/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012, 2019 by Delphix. All rights reserved. */ #include <sys/zfs_context.h> #include <sys/spa.h> #include <sys/dmu.h> #include <sys/dmu_tx.h> #include <sys/dnode.h> #include <sys/dsl_pool.h> #include <sys/zio.h> #include <sys/space_map.h> #include <sys/zfeature.h> /* * Note on space map block size: * * The data for a given space map can be kept on blocks of any size. * Larger blocks entail fewer I/O operations, but they also cause the * DMU to keep more data in-core, and also to waste more I/O bandwidth * when only a few blocks have changed since the last transaction group. */ /* * Enabled whenever we want to stress test the use of double-word * space map entries. */ boolean_t zfs_force_some_double_word_sm_entries = B_FALSE; /* * Override the default indirect block size of 128K, instead use 16K for * spacemaps (2^14 bytes). This dramatically reduces write inflation since * appending to a spacemap typically has to write one data block (4KB) and one * or two indirect blocks (16K-32K, rather than 128K). */ int space_map_ibs = 14; boolean_t sm_entry_is_debug(uint64_t e) { return (SM_PREFIX_DECODE(e) == SM_DEBUG_PREFIX); } boolean_t sm_entry_is_single_word(uint64_t e) { uint8_t prefix = SM_PREFIX_DECODE(e); return (prefix != SM_DEBUG_PREFIX && prefix != SM2_PREFIX); } boolean_t sm_entry_is_double_word(uint64_t e) { return (SM_PREFIX_DECODE(e) == SM2_PREFIX); } /* * Iterate through the space map, invoking the callback on each (non-debug) * space map entry. Stop after reading 'end' bytes of the space map. */ int space_map_iterate(space_map_t *sm, uint64_t end, sm_cb_t callback, void *arg) { uint64_t blksz = sm->sm_blksz; ASSERT3U(blksz, !=, 0); ASSERT3U(end, <=, space_map_length(sm)); ASSERT0(P2PHASE(end, sizeof (uint64_t))); dmu_prefetch(sm->sm_os, space_map_object(sm), 0, 0, end, ZIO_PRIORITY_SYNC_READ); int error = 0; uint64_t txg = 0, sync_pass = 0; for (uint64_t block_base = 0; block_base < end && error == 0; block_base += blksz) { dmu_buf_t *db; error = dmu_buf_hold(sm->sm_os, space_map_object(sm), block_base, FTAG, &db, DMU_READ_PREFETCH); if (error != 0) return (error); uint64_t *block_start = db->db_data; uint64_t block_length = MIN(end - block_base, blksz); uint64_t *block_end = block_start + (block_length / sizeof (uint64_t)); VERIFY0(P2PHASE(block_length, sizeof (uint64_t))); VERIFY3U(block_length, !=, 0); ASSERT3U(blksz, ==, db->db_size); for (uint64_t *block_cursor = block_start; block_cursor < block_end && error == 0; block_cursor++) { uint64_t e = *block_cursor; if (sm_entry_is_debug(e)) { /* * Debug entries are only needed to record the * current TXG and sync pass if available. * * Note though that sometimes there can be * debug entries that are used as padding * at the end of space map blocks in-order * to not split a double-word entry in the * middle between two blocks. These entries * have their TXG field set to 0 and we * skip them without recording the TXG. * [see comment in space_map_write_seg()] */ uint64_t e_txg = SM_DEBUG_TXG_DECODE(e); if (e_txg != 0) { txg = e_txg; sync_pass = SM_DEBUG_SYNCPASS_DECODE(e); } else { ASSERT0(SM_DEBUG_SYNCPASS_DECODE(e)); } continue; } uint64_t raw_offset, raw_run, vdev_id; maptype_t type; if (sm_entry_is_single_word(e)) { type = SM_TYPE_DECODE(e); vdev_id = SM_NO_VDEVID; raw_offset = SM_OFFSET_DECODE(e); raw_run = SM_RUN_DECODE(e); } else { /* it is a two-word entry */ ASSERT(sm_entry_is_double_word(e)); raw_run = SM2_RUN_DECODE(e); vdev_id = SM2_VDEV_DECODE(e); /* move on to the second word */ block_cursor++; e = *block_cursor; VERIFY3P(block_cursor, <=, block_end); type = SM2_TYPE_DECODE(e); raw_offset = SM2_OFFSET_DECODE(e); } uint64_t entry_offset = (raw_offset << sm->sm_shift) + sm->sm_start; uint64_t entry_run = raw_run << sm->sm_shift; VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift)); VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift)); ASSERT3U(entry_offset, >=, sm->sm_start); ASSERT3U(entry_offset, <, sm->sm_start + sm->sm_size); ASSERT3U(entry_run, <=, sm->sm_size); ASSERT3U(entry_offset + entry_run, <=, sm->sm_start + sm->sm_size); space_map_entry_t sme = { .sme_type = type, .sme_vdev = vdev_id, .sme_offset = entry_offset, .sme_run = entry_run, .sme_txg = txg, .sme_sync_pass = sync_pass }; error = callback(&sme, arg); } dmu_buf_rele(db, FTAG); } return (error); } /* * Reads the entries from the last block of the space map into * buf in reverse order. Populates nwords with number of words * in the last block. * * Refer to block comment within space_map_incremental_destroy() * to understand why this function is needed. */ static int space_map_reversed_last_block_entries(space_map_t *sm, uint64_t *buf, uint64_t bufsz, uint64_t *nwords) { int error = 0; dmu_buf_t *db; /* * Find the offset of the last word in the space map and use * that to read the last block of the space map with * dmu_buf_hold(). */ uint64_t last_word_offset = sm->sm_phys->smp_length - sizeof (uint64_t); error = dmu_buf_hold(sm->sm_os, space_map_object(sm), last_word_offset, FTAG, &db, DMU_READ_NO_PREFETCH); if (error != 0) return (error); ASSERT3U(sm->sm_object, ==, db->db_object); ASSERT3U(sm->sm_blksz, ==, db->db_size); ASSERT3U(bufsz, >=, db->db_size); ASSERT(nwords != NULL); uint64_t *words = db->db_data; *nwords = (sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t); ASSERT3U(*nwords, <=, bufsz / sizeof (uint64_t)); uint64_t n = *nwords; uint64_t j = n - 1; for (uint64_t i = 0; i < n; i++) { uint64_t entry = words[i]; if (sm_entry_is_double_word(entry)) { /* * Since we are populating the buffer backwards * we have to be extra careful and add the two * words of the double-word entry in the right * order. */ ASSERT3U(j, >, 0); buf[j - 1] = entry; i++; ASSERT3U(i, <, n); entry = words[i]; buf[j] = entry; j -= 2; } else { ASSERT(sm_entry_is_debug(entry) || sm_entry_is_single_word(entry)); buf[j] = entry; j--; } } /* * Assert that we wrote backwards all the * way to the beginning of the buffer. */ ASSERT3S(j, ==, -1); dmu_buf_rele(db, FTAG); return (error); } /* * Note: This function performs destructive actions - specifically * it deletes entries from the end of the space map. Thus, callers * should ensure that they are holding the appropriate locks for * the space map that they provide. */ int space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg, dmu_tx_t *tx) { uint64_t bufsz = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE); uint64_t *buf = zio_buf_alloc(bufsz); dmu_buf_will_dirty(sm->sm_dbuf, tx); /* * Ideally we would want to iterate from the beginning of the * space map to the end in incremental steps. The issue with this * approach is that we don't have any field on-disk that points * us where to start between each step. We could try zeroing out * entries that we've destroyed, but this doesn't work either as * an entry that is 0 is a valid one (ALLOC for range [0x0:0x200]). * * As a result, we destroy its entries incrementally starting from * the end after applying the callback to each of them. * * The problem with this approach is that we cannot literally * iterate through the words in the space map backwards as we * can't distinguish two-word space map entries from their second * word. Thus we do the following: * * 1] We get all the entries from the last block of the space map * and put them into a buffer in reverse order. This way the * last entry comes first in the buffer, the second to last is * second, etc. * 2] We iterate through the entries in the buffer and we apply * the callback to each one. As we move from entry to entry we * we decrease the size of the space map, deleting effectively * each entry. * 3] If there are no more entries in the space map or the callback * returns a value other than 0, we stop iterating over the * space map. If there are entries remaining and the callback * returned 0, we go back to step [1]. */ int error = 0; while (space_map_length(sm) > 0 && error == 0) { uint64_t nwords = 0; error = space_map_reversed_last_block_entries(sm, buf, bufsz, &nwords); if (error != 0) break; ASSERT3U(nwords, <=, bufsz / sizeof (uint64_t)); for (uint64_t i = 0; i < nwords; i++) { uint64_t e = buf[i]; if (sm_entry_is_debug(e)) { sm->sm_phys->smp_length -= sizeof (uint64_t); continue; } int words = 1; uint64_t raw_offset, raw_run, vdev_id; maptype_t type; if (sm_entry_is_single_word(e)) { type = SM_TYPE_DECODE(e); vdev_id = SM_NO_VDEVID; raw_offset = SM_OFFSET_DECODE(e); raw_run = SM_RUN_DECODE(e); } else { ASSERT(sm_entry_is_double_word(e)); words = 2; raw_run = SM2_RUN_DECODE(e); vdev_id = SM2_VDEV_DECODE(e); /* move to the second word */ i++; e = buf[i]; ASSERT3P(i, <=, nwords); type = SM2_TYPE_DECODE(e); raw_offset = SM2_OFFSET_DECODE(e); } uint64_t entry_offset = (raw_offset << sm->sm_shift) + sm->sm_start; uint64_t entry_run = raw_run << sm->sm_shift; VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift)); VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift)); VERIFY3U(entry_offset, >=, sm->sm_start); VERIFY3U(entry_offset, <, sm->sm_start + sm->sm_size); VERIFY3U(entry_run, <=, sm->sm_size); VERIFY3U(entry_offset + entry_run, <=, sm->sm_start + sm->sm_size); space_map_entry_t sme = { .sme_type = type, .sme_vdev = vdev_id, .sme_offset = entry_offset, .sme_run = entry_run }; error = callback(&sme, arg); if (error != 0) break; if (type == SM_ALLOC) sm->sm_phys->smp_alloc -= entry_run; else sm->sm_phys->smp_alloc += entry_run; sm->sm_phys->smp_length -= words * sizeof (uint64_t); } } if (space_map_length(sm) == 0) { ASSERT0(error); ASSERT0(space_map_allocated(sm)); } zio_buf_free(buf, bufsz); return (error); } typedef struct space_map_load_arg { space_map_t *smla_sm; range_tree_t *smla_rt; maptype_t smla_type; } space_map_load_arg_t; static int space_map_load_callback(space_map_entry_t *sme, void *arg) { space_map_load_arg_t *smla = arg; if (sme->sme_type == smla->smla_type) { VERIFY3U(range_tree_space(smla->smla_rt) + sme->sme_run, <=, smla->smla_sm->sm_size); range_tree_add(smla->smla_rt, sme->sme_offset, sme->sme_run); } else { range_tree_remove(smla->smla_rt, sme->sme_offset, sme->sme_run); } return (0); } /* * Load the spacemap into the rangetree, like space_map_load. But only * read the first 'length' bytes of the spacemap. */ int space_map_load_length(space_map_t *sm, range_tree_t *rt, maptype_t maptype, uint64_t length) { space_map_load_arg_t smla; VERIFY0(range_tree_space(rt)); if (maptype == SM_FREE) range_tree_add(rt, sm->sm_start, sm->sm_size); smla.smla_rt = rt; smla.smla_sm = sm; smla.smla_type = maptype; int err = space_map_iterate(sm, length, space_map_load_callback, &smla); if (err != 0) range_tree_vacate(rt, NULL, NULL); return (err); } /* * Load the space map disk into the specified range tree. Segments of maptype * are added to the range tree, other segment types are removed. */ int space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype) { return (space_map_load_length(sm, rt, maptype, space_map_length(sm))); } void space_map_histogram_clear(space_map_t *sm) { if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) return; bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram)); } boolean_t space_map_histogram_verify(space_map_t *sm, range_tree_t *rt) { /* * Verify that the in-core range tree does not have any * ranges smaller than our sm_shift size. */ for (int i = 0; i < sm->sm_shift; i++) { if (rt->rt_histogram[i] != 0) return (B_FALSE); } return (B_TRUE); } void space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx) { int idx = 0; ASSERT(dmu_tx_is_syncing(tx)); VERIFY3U(space_map_object(sm), !=, 0); if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) return; dmu_buf_will_dirty(sm->sm_dbuf, tx); ASSERT(space_map_histogram_verify(sm, rt)); /* * Transfer the content of the range tree histogram to the space * map histogram. The space map histogram contains 32 buckets ranging * between 2^sm_shift to 2^(32+sm_shift-1). The range tree, * however, can represent ranges from 2^0 to 2^63. Since the space * map only cares about allocatable blocks (minimum of sm_shift) we * can safely ignore all ranges in the range tree smaller than sm_shift. */ for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { /* * Since the largest histogram bucket in the space map is * 2^(32+sm_shift-1), we need to normalize the values in * the range tree for any bucket larger than that size. For * example given an sm_shift of 9, ranges larger than 2^40 * would get normalized as if they were 1TB ranges. Assume * the range tree had a count of 5 in the 2^44 (16TB) bucket, * the calculation below would normalize this to 5 * 2^4 (16). */ ASSERT3U(i, >=, idx + sm->sm_shift); sm->sm_phys->smp_histogram[idx] += rt->rt_histogram[i] << (i - idx - sm->sm_shift); /* * Increment the space map's index as long as we haven't * reached the maximum bucket size. Accumulate all ranges * larger than the max bucket size into the last bucket. */ if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { ASSERT3U(idx + sm->sm_shift, ==, i); idx++; ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); } } } static void space_map_write_intro_debug(space_map_t *sm, maptype_t maptype, dmu_tx_t *tx) { dmu_buf_will_dirty(sm->sm_dbuf, tx); uint64_t dentry = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) | SM_DEBUG_ACTION_ENCODE(maptype) | SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(tx->tx_pool->dp_spa)) | SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx)); dmu_write(sm->sm_os, space_map_object(sm), sm->sm_phys->smp_length, sizeof (dentry), &dentry, tx); sm->sm_phys->smp_length += sizeof (dentry); } /* * Writes one or more entries given a segment. * * Note: The function may release the dbuf from the pointer initially * passed to it, and return a different dbuf. Also, the space map's * dbuf must be dirty for the changes in sm_phys to take effect. */ static void space_map_write_seg(space_map_t *sm, uint64_t rstart, uint64_t rend, maptype_t maptype, uint64_t vdev_id, uint8_t words, dmu_buf_t **dbp, void *tag, dmu_tx_t *tx) { ASSERT3U(words, !=, 0); ASSERT3U(words, <=, 2); /* ensure the vdev_id can be represented by the space map */ ASSERT3U(vdev_id, <=, SM_NO_VDEVID); /* * if this is a single word entry, ensure that no vdev was * specified. */ IMPLY(words == 1, vdev_id == SM_NO_VDEVID); dmu_buf_t *db = *dbp; ASSERT3U(db->db_size, ==, sm->sm_blksz); uint64_t *block_base = db->db_data; uint64_t *block_end = block_base + (sm->sm_blksz / sizeof (uint64_t)); uint64_t *block_cursor = block_base + (sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t); ASSERT3P(block_cursor, <=, block_end); uint64_t size = (rend - rstart) >> sm->sm_shift; uint64_t start = (rstart - sm->sm_start) >> sm->sm_shift; uint64_t run_max = (words == 2) ? SM2_RUN_MAX : SM_RUN_MAX; ASSERT3U(rstart, >=, sm->sm_start); ASSERT3U(rstart, <, sm->sm_start + sm->sm_size); ASSERT3U(rend - rstart, <=, sm->sm_size); ASSERT3U(rend, <=, sm->sm_start + sm->sm_size); while (size != 0) { ASSERT3P(block_cursor, <=, block_end); /* * If we are at the end of this block, flush it and start * writing again from the beginning. */ if (block_cursor == block_end) { dmu_buf_rele(db, tag); uint64_t next_word_offset = sm->sm_phys->smp_length; VERIFY0(dmu_buf_hold(sm->sm_os, space_map_object(sm), next_word_offset, tag, &db, DMU_READ_PREFETCH)); dmu_buf_will_dirty(db, tx); /* update caller's dbuf */ *dbp = db; ASSERT3U(db->db_size, ==, sm->sm_blksz); block_base = db->db_data; block_cursor = block_base; block_end = block_base + (db->db_size / sizeof (uint64_t)); } /* * If we are writing a two-word entry and we only have one * word left on this block, just pad it with an empty debug * entry and write the two-word entry in the next block. */ uint64_t *next_entry = block_cursor + 1; if (next_entry == block_end && words > 1) { ASSERT3U(words, ==, 2); *block_cursor = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) | SM_DEBUG_ACTION_ENCODE(0) | SM_DEBUG_SYNCPASS_ENCODE(0) | SM_DEBUG_TXG_ENCODE(0); block_cursor++; sm->sm_phys->smp_length += sizeof (uint64_t); ASSERT3P(block_cursor, ==, block_end); continue; } uint64_t run_len = MIN(size, run_max); switch (words) { case 1: *block_cursor = SM_OFFSET_ENCODE(start) | SM_TYPE_ENCODE(maptype) | SM_RUN_ENCODE(run_len); block_cursor++; break; case 2: /* write the first word of the entry */ *block_cursor = SM_PREFIX_ENCODE(SM2_PREFIX) | SM2_RUN_ENCODE(run_len) | SM2_VDEV_ENCODE(vdev_id); block_cursor++; /* move on to the second word of the entry */ ASSERT3P(block_cursor, <, block_end); *block_cursor = SM2_TYPE_ENCODE(maptype) | SM2_OFFSET_ENCODE(start); block_cursor++; break; default: panic("%d-word space map entries are not supported", words); break; } sm->sm_phys->smp_length += words * sizeof (uint64_t); start += run_len; size -= run_len; } ASSERT0(size); } /* * Note: The space map's dbuf must be dirty for the changes in sm_phys to * take effect. */ static void space_map_write_impl(space_map_t *sm, range_tree_t *rt, maptype_t maptype, uint64_t vdev_id, dmu_tx_t *tx) { spa_t *spa = tx->tx_pool->dp_spa; dmu_buf_t *db; space_map_write_intro_debug(sm, maptype, tx); #ifdef ZFS_DEBUG /* * We do this right after we write the intro debug entry * because the estimate does not take it into account. */ uint64_t initial_objsize = sm->sm_phys->smp_length; uint64_t estimated_growth = space_map_estimate_optimal_size(sm, rt, SM_NO_VDEVID); uint64_t estimated_final_objsize = initial_objsize + estimated_growth; #endif /* * Find the offset right after the last word in the space map * and use that to get a hold of the last block, so we can * start appending to it. */ uint64_t next_word_offset = sm->sm_phys->smp_length; VERIFY0(dmu_buf_hold(sm->sm_os, space_map_object(sm), next_word_offset, FTAG, &db, DMU_READ_PREFETCH)); ASSERT3U(db->db_size, ==, sm->sm_blksz); dmu_buf_will_dirty(db, tx); zfs_btree_t *t = &rt->rt_root; zfs_btree_index_t where; for (range_seg_t *rs = zfs_btree_first(t, &where); rs != NULL; rs = zfs_btree_next(t, &where, &where)) { uint64_t offset = (rs_get_start(rs, rt) - sm->sm_start) >> sm->sm_shift; uint64_t length = (rs_get_end(rs, rt) - rs_get_start(rs, rt)) >> sm->sm_shift; uint8_t words = 1; /* * We only write two-word entries when both of the following * are true: * * [1] The feature is enabled. * [2] The offset or run is too big for a single-word entry, * or the vdev_id is set (meaning not equal to * SM_NO_VDEVID). * * Note that for purposes of testing we've added the case that * we write two-word entries occasionally when the feature is * enabled and zfs_force_some_double_word_sm_entries has been * set. */ if (spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_V2) && (offset >= (1ULL << SM_OFFSET_BITS) || length > SM_RUN_MAX || vdev_id != SM_NO_VDEVID || (zfs_force_some_double_word_sm_entries && spa_get_random(100) == 0))) words = 2; space_map_write_seg(sm, rs_get_start(rs, rt), rs_get_end(rs, rt), maptype, vdev_id, words, &db, FTAG, tx); } dmu_buf_rele(db, FTAG); #ifdef ZFS_DEBUG /* * We expect our estimation to be based on the worst case * scenario [see comment in space_map_estimate_optimal_size()]. * Therefore we expect the actual objsize to be equal or less * than whatever we estimated it to be. */ ASSERT3U(estimated_final_objsize, >=, sm->sm_phys->smp_length); #endif } /* * Note: This function manipulates the state of the given space map but * does not hold any locks implicitly. Thus the caller is responsible * for synchronizing writes to the space map. */ void space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype, uint64_t vdev_id, dmu_tx_t *tx) { ASSERT(dsl_pool_sync_context(dmu_objset_pool(sm->sm_os))); VERIFY3U(space_map_object(sm), !=, 0); dmu_buf_will_dirty(sm->sm_dbuf, tx); /* * This field is no longer necessary since the in-core space map * now contains the object number but is maintained for backwards * compatibility. */ sm->sm_phys->smp_object = sm->sm_object; if (range_tree_is_empty(rt)) { VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object); return; } if (maptype == SM_ALLOC) sm->sm_phys->smp_alloc += range_tree_space(rt); else sm->sm_phys->smp_alloc -= range_tree_space(rt); uint64_t nodes = zfs_btree_numnodes(&rt->rt_root); uint64_t rt_space = range_tree_space(rt); space_map_write_impl(sm, rt, maptype, vdev_id, tx); /* * Ensure that the space_map's accounting wasn't changed * while we were in the middle of writing it out. */ VERIFY3U(nodes, ==, zfs_btree_numnodes(&rt->rt_root)); VERIFY3U(range_tree_space(rt), ==, rt_space); } static int space_map_open_impl(space_map_t *sm) { int error; u_longlong_t blocks; error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf); if (error) return (error); dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks); sm->sm_phys = sm->sm_dbuf->db_data; return (0); } int space_map_open(space_map_t **smp, objset_t *os, uint64_t object, uint64_t start, uint64_t size, uint8_t shift) { space_map_t *sm; int error; ASSERT(*smp == NULL); ASSERT(os != NULL); ASSERT(object != 0); sm = kmem_alloc(sizeof (space_map_t), KM_SLEEP); sm->sm_start = start; sm->sm_size = size; sm->sm_shift = shift; sm->sm_os = os; sm->sm_object = object; sm->sm_blksz = 0; sm->sm_dbuf = NULL; sm->sm_phys = NULL; error = space_map_open_impl(sm); if (error != 0) { space_map_close(sm); return (error); } *smp = sm; return (0); } void space_map_close(space_map_t *sm) { if (sm == NULL) return; if (sm->sm_dbuf != NULL) dmu_buf_rele(sm->sm_dbuf, sm); sm->sm_dbuf = NULL; sm->sm_phys = NULL; kmem_free(sm, sizeof (*sm)); } void space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx) { objset_t *os = sm->sm_os; spa_t *spa = dmu_objset_spa(os); dmu_object_info_t doi; ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); ASSERT(dmu_tx_is_syncing(tx)); VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa)); dmu_object_info_from_db(sm->sm_dbuf, &doi); /* * If the space map has the wrong bonus size (because * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or * the wrong block size (because space_map_blksz has changed), * free and re-allocate its object with the updated sizes. * * Otherwise, just truncate the current object. */ if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && doi.doi_bonus_size != sizeof (space_map_phys_t)) || doi.doi_data_block_size != blocksize || doi.doi_metadata_block_size != 1 << space_map_ibs) { zfs_dbgmsg("txg %llu, spa %s, sm %px, reallocating " "object[%llu]: old bonus %u, old blocksz %u", dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object, doi.doi_bonus_size, doi.doi_data_block_size); space_map_free(sm, tx); dmu_buf_rele(sm->sm_dbuf, sm); sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx); VERIFY0(space_map_open_impl(sm)); } else { VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx)); /* * If the spacemap is reallocated, its histogram * will be reset. Do the same in the common case so that * bugs related to the uncommon case do not go unnoticed. */ bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram)); } dmu_buf_will_dirty(sm->sm_dbuf, tx); sm->sm_phys->smp_length = 0; sm->sm_phys->smp_alloc = 0; } uint64_t space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx) { spa_t *spa = dmu_objset_spa(os); uint64_t object; int bonuslen; if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx); bonuslen = sizeof (space_map_phys_t); ASSERT3U(bonuslen, <=, dmu_bonus_max()); } else { bonuslen = SPACE_MAP_SIZE_V0; } object = dmu_object_alloc_ibs(os, DMU_OT_SPACE_MAP, blocksize, space_map_ibs, DMU_OT_SPACE_MAP_HEADER, bonuslen, tx); return (object); } void space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx) { spa_t *spa = dmu_objset_spa(os); if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { dmu_object_info_t doi; VERIFY0(dmu_object_info(os, smobj, &doi)); if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) { spa_feature_decr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx); } } VERIFY0(dmu_object_free(os, smobj, tx)); } void space_map_free(space_map_t *sm, dmu_tx_t *tx) { if (sm == NULL) return; space_map_free_obj(sm->sm_os, space_map_object(sm), tx); sm->sm_object = 0; } /* * Given a range tree, it makes a worst-case estimate of how much * space would the tree's segments take if they were written to * the given space map. */ uint64_t space_map_estimate_optimal_size(space_map_t *sm, range_tree_t *rt, uint64_t vdev_id) { spa_t *spa = dmu_objset_spa(sm->sm_os); uint64_t shift = sm->sm_shift; uint64_t *histogram = rt->rt_histogram; uint64_t entries_for_seg = 0; /* * In order to get a quick estimate of the optimal size that this * range tree would have on-disk as a space map, we iterate through * its histogram buckets instead of iterating through its nodes. * * Note that this is a highest-bound/worst-case estimate for the * following reasons: * * 1] We assume that we always add a debug padding for each block * we write and we also assume that we start at the last word * of a block attempting to write a two-word entry. * 2] Rounding up errors due to the way segments are distributed * in the buckets of the range tree's histogram. * 3] The activation of zfs_force_some_double_word_sm_entries * (tunable) when testing. * * = Math and Rounding Errors = * * rt_histogram[i] bucket of a range tree represents the number * of entries in [2^i, (2^(i+1))-1] of that range_tree. Given * that, we want to divide the buckets into groups: Buckets that * can be represented using a single-word entry, ones that can * be represented with a double-word entry, and ones that can * only be represented with multiple two-word entries. * * [Note that if the new encoding feature is not enabled there * are only two groups: single-word entry buckets and multiple * single-word entry buckets. The information below assumes * two-word entries enabled, but it can easily applied when * the feature is not enabled] * * To find the highest bucket that can be represented with a * single-word entry we look at the maximum run that such entry * can have, which is 2^(SM_RUN_BITS + sm_shift) [remember that * the run of a space map entry is shifted by sm_shift, thus we * add it to the exponent]. This way, excluding the value of the * maximum run that can be represented by a single-word entry, * all runs that are smaller exist in buckets 0 to * SM_RUN_BITS + shift - 1. * * To find the highest bucket that can be represented with a * double-word entry, we follow the same approach. Finally, any * bucket higher than that are represented with multiple two-word * entries. To be more specific, if the highest bucket whose * segments can be represented with a single two-word entry is X, * then bucket X+1 will need 2 two-word entries for each of its * segments, X+2 will need 4, X+3 will need 8, ...etc. * * With all of the above we make our estimation based on bucket * groups. There is a rounding error though. As we mentioned in * the example with the one-word entry, the maximum run that can * be represented in a one-word entry 2^(SM_RUN_BITS + shift) is * not part of bucket SM_RUN_BITS + shift - 1. Thus, segments of * that length fall into the next bucket (and bucket group) where * we start counting two-word entries and this is one more reason * why the estimated size may end up being bigger than the actual * size written. */ uint64_t size = 0; uint64_t idx = 0; if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) || (vdev_id == SM_NO_VDEVID && sm->sm_size < SM_OFFSET_MAX)) { /* * If we are trying to force some double word entries just * assume the worst-case of every single word entry being * written as a double word entry. */ uint64_t entry_size = (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) && zfs_force_some_double_word_sm_entries) ? (2 * sizeof (uint64_t)) : sizeof (uint64_t); uint64_t single_entry_max_bucket = SM_RUN_BITS + shift - 1; for (; idx <= single_entry_max_bucket; idx++) size += histogram[idx] * entry_size; if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)) { for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) { ASSERT3U(idx, >=, single_entry_max_bucket); entries_for_seg = 1ULL << (idx - single_entry_max_bucket); size += histogram[idx] * entries_for_seg * entry_size; } return (size); } } ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)); uint64_t double_entry_max_bucket = SM2_RUN_BITS + shift - 1; for (; idx <= double_entry_max_bucket; idx++) size += histogram[idx] * 2 * sizeof (uint64_t); for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) { ASSERT3U(idx, >=, double_entry_max_bucket); entries_for_seg = 1ULL << (idx - double_entry_max_bucket); size += histogram[idx] * entries_for_seg * 2 * sizeof (uint64_t); } /* * Assume the worst case where we start with the padding at the end * of the current block and we add an extra padding entry at the end * of all subsequent blocks. */ size += ((size / sm->sm_blksz) + 1) * sizeof (uint64_t); return (size); } uint64_t space_map_object(space_map_t *sm) { return (sm != NULL ? sm->sm_object : 0); } int64_t space_map_allocated(space_map_t *sm) { return (sm != NULL ? sm->sm_phys->smp_alloc : 0); } uint64_t space_map_length(space_map_t *sm) { return (sm != NULL ? sm->sm_phys->smp_length : 0); } uint64_t space_map_nblocks(space_map_t *sm) { if (sm == NULL) return (0); return (DIV_ROUND_UP(space_map_length(sm), sm->sm_blksz)); }