (err != 0) return (err); } drc->drc_bytes_read += len; ASSERT3U(done, ==, len); return (0); } static inline uint8_t deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) { if (bonus_type == DMU_OT_SA) { return (1); } else { return (1 + ((DN_OLD_MAX_BONUSLEN - MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); } } static void save_resume_state(struct receive_writer_arg *rwa, uint64_t object, uint64_t offset, dmu_tx_t *tx) { int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; if (!rwa->resumable) return; /* * We use ds_resume_bytes[] != 0 to indicate that we need to * update this on disk, so it must not be 0. */ ASSERT(rwa->bytes_read != 0); /* * We only resume from write records, which have a valid * (non-meta-dnode) object number. */ ASSERT(object != 0); /* * For resuming to work correctly, we must receive records in order, * sorted by object,offset. This is checked by the callers, but * assert it here for good measure. */ ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); ASSERT3U(rwa->bytes_read, >=, rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; } static int receive_object_is_same_generation(objset_t *os, uint64_t object, dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type, const void *new_bonus, boolean_t *samegenp) { zfs_file_info_t zoi; int err; dmu_buf_t *old_bonus_dbuf; err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf); if (err != 0) return (err); err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data, &zoi); dmu_buf_rele(old_bonus_dbuf, FTAG); if (err != 0) return (err); uint64_t old_gen = zoi.zfi_generation; err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi); if (err != 0) return (err); uint64_t new_gen = zoi.zfi_generation; *samegenp = (old_gen == new_gen); return (0); } static int receive_handle_existing_object(const struct receive_writer_arg *rwa, const struct drr_object *drro, const dmu_object_info_t *doi, const void *bonus_data, uint64_t *object_to_hold, uint32_t *new_blksz) { uint32_t indblksz = drro->drr_indblkshift ? 1ULL << drro->drr_indblkshift : 0; int nblkptr = deduce_nblkptr(drro->drr_bonustype, drro->drr_bonuslen); uint8_t dn_slots = drro->drr_dn_slots != 0 ? drro->drr_dn_slots : DNODE_MIN_SLOTS; boolean_t do_free_range = B_FALSE; int err; *object_to_hold = drro->drr_object; /* nblkptr should be bounded by the bonus size and type */ if (rwa->raw && nblkptr != drro->drr_nblkptr) return (SET_ERROR(EINVAL)); /* * After the previous send stream, the sending system may * have freed this object, and then happened to re-allocate * this object number in a later txg. In this case, we are * receiving a different logical file, and the block size may * appear to be different. i.e. we may have a different * block size for this object than what the send stream says. * In this case we need to remove the object's contents, * so that its structure can be changed and then its contents * entirely replaced by subsequent WRITE records. * * If this is a -L (--large-block) incremental stream, and * the previous stream was not -L, the block size may appear * to increase. i.e. we may have a smaller block size for * this object than what the send stream says. In this case * we need to keep the object's contents and block size * intact, so that we don't lose parts of the object's * contents that are not changed by this incremental send * stream. * * We can distinguish between the two above cases by using * the ZPL's generation number (see * receive_object_is_same_generation()). However, we only * want to rely on the generation number when absolutely * necessary, because with raw receives, the generation is * encrypted. We also want to minimize dependence on the * ZPL, so that other types of datasets can also be received * (e.g. ZVOLs, although note that ZVOLS currently do not * reallocate their objects or change their structure). * Therefore, we check a number of different cases where we * know it is safe to discard the object's contents, before * using the ZPL's generation number to make the above * distinction. */ if (drro->drr_blksz != doi->doi_data_block_size) { if (rwa->raw) { /* * RAW streams always have large blocks, so * we are sure that the data is not needed * due to changing --large-block to be on. * Which is fortunate since the bonus buffer * (which contains the ZPL generation) is * encrypted, and the key might not be * loaded. */ do_free_range = B_TRUE; } else if (rwa->full) { /* * This is a full send stream, so it always * replaces what we have. Even if the * generation numbers happen to match, this * can not actually be the same logical file. * This is relevant when receiving a full * send as a clone. */ do_free_range = B_TRUE; } else if (drro->drr_type != DMU_OT_PLAIN_FILE_CONTENTS || doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) { /* * PLAIN_FILE_CONTENTS are the only type of * objects that have ever been stored with * large blocks, so we don't need the special * logic below. ZAP blocks can shrink (when * there's only one block), so we don't want * to hit the error below about block size * only increasing. */ do_free_range = B_TRUE; } else if (doi->doi_max_offset <= doi->doi_data_block_size) { /* * There is only one block. We can free it, * because its contents will be replaced by a * WRITE record. This can not be the no-L -> * -L case, because the no-L case would have * resulted in multiple blocks. If we * supported -L -> no-L, it would not be safe * to free the file's contents. Fortunately, * that is not allowed (see * recv_check_large_blocks()). */ do_free_range = B_TRUE; } else { boolean_t is_same_gen; err = receive_object_is_same_generation(rwa->os, drro->drr_object, doi->doi_bonus_type, drro->drr_bonustype, bonus_data, &is_same_gen); if (err != 0) return (SET_ERROR(EINVAL)); if (is_same_gen) { /* * This is the same logical file, and * the block size must be increasing. * It could only decrease if * --large-block was changed to be * off, which is checked in * recv_check_large_blocks(). */ if (drro->drr_blksz <= doi->doi_data_block_size) return (SET_ERROR(EINVAL)); /* * We keep the existing blocksize and * contents. */ *new_blksz = doi->doi_data_block_size; } else { do_free_range = B_TRUE; } } } /* nblkptr can only decrease if the object was reallocated */ if (nblkptr < doi->doi_nblkptr) do_free_range = B_TRUE; /* number of slots can only change on reallocation */ if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) do_free_range = B_TRUE; /* * For raw sends we also check a few other fields to * ensure we are preserving the objset structure exactly * as it was on the receive side: * - A changed indirect block size * - A smaller nlevels */ if (rwa->raw) { if (indblksz != doi->doi_metadata_block_size) do_free_range = B_TRUE; if (drro->drr_nlevels < doi->doi_indirection) do_free_range = B_TRUE; } if (do_free_range) { err = dmu_free_long_range(rwa->os, drro->drr_object, 0, DMU_OBJECT_END); if (err != 0) return (SET_ERROR(EINVAL)); } /* * The dmu does not currently support decreasing nlevels * or changing the number of dnode slots on an object. For * non-raw sends, this does not matter and the new object * can just use the previous one's nlevels. For raw sends, * however, the structure of the received dnode (including * nlevels and dnode slots) must match that of the send * side. Therefore, instead of using dmu_object_reclaim(), * we must free the object completely and call * dmu_object_claim_dnsize() instead. */ if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) || dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) { err = dmu_free_long_object(rwa->os, drro->drr_object); if (err != 0) return (SET_ERROR(EINVAL)); txg_wait_synced(dmu_objset_pool(rwa->os), 0); *object_to_hold = DMU_NEW_OBJECT; } /* * For raw receives, free everything beyond the new incoming * maxblkid. Normally this would be done with a DRR_FREE * record that would come after this DRR_OBJECT record is * processed. However, for raw receives we manually set the * maxblkid from the drr_maxblkid and so we must first free * everything above that blkid to ensure the DMU is always * consistent with itself. We will never free the first block * of the object here because a maxblkid of 0 could indicate * an object with a single block or one with no blocks. This * free may be skipped when dmu_free_long_range() was called * above since it covers the entire object's contents. */ if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) { err = dmu_free_long_range(rwa->os, drro->drr_object, (drro->drr_maxblkid + 1) * doi->doi_data_block_size, DMU_OBJECT_END); if (err != 0) return (SET_ERROR(EINVAL)); } return (0); } noinline static int receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, void *data) { dmu_object_info_t doi; dmu_tx_t *tx; int err; uint32_t new_blksz = drro->drr_blksz; uint8_t dn_slots = drro->drr_dn_slots != 0 ? drro->drr_dn_slots : DNODE_MIN_SLOTS; if (drro->drr_type == DMU_OT_NONE || !DMU_OT_IS_VALID(drro->drr_type) || !DMU_OT_IS_VALID(drro->drr_bonustype) || drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || drro->drr_blksz < SPA_MINBLOCKSIZE || drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || drro->drr_bonuslen > DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || dn_slots > (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { return (SET_ERROR(EINVAL)); } if (rwa->raw) { /* * We should have received a DRR_OBJECT_RANGE record * containing this block and stored it in rwa. */ if (drro->drr_object < rwa->or_firstobj || drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || drro->drr_raw_bonuslen < drro->drr_bonuslen || drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || drro->drr_nlevels > DN_MAX_LEVELS || drro->drr_nblkptr > DN_MAX_NBLKPTR || DN_SLOTS_TO_BONUSLEN(dn_slots) < drro->drr_raw_bonuslen) return (SET_ERROR(EINVAL)); } else { /* * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN * record indicates this by setting DRR_FLAG_SPILL_BLOCK. */ if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) || (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) { return (SET_ERROR(EINVAL)); } if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 || drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) { return (SET_ERROR(EINVAL)); } } err = dmu_object_info(rwa->os, drro->drr_object, &doi); if (err != 0 && err != ENOENT && err != EEXIST) return (SET_ERROR(EINVAL)); if (drro->drr_object > rwa->max_object) rwa->max_object = drro->drr_object; /* * If we are losing blkptrs or changing the block size this must * be a new file instance. We must clear out the previous file * contents before we can change this type of metadata in the dnode. * Raw receives will also check that the indirect structure of the * dnode hasn't changed. */ uint64_t object_to_hold; if (err == 0) { err = receive_handle_existing_object(rwa, drro, &doi, data, &object_to_hold, &new_blksz); } else if (err == EEXIST) { /* * The object requested is currently an interior slot of a * multi-slot dnode. This will be resolved when the next txg * is synced out, since the send stream will have told us * to free this slot when we freed the associated dnode * earlier in the stream. */ txg_wait_synced(dmu_objset_pool(rwa->os), 0); if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT) return (SET_ERROR(EINVAL)); /* object was freed and we are about to allocate a new one */ object_to_hold = DMU_NEW_OBJECT; } else { /* object is free and we are about to allocate a new one */ object_to_hold = DMU_NEW_OBJECT; } /* * If this is a multi-slot dnode there is a chance that this * object will expand into a slot that is already used by * another object from the previous snapshot. We must free * these objects before we attempt to allocate the new dnode. */ if (dn_slots > 1) { boolean_t need_sync = B_FALSE; for (uint64_t slot = drro->drr_object + 1; slot < drro->drr_object + dn_slots; slot++) { dmu_object_info_t slot_doi; err = dmu_object_info(rwa->os, slot, &slot_doi); if (err == ENOENT || err == EEXIST) continue; else if (err != 0) return (err); err = dmu_free_long_object(rwa->os, slot); if (err != 0) return (err); need_sync = B_TRUE; } if (need_sync) txg_wait_synced(dmu_objset_pool(rwa->os), 0); } tx = dmu_tx_create(rwa->os); dmu_tx_hold_bonus(tx, object_to_hold); dmu_tx_hold_write(tx, object_to_hold, 0, 0); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); return (err); } if (object_to_hold == DMU_NEW_OBJECT) { /* Currently free, wants to be allocated */ err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, drro->drr_type, new_blksz, drro->drr_bonustype, drro->drr_bonuslen, dn_slots << DNODE_SHIFT, tx); } else if (drro->drr_type != doi.doi_type || new_blksz != doi.doi_data_block_size || drro->drr_bonustype != doi.doi_bonus_type || drro->drr_bonuslen != doi.doi_bonus_size) { /* Currently allocated, but with different properties */ err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, drro->drr_type, new_blksz, drro->drr_bonustype, drro->drr_bonuslen, dn_slots << DNODE_SHIFT, rwa->spill ? DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx); } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) { /* * Currently allocated, the existing version of this object * may reference a spill block that is no longer allocated * at the source and needs to be freed. */ err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx); } if (err != 0) { dmu_tx_commit(tx); return (SET_ERROR(EINVAL)); } if (rwa->or_crypt_params_present) { /* * Set the crypt params for the buffer associated with this * range of dnodes. This causes the blkptr_t to have the * same crypt params (byteorder, salt, iv, mac) as on the * sending side. * * Since we are committing this tx now, it is possible for * the dnode block to end up on-disk with the incorrect MAC, * if subsequent objects in this block are received in a * different txg. However, since the dataset is marked as * inconsistent, no code paths will do a non-raw read (or * decrypt the block / verify the MAC). The receive code and * scrub code can safely do raw reads and verify the * checksum. They don't need to verify the MAC. */ dmu_buf_t *db = NULL; uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); if (err != 0) { dmu_tx_commit(tx); return (SET_ERROR(EINVAL)); } dmu_buf_set_crypt_params(db, rwa->or_byteorder, rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); dmu_buf_rele(db, FTAG); rwa->or_crypt_params_present = B_FALSE; } dmu_object_set_checksum(rwa->os, drro->drr_object, drro->drr_checksumtype, tx); dmu_object_set_compress(rwa->os, drro->drr_object, drro->drr_compress, tx); /* handle more restrictive dnode structuring for raw recvs */ if (rwa->raw) { /* * Set the indirect block size, block shift, nlevels. * This will not fail because we ensured all of the * blocks were freed earlier if this is a new object. * For non-new objects block size and indirect block * shift cannot change and nlevels can only increase. */ ASSERT3U(new_blksz, ==, drro->drr_blksz); VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, drro->drr_blksz, drro->drr_indblkshift, tx)); VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, drro->drr_nlevels, tx)); /* * Set the maxblkid. This will always succeed because * we freed all blocks beyond the new maxblkid above. */ VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, drro->drr_maxblkid, tx)); } if (data != NULL) { dmu_buf_t *db; dnode_t *dn; uint32_t flags = DMU_READ_NO_PREFETCH; if (rwa->raw) flags |= DMU_READ_NO_DECRYPT; VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn)); VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags)); dmu_buf_will_dirty(db, tx); ASSERT3U(db->db_size, >=, drro->drr_bonuslen); bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro)); /* * Raw bonus buffers have their byteorder determined by the * DRR_OBJECT_RANGE record. */ if (rwa->byteswap && !rwa->raw) { dmu_object_byteswap_t byteswap = DMU_OT_BYTESWAP(drro->drr_bonustype); dmu_ot_byteswap[byteswap].ob_func(db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro)); } dmu_buf_rele(db, FTAG); dnode_rele(dn, FTAG); } dmu_tx_commit(tx); return (0); } noinline static int receive_freeobjects(struct receive_writer_arg *rwa, struct drr_freeobjects *drrfo) { uint64_t obj; int next_err = 0; if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) return (SET_ERROR(EINVAL)); for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; obj < drrfo->drr_firstobj + drrfo->drr_numobjs && obj < DN_MAX_OBJECT && next_err == 0; next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { dmu_object_info_t doi; int err; err = dmu_object_info(rwa->os, obj, &doi); if (err == ENOENT) continue; else if (err != 0) return (err); err = dmu_free_long_object(rwa->os, obj); if (err != 0) return (err); } if (next_err != ESRCH) return (next_err); return (0); } /* * Note: if this fails, the caller will clean up any records left on the * rwa->write_batch list. */ static int flush_write_batch_impl(struct receive_writer_arg *rwa) { dnode_t *dn; int err; if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0) return (SET_ERROR(EINVAL)); struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch); struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write; struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; ASSERT3U(rwa->last_object, ==, last_drrw->drr_object); ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset); dmu_tx_t *tx = dmu_tx_create(rwa->os); dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset, last_drrw->drr_offset - first_drrw->drr_offset + last_drrw->drr_logical_size); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); dnode_rele(dn, FTAG); return (err); } struct receive_record_arg *rrd; while ((rrd = list_head(&rwa->write_batch)) != NULL) { struct drr_write *drrw = &rrd->header.drr_u.drr_write; abd_t *abd = rrd->abd; ASSERT3U(drrw->drr_object, ==, rwa->last_object); if (drrw->drr_logical_size != dn->dn_datablksz) { /* * The WRITE record is larger than the object's block * size. We must be receiving an incremental * large-block stream into a dataset that previously did * a non-large-block receive. Lightweight writes must * be exactly one block, so we need to decompress the * data (if compressed) and do a normal dmu_write(). */ ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz); if (DRR_WRITE_COMPRESSED(drrw)) { abd_t *decomp_abd = abd_alloc_linear(drrw->drr_logical_size, B_FALSE); err = zio_decompress_data( drrw->drr_compressiontype, abd, abd_to_buf(decomp_abd), abd_get_size(abd), abd_get_size(decomp_abd), NULL); if (err == 0) { dmu_write_by_dnode(dn, drrw->drr_offset, drrw->drr_logical_size, abd_to_buf(decomp_abd), tx); } abd_free(decomp_abd); } else { dmu_write_by_dnode(dn, drrw->drr_offset, drrw->drr_logical_size, abd_to_buf(abd), tx); } if (err == 0) abd_free(abd); } else { zio_prop_t zp; dmu_write_policy(rwa->os, dn, 0, 0, &zp); enum zio_flag zio_flags = 0; if (rwa->raw) { zp.zp_encrypt = B_TRUE; zp.zp_compress = drrw->drr_compressiontype; zp.zp_byteorder = ZFS_HOST_BYTEORDER ^ !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ rwa->byteswap; bcopy(drrw->drr_salt, zp.zp_salt, ZIO_DATA_SALT_LEN); bcopy(drrw->drr_iv, zp.zp_iv, ZIO_DATA_IV_LEN); bcopy(drrw->drr_mac, zp.zp_mac, ZIO_DATA_MAC_LEN); if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) { zp.zp_nopwrite = B_FALSE; zp.zp_copies = MIN(zp.zp_copies, SPA_DVAS_PER_BP - 1); } zio_flags |= ZIO_FLAG_RAW; } else if (DRR_WRITE_COMPRESSED(drrw)) { ASSERT3U(drrw->drr_compressed_size, >, 0); ASSERT3U(drrw->drr_logical_size, >=, drrw->drr_compressed_size); zp.zp_compress = drrw->drr_compressiontype; zio_flags |= ZIO_FLAG_RAW_COMPRESS; } else if (rwa->byteswap) { /* * Note: compressed blocks never need to be * byteswapped, because WRITE records for * metadata blocks are never compressed. The * exception is raw streams, which are written * in the original byteorder, and the byteorder * bit is preserved in the BP by setting * zp_byteorder above. */ dmu_object_byteswap_t byteswap = DMU_OT_BYTESWAP(drrw->drr_type); dmu_ot_byteswap[byteswap].ob_func( abd_to_buf(abd), DRR_WRITE_PAYLOAD_SIZE(drrw)); } /* * Since this data can't be read until the receive * completes, we can do a "lightweight" write for * improved performance. */ err = dmu_lightweight_write_by_dnode(dn, drrw->drr_offset, abd, &zp, zio_flags, tx); } if (err != 0) { /* * This rrd is left on the list, so the caller will * free it (and the abd). */ break; } /* * Note: If the receive fails, we want the resume stream to * start with the same record that we last successfully * received (as opposed to the next record), so that we can * verify that we are resuming from the correct location. */ save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); list_remove(&rwa->write_batch, rrd); kmem_free(rrd, sizeof (*rrd)); } dmu_tx_commit(tx); dnode_rele(dn, FTAG); return (err); } noinline static int flush_write_batch(struct receive_writer_arg *rwa) { if (list_is_empty(&rwa->write_batch)) return (0); int err = rwa->err; if (err == 0) err = flush_write_batch_impl(rwa); if (err != 0) { struct receive_record_arg *rrd; while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) { abd_free(rrd->abd); kmem_free(rrd, sizeof (*rrd)); } } ASSERT(list_is_empty(&rwa->write_batch)); return (err); } noinline static int receive_process_write_record(struct receive_writer_arg *rwa, struct receive_record_arg *rrd) { int err = 0; ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE); struct drr_write *drrw = &rrd->header.drr_u.drr_write; if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || !DMU_OT_IS_VALID(drrw->drr_type)) return (SET_ERROR(EINVAL)); /* * For resuming to work, records must be in increasing order * by (object, offset). */ if (drrw->drr_object < rwa->last_object || (drrw->drr_object == rwa->last_object && drrw->drr_offset < rwa->last_offset)) { return (SET_ERROR(EINVAL)); } struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; uint64_t batch_size = MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2); if (first_rrd != NULL && (drrw->drr_object != first_drrw->drr_object || drrw->drr_offset >= first_drrw->drr_offset + batch_size)) { err = flush_write_batch(rwa); if (err != 0) return (err); } rwa->last_object = drrw->drr_object; rwa->last_offset = drrw->drr_offset; if (rwa->last_object > rwa->max_object) rwa->max_object = rwa->last_object; list_insert_tail(&rwa->write_batch, rrd); /* * Return EAGAIN to indicate that we will use this rrd again, * so the caller should not free it */ return (EAGAIN); } static int receive_write_embedded(struct receive_writer_arg *rwa, struct drr_write_embedded *drrwe, void *data) { dmu_tx_t *tx; int err; if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) return (SET_ERROR(EINVAL)); if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) return (SET_ERROR(EINVAL)); if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) return (SET_ERROR(EINVAL)); if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) return (SET_ERROR(EINVAL)); if (rwa->raw) return (SET_ERROR(EINVAL)); if (drrwe->drr_object > rwa->max_object) rwa->max_object = drrwe->drr_object; tx = dmu_tx_create(rwa->os); dmu_tx_hold_write(tx, drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); return (err); } dmu_write_embedded(rwa->os, drrwe->drr_object, drrwe->drr_offset, data, drrwe->drr_etype, drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); /* See comment in restore_write. */ save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); dmu_tx_commit(tx); return (0); } static int receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, abd_t *abd) { dmu_buf_t *db, *db_spill; int err; if (drrs->drr_length < SPA_MINBLOCKSIZE || drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) return (SET_ERROR(EINVAL)); /* * This is an unmodified spill block which was added to the stream * to resolve an issue with incorrectly removing spill blocks. It * should be ignored by current versions of the code which support * the DRR_FLAG_SPILL_BLOCK flag. */ if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) { abd_free(abd); return (0); } if (rwa->raw) { if (!DMU_OT_IS_VALID(drrs->drr_type) || drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || drrs->drr_compressed_size == 0) return (SET_ERROR(EINVAL)); } if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) return (SET_ERROR(EINVAL)); if (drrs->drr_object > rwa->max_object) rwa->max_object = drrs->drr_object; VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, &db_spill)) != 0) { dmu_buf_rele(db, FTAG); return (err); } dmu_tx_t *tx = dmu_tx_create(rwa->os); dmu_tx_hold_spill(tx, db->db_object); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_buf_rele(db, FTAG); dmu_buf_rele(db_spill, FTAG); dmu_tx_abort(tx); return (err); } /* * Spill blocks may both grow and shrink. When a change in size * occurs any existing dbuf must be updated to match the logical * size of the provided arc_buf_t. */ if (db_spill->db_size != drrs->drr_length) { dmu_buf_will_fill(db_spill, tx); VERIFY0(dbuf_spill_set_blksz(db_spill, drrs->drr_length, tx)); } arc_buf_t *abuf; if (rwa->raw) { boolean_t byteorder = ZFS_HOST_BYTEORDER ^ !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ rwa->byteswap; abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os), drrs->drr_object, byteorder, drrs->drr_salt, drrs->drr_iv, drrs->drr_mac, drrs->drr_type, drrs->drr_compressed_size, drrs->drr_length, drrs->drr_compressiontype, 0); } else { abuf = arc_loan_buf(dmu_objset_spa(rwa->os), DMU_OT_IS_METADATA(drrs->drr_type), drrs->drr_length); if (rwa->byteswap) { dmu_object_byteswap_t byteswap = DMU_OT_BYTESWAP(drrs->drr_type); dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs)); } } bcopy(abd_to_buf(abd), abuf->b_data, DRR_SPILL_PAYLOAD_SIZE(drrs)); abd_free(abd); dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); dmu_buf_rele(db, FTAG); dmu_buf_rele(db_spill, FTAG); dmu_tx_commit(tx); return (0); } noinline static int receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) { int err; if (drrf->drr_length != -1ULL && drrf->drr_offset + drrf->drr_length < drrf->drr_offset) return (SET_ERROR(EINVAL)); if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) return (SET_ERROR(EINVAL)); if (drrf->drr_object > rwa->max_object) rwa->max_object = drrf->drr_object; err = dmu_free_long_range(rwa->os, drrf->drr_object, drrf->drr_offset, drrf->drr_length); return (err); } static int receive_object_range(struct receive_writer_arg *rwa, struct drr_object_range *drror) { /* * By default, we assume this block is in our native format * (ZFS_HOST_BYTEORDER). We then take into account whether * the send stream is byteswapped (rwa->byteswap). Finally, * we need to byteswap again if this particular block was * in non-native format on the send side. */ boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); /* * Since dnode block sizes are constant, we should not need to worry * about making sure that the dnode block size is the same on the * sending and receiving sides for the time being. For non-raw sends, * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE * record at all). Raw sends require this record type because the * encryption parameters are used to protect an entire block of bonus * buffers. If the size of dnode blocks ever becomes variable, * handling will need to be added to ensure that dnode block sizes * match on the sending and receiving side. */ if (drror->drr_numslots != DNODES_PER_BLOCK || P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || !rwa->raw) return (SET_ERROR(EINVAL)); if (drror->drr_firstobj > rwa->max_object) rwa->max_object = drror->drr_firstobj; /* * The DRR_OBJECT_RANGE handling must be deferred to receive_object() * so that the block of dnodes is not written out when it's empty, * and converted to a HOLE BP. */ rwa->or_crypt_params_present = B_TRUE; rwa->or_firstobj = drror->drr_firstobj; rwa->or_numslots = drror->drr_numslots; bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN); bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN); bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN); rwa->or_byteorder = byteorder; return (0); } /* * Until we have the ability to redact large ranges of data efficiently, we * process these records as frees. */ noinline static int receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr) { struct drr_free drrf = {0}; drrf.drr_length = drrr->drr_length; drrf.drr_object = drrr->drr_object; drrf.drr_offset = drrr->drr_offset; drrf.drr_toguid = drrr->drr_toguid; return (receive_free(rwa, &drrf)); } /* used to destroy the drc_ds on error */ static void dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) { dsl_dataset_t *ds = drc->drc_ds; ds_hold_flags_t dsflags; dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; /* * Wait for the txg sync before cleaning up the receive. For * resumable receives, this ensures that our resume state has * been written out to disk. For raw receives, this ensures * that the user accounting code will not attempt to do anything * after we stopped receiving the dataset. */ txg_wait_synced(ds->ds_dir->dd_pool, 0); ds->ds_objset->os_raw_receive = B_FALSE; rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); if (drc->drc_resumable && drc->drc_should_save && !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { rrw_exit(&ds->ds_bp_rwlock, FTAG); dsl_dataset_disown(ds, dsflags, dmu_recv_tag); } else { char name[ZFS_MAX_DATASET_NAME_LEN]; rrw_exit(&ds->ds_bp_rwlock, FTAG); dsl_dataset_name(ds, name); dsl_dataset_disown(ds, dsflags, dmu_recv_tag); (void) dsl_destroy_head(name); } } static void receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf) { if (drc->drc_byteswap) { (void) fletcher_4_incremental_byteswap(buf, len, &drc->drc_cksum); } else { (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum); } } /* * Read the payload into a buffer of size len, and update the current record's * payload field. * Allocate drc->drc_next_rrd and read the next record's header into * drc->drc_next_rrd->header. * Verify checksum of payload and next record. */ static int receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf) { int err; if (len != 0) { ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); err = receive_read(drc, len, buf); if (err != 0) return (err); receive_cksum(drc, len, buf); /* note: rrd is NULL when reading the begin record's payload */ if (drc->drc_rrd != NULL) { drc->drc_rrd->payload = buf; drc->drc_rrd->payload_size = len; drc->drc_rrd->bytes_read = drc->drc_bytes_read; } } else { ASSERT3P(buf, ==, NULL); } drc->drc_prev_cksum = drc->drc_cksum; drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP); err = receive_read(drc, sizeof (drc->drc_next_rrd->header), &drc->drc_next_rrd->header); drc->drc_next_rrd->bytes_read = drc->drc_bytes_read; if (err != 0) { kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); drc->drc_next_rrd = NULL; return (err); } if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) { kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); drc->drc_next_rrd = NULL; return (SET_ERROR(EINVAL)); } /* * Note: checksum is of everything up to but not including the * checksum itself. */ ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); receive_cksum(drc, offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), &drc->drc_next_rrd->header); zio_cksum_t cksum_orig = drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; zio_cksum_t *cksump = &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; if (drc->drc_byteswap) byteswap_record(&drc->drc_next_rrd->header); if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) { kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); drc->drc_next_rrd = NULL; return (SET_ERROR(ECKSUM)); } receive_cksum(drc, sizeof (cksum_orig), &cksum_orig); return (0); } /* * Issue the prefetch reads for any necessary indirect blocks. * * We use the object ignore list to tell us whether or not to issue prefetches * for a given object. We do this for both correctness (in case the blocksize * of an object has changed) and performance (if the object doesn't exist, don't * needlessly try to issue prefetches). We also trim the list as we go through * the stream to prevent it from growing to an unbounded size. * * The object numbers within will always be in sorted order, and any write * records we see will also be in sorted order, but they're not sorted with * respect to each other (i.e. we can get several object records before * receiving each object's write records). As a result, once we've reached a * given object number, we can safely remove any reference to lower object * numbers in the ignore list. In practice, we receive up to 32 object records * before receiving write records, so the list can have up to 32 nodes in it. */ static void receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset, uint64_t length) { if (!objlist_exists(drc->drc_ignore_objlist, object)) { dmu_prefetch(drc->drc_os, object, 1, offset, length, ZIO_PRIORITY_SYNC_READ); } } /* * Read records off the stream, issuing any necessary prefetches. */ static int receive_read_record(dmu_recv_cookie_t *drc) { int err; switch (drc->drc_rrd->header.drr_type) { case DRR_OBJECT: { struct drr_object *drro = &drc->drc_rrd->header.drr_u.drr_object; uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); void *buf = NULL; dmu_object_info_t doi; if (size != 0) buf = kmem_zalloc(size, KM_SLEEP); err = receive_read_payload_and_next_header(drc, size, buf); if (err != 0) { kmem_free(buf, size); return (err); } err = dmu_object_info(drc->drc_os, drro->drr_object, &doi); /* * See receive_read_prefetch for an explanation why we're * storing this object in the ignore_obj_list. */ if (err == ENOENT || err == EEXIST || (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { objlist_insert(drc->drc_ignore_objlist, drro->drr_object); err = 0; } return (err); } case DRR_FREEOBJECTS: { err = receive_read_payload_and_next_header(drc, 0, NULL); return (err); } case DRR_WRITE: { struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write; int size = DRR_WRITE_PAYLOAD_SIZE(drrw); abd_t *abd = abd_alloc_linear(size, B_FALSE); err = receive_read_payload_and_next_header(drc, size, abd_to_buf(abd)); if (err != 0) { abd_free(abd); return (err); } drc->drc_rrd->abd = abd; receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset, drrw->drr_logical_size); return (err); } case DRR_WRITE_EMBEDDED: { struct drr_write_embedded *drrwe = &drc->drc_rrd->header.drr_u.drr_write_embedded; uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); void *buf = kmem_zalloc(size, KM_SLEEP); err = receive_read_payload_and_next_header(drc, size, buf); if (err != 0) { kmem_free(buf, size); return (err); } receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length); return (err); } case DRR_FREE: case DRR_REDACT: { /* * It might be beneficial to prefetch indirect blocks here, but * we don't really have the data to decide for sure. */ err = receive_read_payload_and_next_header(drc, 0, NULL); return (err); } case DRR_END: { struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end; if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum, drre->drr_checksum)) return (SET_ERROR(ECKSUM)); return (0); } case DRR_SPILL: { struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill; int size = DRR_SPILL_PAYLOAD_SIZE(drrs); abd_t *abd = abd_alloc_linear(size, B_FALSE); err = receive_read_payload_and_next_header(drc, size, abd_to_buf(abd)); if (err != 0) abd_free(abd); else drc->drc_rrd->abd = abd; return (err); } case DRR_OBJECT_RANGE: { err = receive_read_payload_and_next_header(drc, 0, NULL); return (err); } default: return (SET_ERROR(EINVAL)); } } static void dprintf_drr(struct receive_record_arg *rrd, int err) { #ifdef ZFS_DEBUG switch (rrd->header.drr_type) { case DRR_OBJECT: { struct drr_object *drro = &rrd->header.drr_u.drr_object; dprintf("drr_type = OBJECT obj = %llu type = %u " "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u " "compress = %u dn_slots = %u err = %d\n", (u_longlong_t)drro->drr_object, drro->drr_type, drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen, drro->drr_checksumtype, drro->drr_compress, drro->drr_dn_slots, err); break; } case DRR_FREEOBJECTS: { struct drr_freeobjects *drrfo = &rrd->header.drr_u.drr_freeobjects; dprintf("drr_type = FREEOBJECTS firstobj = %llu " "numobjs = %llu err = %d\n", (u_longlong_t)drrfo->drr_firstobj, (u_longlong_t)drrfo->drr_numobjs, err); break; } case DRR_WRITE: { struct drr_write *drrw = &rrd->header.drr_u.drr_write; dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu " "lsize = %llu cksumtype = %u flags = %u " "compress = %u psize = %llu err = %d\n", (u_longlong_t)drrw->drr_object, drrw->drr_type, (u_longlong_t)drrw->drr_offset, (u_longlong_t)drrw->drr_logical_size, drrw->drr_checksumtype, drrw->drr_flags, drrw->drr_compressiontype, (u_longlong_t)drrw->drr_compressed_size, err); break; } case DRR_WRITE_BYREF: { struct drr_write_byref *drrwbr = &rrd->header.drr_u.drr_write_byref; dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu " "length = %llu toguid = %llx refguid = %llx " "refobject = %llu refoffset = %llu cksumtype = %u " "flags = %u err = %d\n", (u_longlong_t)drrwbr->drr_object, (u_longlong_t)drrwbr->drr_offset, (u_longlong_t)drrwbr->drr_length, (u_longlong_t)drrwbr->drr_toguid, (u_longlong_t)drrwbr->drr_refguid, (u_longlong_t)drrwbr->drr_refobject, (u_longlong_t)drrwbr->drr_refoffset, drrwbr->drr_checksumtype, drrwbr->drr_flags, err); break; } case DRR_WRITE_EMBEDDED: { struct drr_write_embedded *drrwe = &rrd->header.drr_u.drr_write_embedded; dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu " "length = %llu compress = %u etype = %u lsize = %u " "psize = %u err = %d\n", (u_longlong_t)drrwe->drr_object, (u_longlong_t)drrwe->drr_offset, (u_longlong_t)drrwe->drr_length, drrwe->drr_compression, drrwe->drr_etype, drrwe->drr_lsize, drrwe->drr_psize, err); break; } case DRR_FREE: { struct drr_free *drrf = &rrd->header.drr_u.drr_free; dprintf("drr_type = FREE obj = %llu offset = %llu " "length = %lld err = %d\n", (u_longlong_t)drrf->drr_object, (u_longlong_t)drrf->drr_offset, (longlong_t)drrf->drr_length, err); break; } case DRR_SPILL: { struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; dprintf("drr_type = SPILL obj = %llu length = %llu " "err = %d\n", (u_longlong_t)drrs->drr_object, (u_longlong_t)drrs->drr_length, err); break; } case DRR_OBJECT_RANGE: { struct drr_object_range *drror = &rrd->header.drr_u.drr_object_range; dprintf("drr_type = OBJECT_RANGE firstobj = %llu " "numslots = %llu flags = %u err = %d\n", (u_longlong_t)drror->drr_firstobj, (u_longlong_t)drror->drr_numslots, drror->drr_flags, err); break; } default: return; } #endif } /* * Commit the records to the pool. */ static int receive_process_record(struct receive_writer_arg *rwa, struct receive_record_arg *rrd) { int err; /* Processing in order, therefore bytes_read should be increasing. */ ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); rwa->bytes_read = rrd->bytes_read; if (rrd->header.drr_type != DRR_WRITE) { err = flush_write_batch(rwa); if (err != 0) { if (rrd->abd != NULL) { abd_free(rrd->abd); rrd->abd = NULL; rrd->payload = NULL; } else if (rrd->payload != NULL) { kmem_free(rrd->payload, rrd->payload_size); rrd->payload = NULL; } return (err); } } switch (rrd->header.drr_type) { case DRR_OBJECT: { struct drr_object *drro = &rrd->header.drr_u.drr_object; err = receive_object(rwa, drro, rrd->payload); kmem_free(rrd->payload, rrd->payload_size); rrd->payload = NULL; break; } case DRR_FREEOBJECTS: { struct drr_freeobjects *drrfo = &rrd->header.drr_u.drr_freeobjects; err = receive_freeobjects(rwa, drrfo); break; } case DRR_WRITE: { err = receive_process_write_record(rwa, rrd); if (err != EAGAIN) { /* * On success, receive_process_write_record() returns * EAGAIN to indicate that we do not want to free * the rrd or arc_buf. */ ASSERT(err != 0); abd_free(rrd->abd); rrd->abd = NULL; } break; } case DRR_WRITE_EMBEDDED: { struct drr_write_embedded *drrwe = &rrd->header.drr_u.drr_write_embedded; err = receive_write_embedded(rwa, drrwe, rrd->payload); kmem_free(rrd->payload, rrd->payload_size); rrd->payload = NULL; break; } case DRR_FREE: { struct drr_free *drrf = &rrd->header.drr_u.drr_free; err = receive_free(rwa, drrf); break; } case DRR_SPILL: { struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; err = receive_spill(rwa, drrs, rrd->abd); if (err != 0) abd_free(rrd->abd); rrd->abd = NULL; rrd->payload = NULL; break; } case DRR_OBJECT_RANGE: { struct drr_object_range *drror = &rrd->header.drr_u.drr_object_range; err = receive_object_range(rwa, drror); break; } case DRR_REDACT: { struct drr_redact *drrr = &rrd->header.drr_u.drr_redact; err = receive_redact(rwa, drrr); break; } default: err = (SET_ERROR(EINVAL)); } if (err != 0) dprintf_drr(rrd, err); return (err); } /* * dmu_recv_stream's worker thread; pull records off the queue, and then call * receive_process_record When we're done, signal the main thread and exit. */ static void receive_writer_thread(void *arg) { struct receive_writer_arg *rwa = arg; struct receive_record_arg *rrd; fstrans_cookie_t cookie = spl_fstrans_mark(); for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; rrd = bqueue_dequeue(&rwa->q)) { /* * If there's an error, the main thread will stop putting things * on the queue, but we need to clear everything in it before we * can exit. */ int err = 0; if (rwa->err == 0) { err = receive_process_record(rwa, rrd); } else if (rrd->abd != NULL) { abd_free(rrd->abd); rrd->abd = NULL; rrd->payload = NULL; } else if (rrd->payload != NULL) { kmem_free(rrd->payload, rrd->payload_size); rrd->payload = NULL; } /* * EAGAIN indicates that this record has been saved (on * raw->write_batch), and will be used again, so we don't * free it. */ if (err != EAGAIN) { if (rwa->err == 0) rwa->err = err; kmem_free(rrd, sizeof (*rrd)); } } kmem_free(rrd, sizeof (*rrd)); int err = flush_write_batch(rwa); if (rwa->err == 0) rwa->err = err; mutex_enter(&rwa->mutex); rwa->done = B_TRUE; cv_signal(&rwa->cv); mutex_exit(&rwa->mutex); spl_fstrans_unmark(cookie); thread_exit(); } static int resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl) { uint64_t val; objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset; uint64_t dsobj = dmu_objset_id(drc->drc_os); uint64_t resume_obj, resume_off; if (nvlist_lookup_uint64(begin_nvl, "resume_object", &resume_obj) != 0 || nvlist_lookup_uint64(begin_nvl, "resume_offset", &resume_off) != 0) { return (SET_ERROR(EINVAL)); } VERIFY0(zap_lookup(mos, dsobj, DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); if (resume_obj != val) return (SET_ERROR(EINVAL)); VERIFY0(zap_lookup(mos, dsobj, DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); if (resume_off != val) return (SET_ERROR(EINVAL)); return (0); } /* * Read in the stream's records, one by one, and apply them to the pool. There * are two threads involved; the thread that calls this function will spin up a * worker thread, read the records off the stream one by one, and issue * prefetches for any necessary indirect blocks. It will then push the records * onto an internal blocking queue. The worker thread will pull the records off * the queue, and actually write the data into the DMU. This way, the worker * thread doesn't have to wait for reads to complete, since everything it needs * (the indirect blocks) will be prefetched. * * NB: callers *must* call dmu_recv_end() if this succeeds. */ int dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp) { int err = 0; struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP); if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) { uint64_t bytes = 0; (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, sizeof (bytes), 1, &bytes); drc->drc_bytes_read += bytes; } drc->drc_ignore_objlist = objlist_create(); /* these were verified in dmu_recv_begin */ ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, DMU_SUBSTREAM); ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); ASSERT0(drc->drc_os->os_encrypted && (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); /* handle DSL encryption key payload */ if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { nvlist_t *keynvl = NULL; ASSERT(drc->drc_os->os_encrypted); ASSERT(drc->drc_raw); err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata", &keynvl); if (err != 0) goto out; /* * If this is a new dataset we set the key immediately. * Otherwise we don't want to change the key until we * are sure the rest of the receive succeeded so we stash * the keynvl away until then. */ err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa), drc->drc_ds->ds_object, drc->drc_fromsnapobj, drc->drc_drrb->drr_type, keynvl, drc->drc_newfs); if (err != 0) goto out; /* see comment in dmu_recv_end_sync() */ drc->drc_ivset_guid = 0; (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid", &drc->drc_ivset_guid); if (!drc->drc_newfs) drc->drc_keynvl = fnvlist_dup(keynvl); } if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { err = resume_check(drc, drc->drc_begin_nvl); if (err != 0) goto out; } /* * If we failed before this point we will clean up any new resume * state that was created. Now that we've gotten past the initial * checks we are ok to retain that resume state. */ drc->drc_should_save = B_TRUE; (void) bqueue_init(&rwa->q, zfs_recv_queue_ff, MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize), offsetof(struct receive_record_arg, node)); cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL); mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL); rwa->os = drc->drc_os; rwa->byteswap = drc->drc_byteswap; rwa->resumable = drc->drc_resumable; rwa->raw = drc->drc_raw; rwa->spill = drc->drc_spill; rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0); rwa->os->os_raw_receive = drc->drc_raw; list_create(&rwa->write_batch, sizeof (struct receive_record_arg), offsetof(struct receive_record_arg, node.bqn_node)); (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc, TS_RUN, minclsyspri); /* * We're reading rwa->err without locks, which is safe since we are the * only reader, and the worker thread is the only writer. It's ok if we * miss a write for an iteration or two of the loop, since the writer * thread will keep freeing records we send it until we send it an eos * marker. * * We can leave this loop in 3 ways: First, if rwa->err is * non-zero. In that case, the writer thread will free the rrd we just * pushed. Second, if we're interrupted; in that case, either it's the * first loop and drc->drc_rrd was never allocated, or it's later, and * drc->drc_rrd has been handed off to the writer thread who will free * it. Finally, if receive_read_record fails or we're at the end of the * stream, then we free drc->drc_rrd and exit. */ while (rwa->err == 0) { if (issig(JUSTLOOKING) && issig(FORREAL)) { err = SET_ERROR(EINTR); break; } ASSERT3P(drc->drc_rrd, ==, NULL); drc->drc_rrd = drc->drc_next_rrd; drc->drc_next_rrd = NULL; /* Allocates and loads header into drc->drc_next_rrd */ err = receive_read_record(drc); if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) { kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd)); drc->drc_rrd = NULL; break; } bqueue_enqueue(&rwa->q, drc->drc_rrd, sizeof (struct receive_record_arg) + drc->drc_rrd->payload_size); drc->drc_rrd = NULL; } ASSERT3P(drc->drc_rrd, ==, NULL); drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP); drc->drc_rrd->eos_marker = B_TRUE; bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1); mutex_enter(&rwa->mutex); while (!rwa->done) { /* * We need to use cv_wait_sig() so that any process that may * be sleeping here can still fork. */ (void) cv_wait_sig(&rwa->cv, &rwa->mutex); } mutex_exit(&rwa->mutex); /* * If we are receiving a full stream as a clone, all object IDs which * are greater than the maximum ID referenced in the stream are * by definition unused and must be freed. */ if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { uint64_t obj = rwa->max_object + 1; int free_err = 0; int next_err = 0; while (next_err == 0) { free_err = dmu_free_long_object(rwa->os, obj); if (free_err != 0 && free_err != ENOENT) break; next_err = dmu_object_next(rwa->os, &obj, FALSE, 0); } if (err == 0) { if (free_err != 0 && free_err != ENOENT) err = free_err; else if (next_err != ESRCH) err = next_err; } } cv_destroy(&rwa->cv); mutex_destroy(&rwa->mutex); bqueue_destroy(&rwa->q); list_destroy(&rwa->write_batch); if (err == 0) err = rwa->err; out: /* * If we hit an error before we started the receive_writer_thread * we need to clean up the next_rrd we create by processing the * DRR_BEGIN record. */ if (drc->drc_next_rrd != NULL) kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); /* * The objset will be invalidated by dmu_recv_end() when we do * dsl_dataset_clone_swap_sync_impl(). */ drc->drc_os = NULL; kmem_free(rwa, sizeof (*rwa)); nvlist_free(drc->drc_begin_nvl); if (err != 0) { /* * Clean up references. If receive is not resumable, * destroy what we created, so we don't leave it in * the inconsistent state. */ dmu_recv_cleanup_ds(drc); nvlist_free(drc->drc_keynvl); } objlist_destroy(drc->drc_ignore_objlist); drc->drc_ignore_objlist = NULL; *voffp = drc->drc_voff; return (err); } static int dmu_recv_end_check(void *arg, dmu_tx_t *tx) { dmu_recv_cookie_t *drc = arg; dsl_pool_t *dp = dmu_tx_pool(tx); int error; ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); if (!drc->drc_newfs) { dsl_dataset_t *origin_head; error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); if (error != 0) return (error); if (drc->drc_force) { /* * We will destroy any snapshots in tofs (i.e. before * origin_head) that are after the origin (which is * the snap before drc_ds, because drc_ds can not * have any snaps of its own). */ uint64_t obj; obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; while (obj != dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { dsl_dataset_t *snap; error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap); if (error != 0) break; if (snap->ds_dir != origin_head->ds_dir) error = SET_ERROR(EINVAL); if (error == 0) { error = dsl_destroy_snapshot_check_impl( snap, B_FALSE); } obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; dsl_dataset_rele(snap, FTAG); if (error != 0) break; } if (error != 0) { dsl_dataset_rele(origin_head, FTAG); return (error); } } if (drc->drc_keynvl != NULL) { error = dsl_crypto_recv_raw_key_check(drc->drc_ds, drc->drc_keynvl, tx); if (error != 0) { dsl_dataset_rele(origin_head, FTAG); return (error); } } error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, origin_head, drc->drc_force, drc->drc_owner, tx); if (error != 0) { dsl_dataset_rele(origin_head, FTAG); return (error); } error = dsl_dataset_snapshot_check_impl(origin_head, drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred, drc->drc_proc); dsl_dataset_rele(origin_head, FTAG); if (error != 0) return (error); error = dsl_destroy_head_check_impl(drc->drc_ds, 1); } else { error = dsl_dataset_snapshot_check_impl(drc->drc_ds, drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred, drc->drc_proc); } return (error); } static void dmu_recv_end_sync(void *arg, dmu_tx_t *tx) { dmu_recv_cookie_t *drc = arg; dsl_pool_t *dp = dmu_tx_pool(tx); boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; uint64_t newsnapobj; spa_history_log_internal_ds(drc->drc_ds, "finish receiving", tx, "snap=%s", drc->drc_tosnap); drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; if (!drc->drc_newfs) { dsl_dataset_t *origin_head; VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head)); if (drc->drc_force) { /* * Destroy any snapshots of drc_tofs (origin_head) * after the origin (the snap before drc_ds). */ uint64_t obj; obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; while (obj != dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { dsl_dataset_t *snap; VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &snap)); ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; dsl_destroy_snapshot_sync_impl(snap, B_FALSE, tx); dsl_dataset_rele(snap, FTAG); } } if (drc->drc_keynvl != NULL) { dsl_crypto_recv_raw_key_sync(drc->drc_ds, drc->drc_keynvl, tx); nvlist_free(drc->drc_keynvl); drc->drc_keynvl = NULL; } VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev); dsl_dataset_clone_swap_sync_impl(drc->drc_ds, origin_head, tx); /* * The objset was evicted by dsl_dataset_clone_swap_sync_impl, * so drc_os is no longer valid. */ drc->drc_os = NULL; dsl_dataset_snapshot_sync_impl(origin_head, drc->drc_tosnap, tx); /* set snapshot's creation time and guid */ dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = drc->drc_drrb->drr_creation_time; dsl_dataset_phys(origin_head->ds_prev)->ds_guid = drc->drc_drrb->drr_toguid; dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= ~DS_FLAG_INCONSISTENT; dmu_buf_will_dirty(origin_head->ds_dbuf, tx); dsl_dataset_phys(origin_head)->ds_flags &= ~DS_FLAG_INCONSISTENT; newsnapobj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; dsl_dataset_rele(origin_head, FTAG); dsl_destroy_head_sync_impl(drc->drc_ds, tx); if (drc->drc_owner != NULL) VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); } else { dsl_dataset_t *ds = drc->drc_ds; dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); /* set snapshot's creation time and guid */ dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); dsl_dataset_phys(ds->ds_prev)->ds_creation_time = drc->drc_drrb->drr_creation_time; dsl_dataset_phys(ds->ds_prev)->ds_guid = drc->drc_drrb->drr_toguid; dsl_dataset_phys(ds->ds_prev)->ds_flags &= ~DS_FLAG_INCONSISTENT; dmu_buf_will_dirty(ds->ds_dbuf, tx); dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; if (dsl_dataset_has_resume_receive_state(ds)) { (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_FROMGUID, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_OBJECT, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_OFFSET, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_BYTES, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_TOGUID, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_TONAME, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx); } newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; } /* * If this is a raw receive, the crypt_keydata nvlist will include * a to_ivset_guid for us to set on the new snapshot. This value * will override the value generated by the snapshot code. However, * this value may not be present, because older implementations of * the raw send code did not include this value, and we are still * allowed to receive them if the zfs_disable_ivset_guid_check * tunable is set, in which case we will leave the newly-generated * value. */ if (drc->drc_raw && drc->drc_ivset_guid != 0) { dmu_object_zapify(dp->dp_meta_objset, newsnapobj, DMU_OT_DSL_DATASET, tx); VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj, DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1, &drc->drc_ivset_guid, tx)); } /* * Release the hold from dmu_recv_begin. This must be done before * we return to open context, so that when we free the dataset's dnode * we can evict its bonus buffer. Since the dataset may be destroyed * at this point (and therefore won't have a valid pointer to the spa) * we release the key mapping manually here while we do have a valid * pointer, if it exists. */ if (!drc->drc_raw && encrypted) { (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, drc->drc_ds->ds_object, drc->drc_ds); } dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); drc->drc_ds = NULL; } static int dmu_recv_end_modified_blocks = 3; static int dmu_recv_existing_end(dmu_recv_cookie_t *drc) { #ifdef _KERNEL /* * We will be destroying the ds; make sure its origin is unmounted if * necessary. */ char name[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_name(drc->drc_ds, name); zfs_destroy_unmount_origin(name); #endif return (dsl_sync_task(drc->drc_tofs, dmu_recv_end_check, dmu_recv_end_sync, drc, dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); } static int dmu_recv_new_end(dmu_recv_cookie_t *drc) { return (dsl_sync_task(drc->drc_tofs, dmu_recv_end_check, dmu_recv_end_sync, drc, dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); } int dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) { int error; drc->drc_owner = owner; if (drc->drc_newfs) error = dmu_recv_new_end(drc); else error = dmu_recv_existing_end(drc); if (error != 0) { dmu_recv_cleanup_ds(drc); nvlist_free(drc->drc_keynvl); } else { if (drc->drc_newfs) { zvol_create_minor(drc->drc_tofs); } char *snapname = kmem_asprintf("%s@%s", drc->drc_tofs, drc->drc_tosnap); zvol_create_minor(snapname); kmem_strfree(snapname); } return (error); } /* * Return TRUE if this objset is currently being received into. */ boolean_t dmu_objset_is_receiving(objset_t *os) { return (os->os_dsl_dataset != NULL && os->os_dsl_dataset->ds_owner == dmu_recv_tag); } ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW, "Maximum receive queue length"); ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW, "Receive queue fill fraction"); ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW, "Maximum amount of writes to batch into one transaction");