/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2013, 2017 by Delphix. All rights reserved. */ #include <sys/zfs_context.h> #include <sys/spa.h> #include <sys/dmu.h> #include <sys/dnode.h> #include <sys/zio.h> #include <sys/range_tree.h> /* * Range trees are tree-based data structures that can be used to * track free space or generally any space allocation information. * A range tree keeps track of individual segments and automatically * provides facilities such as adjacent extent merging and extent * splitting in response to range add/remove requests. * * A range tree starts out completely empty, with no segments in it. * Adding an allocation via range_tree_add to the range tree can either: * 1) create a new extent * 2) extend an adjacent extent * 3) merge two adjacent extents * Conversely, removing an allocation via range_tree_remove can: * 1) completely remove an extent * 2) shorten an extent (if the allocation was near one of its ends) * 3) split an extent into two extents, in effect punching a hole * * A range tree is also capable of 'bridging' gaps when adding * allocations. This is useful for cases when close proximity of * allocations is an important detail that needs to be represented * in the range tree. See range_tree_set_gap(). The default behavior * is not to bridge gaps (i.e. the maximum allowed gap size is 0). * * In order to traverse a range tree, use either the range_tree_walk() * or range_tree_vacate() functions. * * To obtain more accurate information on individual segment * operations that the range tree performs "under the hood", you can * specify a set of callbacks by passing a range_tree_ops_t structure * to the range_tree_create function. Any callbacks that are non-NULL * are then called at the appropriate times. * * The range tree code also supports a special variant of range trees * that can bridge small gaps between segments. This kind of tree is used * by the dsl scanning code to group I/Os into mostly sequential chunks to * optimize disk performance. The code here attempts to do this with as * little memory and computational overhead as possible. One limitation of * this implementation is that segments of range trees with gaps can only * support removing complete segments. */ kmem_cache_t *range_seg_cache; /* Generic ops for managing an AVL tree alongside a range tree */ struct range_tree_ops rt_avl_ops = { .rtop_create = rt_avl_create, .rtop_destroy = rt_avl_destroy, .rtop_add = rt_avl_add, .rtop_remove = rt_avl_remove, .rtop_vacate = rt_avl_vacate, }; void range_tree_init(void) { ASSERT(range_seg_cache == NULL); range_seg_cache = kmem_cache_create("range_seg_cache", sizeof (range_seg_t), 0, NULL, NULL, NULL, NULL, NULL, 0); } void range_tree_fini(void) { kmem_cache_destroy(range_seg_cache); range_seg_cache = NULL; } void range_tree_stat_verify(range_tree_t *rt) { range_seg_t *rs; uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 }; int i; for (rs = avl_first(&rt->rt_root); rs != NULL; rs = AVL_NEXT(&rt->rt_root, rs)) { uint64_t size = rs->rs_end - rs->rs_start; int idx = highbit64(size) - 1; hist[idx]++; ASSERT3U(hist[idx], !=, 0); } for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { if (hist[i] != rt->rt_histogram[i]) { zfs_dbgmsg("i=%d, hist=%p, hist=%llu, rt_hist=%llu", i, hist, hist[i], rt->rt_histogram[i]); } VERIFY3U(hist[i], ==, rt->rt_histogram[i]); } } static void range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs) { uint64_t size = rs->rs_end - rs->rs_start; int idx = highbit64(size) - 1; ASSERT(size != 0); ASSERT3U(idx, <, sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram)); rt->rt_histogram[idx]++; ASSERT3U(rt->rt_histogram[idx], !=, 0); } static void range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs) { uint64_t size = rs->rs_end - rs->rs_start; int idx = highbit64(size) - 1; ASSERT(size != 0); ASSERT3U(idx, <, sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram)); ASSERT3U(rt->rt_histogram[idx], !=, 0); rt->rt_histogram[idx]--; } /* * NOTE: caller is responsible for all locking. */ static int range_tree_seg_compare(const void *x1, const void *x2) { const range_seg_t *r1 = (const range_seg_t *)x1; const range_seg_t *r2 = (const range_seg_t *)x2; ASSERT3U(r1->rs_start, <=, r1->rs_end); ASSERT3U(r2->rs_start, <=, r2->rs_end); return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start)); } range_tree_t * range_tree_create_impl(range_tree_ops_t *ops, void *arg, int (*avl_compare) (const void *, const void *), uint64_t gap) { range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP); avl_create(&rt->rt_root, range_tree_seg_compare, sizeof (range_seg_t), offsetof(range_seg_t, rs_node)); rt->rt_ops = ops; rt->rt_gap = gap; rt->rt_arg = arg; rt->rt_avl_compare = avl_compare; if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL) rt->rt_ops->rtop_create(rt, rt->rt_arg); return (rt); } range_tree_t * range_tree_create(range_tree_ops_t *ops, void *arg) { return (range_tree_create_impl(ops, arg, NULL, 0)); } void range_tree_destroy(range_tree_t *rt) { VERIFY0(rt->rt_space); if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL) rt->rt_ops->rtop_destroy(rt, rt->rt_arg); avl_destroy(&rt->rt_root); kmem_free(rt, sizeof (*rt)); } void range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta) { ASSERT3U(rs->rs_fill + delta, !=, 0); ASSERT3U(rs->rs_fill + delta, <=, rs->rs_end - rs->rs_start); if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); rs->rs_fill += delta; if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); } static void range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill) { range_tree_t *rt = arg; avl_index_t where; range_seg_t rsearch, *rs_before, *rs_after, *rs; uint64_t end = start + size, gap = rt->rt_gap; uint64_t bridge_size = 0; boolean_t merge_before, merge_after; ASSERT3U(size, !=, 0); ASSERT3U(fill, <=, size); rsearch.rs_start = start; rsearch.rs_end = end; rs = avl_find(&rt->rt_root, &rsearch, &where); if (gap == 0 && rs != NULL && rs->rs_start <= start && rs->rs_end >= end) { zfs_panic_recover("zfs: allocating allocated segment" "(offset=%llu size=%llu) of (offset=%llu size=%llu)\n", (longlong_t)start, (longlong_t)size, (longlong_t)rs->rs_start, (longlong_t)rs->rs_end - rs->rs_start); return; } /* * If this is a gap-supporting range tree, it is possible that we * are inserting into an existing segment. In this case simply * bump the fill count and call the remove / add callbacks. If the * new range will extend an existing segment, we remove the * existing one, apply the new extent to it and re-insert it using * the normal code paths. */ if (rs != NULL) { ASSERT3U(gap, !=, 0); if (rs->rs_start <= start && rs->rs_end >= end) { range_tree_adjust_fill(rt, rs, fill); return; } avl_remove(&rt->rt_root, rs); if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); range_tree_stat_decr(rt, rs); rt->rt_space -= rs->rs_end - rs->rs_start; fill += rs->rs_fill; start = MIN(start, rs->rs_start); end = MAX(end, rs->rs_end); size = end - start; range_tree_add_impl(rt, start, size, fill); kmem_cache_free(range_seg_cache, rs); return; } ASSERT3P(rs, ==, NULL); /* * Determine whether or not we will have to merge with our neighbors. * If gap != 0, we might need to merge with our neighbors even if we * aren't directly touching. */ rs_before = avl_nearest(&rt->rt_root, where, AVL_BEFORE); rs_after = avl_nearest(&rt->rt_root, where, AVL_AFTER); merge_before = (rs_before != NULL && rs_before->rs_end >= start - gap); merge_after = (rs_after != NULL && rs_after->rs_start <= end + gap); if (merge_before && gap != 0) bridge_size += start - rs_before->rs_end; if (merge_after && gap != 0) bridge_size += rs_after->rs_start - end; if (merge_before && merge_after) { avl_remove(&rt->rt_root, rs_before); if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) { rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg); rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg); } range_tree_stat_decr(rt, rs_before); range_tree_stat_decr(rt, rs_after); rs_after->rs_fill += rs_before->rs_fill + fill; rs_after->rs_start = rs_before->rs_start; kmem_cache_free(range_seg_cache, rs_before); rs = rs_after; } else if (merge_before) { if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg); range_tree_stat_decr(rt, rs_before); rs_before->rs_fill += fill; rs_before->rs_end = end; rs = rs_before; } else if (merge_after) { if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg); range_tree_stat_decr(rt, rs_after); rs_after->rs_fill += fill; rs_after->rs_start = start; rs = rs_after; } else { rs = kmem_cache_alloc(range_seg_cache, KM_SLEEP); rs->rs_fill = fill; rs->rs_start = start; rs->rs_end = end; avl_insert(&rt->rt_root, rs, where); } if (gap != 0) ASSERT3U(rs->rs_fill, <=, rs->rs_end - rs->rs_start); else ASSERT3U(rs->rs_fill, ==, rs->rs_end - rs->rs_start); if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); range_tree_stat_incr(rt, rs); rt->rt_space += size + bridge_size; } void range_tree_add(void *arg, uint64_t start, uint64_t size) { range_tree_add_impl(arg, start, size, size); } static void range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size, boolean_t do_fill) { avl_index_t where; range_seg_t rsearch, *rs, *newseg; uint64_t end = start + size; boolean_t left_over, right_over; VERIFY3U(size, !=, 0); VERIFY3U(size, <=, rt->rt_space); rsearch.rs_start = start; rsearch.rs_end = end; rs = avl_find(&rt->rt_root, &rsearch, &where); /* Make sure we completely overlap with someone */ if (rs == NULL) { zfs_panic_recover("zfs: freeing free segment " "(offset=%llu size=%llu)", (longlong_t)start, (longlong_t)size); return; } /* * Range trees with gap support must only remove complete segments * from the tree. This allows us to maintain accurate fill accounting * and to ensure that bridged sections are not leaked. If we need to * remove less than the full segment, we can only adjust the fill count. */ if (rt->rt_gap != 0) { if (do_fill) { if (rs->rs_fill == size) { start = rs->rs_start; end = rs->rs_end; size = end - start; } else { range_tree_adjust_fill(rt, rs, -size); return; } } else if (rs->rs_start != start || rs->rs_end != end) { zfs_panic_recover("zfs: freeing partial segment of " "gap tree (offset=%llu size=%llu) of " "(offset=%llu size=%llu)", (longlong_t)start, (longlong_t)size, (longlong_t)rs->rs_start, (longlong_t)rs->rs_end - rs->rs_start); return; } } VERIFY3U(rs->rs_start, <=, start); VERIFY3U(rs->rs_end, >=, end); left_over = (rs->rs_start != start); right_over = (rs->rs_end != end); range_tree_stat_decr(rt, rs); if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); if (left_over && right_over) { newseg = kmem_cache_alloc(range_seg_cache, KM_SLEEP); newseg->rs_start = end; newseg->rs_end = rs->rs_end; newseg->rs_fill = newseg->rs_end - newseg->rs_start; range_tree_stat_incr(rt, newseg); rs->rs_end = start; avl_insert_here(&rt->rt_root, newseg, rs, AVL_AFTER); if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) rt->rt_ops->rtop_add(rt, newseg, rt->rt_arg); } else if (left_over) { rs->rs_end = start; } else if (right_over) { rs->rs_start = end; } else { avl_remove(&rt->rt_root, rs); kmem_cache_free(range_seg_cache, rs); rs = NULL; } if (rs != NULL) { /* * The fill of the leftover segment will always be equal to * the size, since we do not support removing partial segments * of range trees with gaps. */ rs->rs_fill = rs->rs_end - rs->rs_start; range_tree_stat_incr(rt, rs); if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); } rt->rt_space -= size; } void range_tree_remove(void *arg, uint64_t start, uint64_t size) { range_tree_remove_impl(arg, start, size, B_FALSE); } void range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size) { range_tree_remove_impl(rt, start, size, B_TRUE); } void range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs, uint64_t newstart, uint64_t newsize) { int64_t delta = newsize - (rs->rs_end - rs->rs_start); range_tree_stat_decr(rt, rs); if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); rs->rs_start = newstart; rs->rs_end = newstart + newsize; range_tree_stat_incr(rt, rs); if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); rt->rt_space += delta; } static range_seg_t * range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size) { range_seg_t rsearch; uint64_t end = start + size; VERIFY(size != 0); rsearch.rs_start = start; rsearch.rs_end = end; return (avl_find(&rt->rt_root, &rsearch, NULL)); } range_seg_t * range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size) { range_seg_t *rs = range_tree_find_impl(rt, start, size); if (rs != NULL && rs->rs_start <= start && rs->rs_end >= start + size) return (rs); return (NULL); } void range_tree_verify(range_tree_t *rt, uint64_t off, uint64_t size) { range_seg_t *rs; rs = range_tree_find(rt, off, size); if (rs != NULL) panic("freeing free block; rs=%p", (void *)rs); } boolean_t range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size) { return (range_tree_find(rt, start, size) != NULL); } /* * Ensure that this range is not in the tree, regardless of whether * it is currently in the tree. */ void range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size) { range_seg_t *rs; if (size == 0) return; while ((rs = range_tree_find_impl(rt, start, size)) != NULL) { uint64_t free_start = MAX(rs->rs_start, start); uint64_t free_end = MIN(rs->rs_end, start + size); range_tree_remove(rt, free_start, free_end - free_start); } } void range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst) { range_tree_t *rt; ASSERT0(range_tree_space(*rtdst)); ASSERT0(avl_numnodes(&(*rtdst)->rt_root)); rt = *rtsrc; *rtsrc = *rtdst; *rtdst = rt; } void range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg) { range_seg_t *rs; void *cookie = NULL; if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL) rt->rt_ops->rtop_vacate(rt, rt->rt_arg); while ((rs = avl_destroy_nodes(&rt->rt_root, &cookie)) != NULL) { if (func != NULL) func(arg, rs->rs_start, rs->rs_end - rs->rs_start); kmem_cache_free(range_seg_cache, rs); } bzero(rt->rt_histogram, sizeof (rt->rt_histogram)); rt->rt_space = 0; } void range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg) { range_seg_t *rs; for (rs = avl_first(&rt->rt_root); rs; rs = AVL_NEXT(&rt->rt_root, rs)) func(arg, rs->rs_start, rs->rs_end - rs->rs_start); } range_seg_t * range_tree_first(range_tree_t *rt) { return (avl_first(&rt->rt_root)); } uint64_t range_tree_space(range_tree_t *rt) { return (rt->rt_space); } boolean_t range_tree_is_empty(range_tree_t *rt) { ASSERT(rt != NULL); return (range_tree_space(rt) == 0); } /* Generic range tree functions for maintaining segments in an AVL tree. */ void rt_avl_create(range_tree_t *rt, void *arg) { avl_tree_t *tree = arg; avl_create(tree, rt->rt_avl_compare, sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node)); } void rt_avl_destroy(range_tree_t *rt, void *arg) { avl_tree_t *tree = arg; ASSERT0(avl_numnodes(tree)); avl_destroy(tree); } void rt_avl_add(range_tree_t *rt, range_seg_t *rs, void *arg) { avl_tree_t *tree = arg; avl_add(tree, rs); } void rt_avl_remove(range_tree_t *rt, range_seg_t *rs, void *arg) { avl_tree_t *tree = arg; avl_remove(tree, rs); } void rt_avl_vacate(range_tree_t *rt, void *arg) { /* * Normally one would walk the tree freeing nodes along the way. * Since the nodes are shared with the range trees we can avoid * walking all nodes and just reinitialize the avl tree. The nodes * will be freed by the range tree, so we don't want to free them here. */ rt_avl_create(rt, arg); } uint64_t range_tree_min(range_tree_t *rt) { range_seg_t *rs = avl_first(&rt->rt_root); return (rs != NULL ? rs->rs_start : 0); } uint64_t range_tree_max(range_tree_t *rt) { range_seg_t *rs = avl_last(&rt->rt_root); return (rs != NULL ? rs->rs_end : 0); } uint64_t range_tree_span(range_tree_t *rt) { return (range_tree_max(rt) - range_tree_min(rt)); }