/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2018, Joyent, Inc. * Copyright (c) 2011, 2019 by Delphix. All rights reserved. * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. * Copyright 2017 Nexenta Systems, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #include #include #endif #include #include #include #include #include #include #include /* * This is a limit on how many pages the ARC shrinker makes available for * eviction in response to one page allocation attempt. Note that in * practice, the kernel's shrinker can ask us to evict up to about 4x this * for one allocation attempt. * * The default limit of 10,000 (in practice, 160MB per allocation attempt * with 4K pages) limits the amount of time spent attempting to reclaim ARC * memory to less than 100ms per allocation attempt, even with a small * average compressed block size of ~8KB. * * See also the comment in arc_shrinker_count(). * Set to 0 to disable limit. */ int zfs_arc_shrinker_limit = 10000; #ifdef CONFIG_MEMORY_HOTPLUG static struct notifier_block arc_hotplug_callback_mem_nb; #endif /* * Return a default max arc size based on the amount of physical memory. */ uint64_t arc_default_max(uint64_t min, uint64_t allmem) { /* Default to 1/2 of all memory. */ return (MAX(allmem / 2, min)); } #ifdef _KERNEL /* * Return maximum amount of memory that we could possibly use. Reduced * to half of all memory in user space which is primarily used for testing. */ uint64_t arc_all_memory(void) { #ifdef CONFIG_HIGHMEM return (ptob(zfs_totalram_pages - zfs_totalhigh_pages)); #else return (ptob(zfs_totalram_pages)); #endif /* CONFIG_HIGHMEM */ } /* * Return the amount of memory that is considered free. In user space * which is primarily used for testing we pretend that free memory ranges * from 0-20% of all memory. */ uint64_t arc_free_memory(void) { #ifdef CONFIG_HIGHMEM struct sysinfo si; si_meminfo(&si); return (ptob(si.freeram - si.freehigh)); #else return (ptob(nr_free_pages() + nr_inactive_file_pages())); #endif /* CONFIG_HIGHMEM */ } /* * Return the amount of memory that can be consumed before reclaim will be * needed. Positive if there is sufficient free memory, negative indicates * the amount of memory that needs to be freed up. */ int64_t arc_available_memory(void) { return (arc_free_memory() - arc_sys_free); } static uint64_t arc_evictable_memory(void) { int64_t asize = aggsum_value(&arc_sums.arcstat_size); uint64_t arc_clean = zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) + zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) + zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) + zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); uint64_t arc_dirty = MAX((int64_t)asize - (int64_t)arc_clean, 0); /* * Scale reported evictable memory in proportion to page cache, cap * at specified min/max. */ uint64_t min = (ptob(nr_file_pages()) / 100) * zfs_arc_pc_percent; min = MAX(arc_c_min, MIN(arc_c_max, min)); if (arc_dirty >= min) return (arc_clean); return (MAX((int64_t)asize - (int64_t)min, 0)); } /* * The _count() function returns the number of free-able objects. * The _scan() function returns the number of objects that were freed. */ static unsigned long arc_shrinker_count(struct shrinker *shrink, struct shrink_control *sc) { /* * __GFP_FS won't be set if we are called from ZFS code (see * kmem_flags_convert(), which removes it). To avoid a deadlock, we * don't allow evicting in this case. We return 0 rather than * SHRINK_STOP so that the shrinker logic doesn't accumulate a * deficit against us. */ if (!(sc->gfp_mask & __GFP_FS)) { return (0); } /* * This code is reached in the "direct reclaim" case, where the * kernel (outside ZFS) is trying to allocate a page, and the system * is low on memory. * * The kernel's shrinker code doesn't understand how many pages the * ARC's callback actually frees, so it may ask the ARC to shrink a * lot for one page allocation. This is problematic because it may * take a long time, thus delaying the page allocation, and because * it may force the ARC to unnecessarily shrink very small. * * Therefore, we limit the amount of data that we say is evictable, * which limits the amount that the shrinker will ask us to evict for * one page allocation attempt. * * In practice, we may be asked to shrink 4x the limit to satisfy one * page allocation, before the kernel's shrinker code gives up on us. * When that happens, we rely on the kernel code to find the pages * that we freed before invoking the OOM killer. This happens in * __alloc_pages_slowpath(), which retries and finds the pages we * freed when it calls get_page_from_freelist(). * * See also the comment above zfs_arc_shrinker_limit. */ int64_t limit = zfs_arc_shrinker_limit != 0 ? zfs_arc_shrinker_limit : INT64_MAX; return (MIN(limit, btop((int64_t)arc_evictable_memory()))); } static unsigned long arc_shrinker_scan(struct shrinker *shrink, struct shrink_control *sc) { ASSERT((sc->gfp_mask & __GFP_FS) != 0); /* The arc is considered warm once reclaim has occurred */ if (unlikely(arc_warm == B_FALSE)) arc_warm = B_TRUE; /* * Evict the requested number of pages by reducing arc_c and waiting * for the requested amount of data to be evicted. */ arc_reduce_target_size(ptob(sc->nr_to_scan)); arc_wait_for_eviction(ptob(sc->nr_to_scan), B_FALSE); if (current->reclaim_state != NULL) current->reclaim_state->reclaimed_slab += sc->nr_to_scan; /* * We are experiencing memory pressure which the arc_evict_zthr was * unable to keep up with. Set arc_no_grow to briefly pause arc * growth to avoid compounding the memory pressure. */ arc_no_grow = B_TRUE; /* * When direct reclaim is observed it usually indicates a rapid * increase in memory pressure. This occurs because the kswapd * threads were unable to asynchronously keep enough free memory * available. */ if (current_is_kswapd()) { ARCSTAT_BUMP(arcstat_memory_indirect_count); } else { ARCSTAT_BUMP(arcstat_memory_direct_count); } return (sc->nr_to_scan); } SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_count, arc_shrinker_scan, DEFAULT_SEEKS); int arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg) { uint64_t free_memory = arc_free_memory(); if (free_memory > arc_all_memory() * arc_lotsfree_percent / 100) return (0); if (txg > spa->spa_lowmem_last_txg) { spa->spa_lowmem_last_txg = txg; spa->spa_lowmem_page_load = 0; } /* * If we are in pageout, we know that memory is already tight, * the arc is already going to be evicting, so we just want to * continue to let page writes occur as quickly as possible. */ if (current_is_kswapd()) { if (spa->spa_lowmem_page_load > MAX(arc_sys_free / 4, free_memory) / 4) { DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim); return (SET_ERROR(ERESTART)); } /* Note: reserve is inflated, so we deflate */ atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8); return (0); } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) { /* memory is low, delay before restarting */ ARCSTAT_INCR(arcstat_memory_throttle_count, 1); DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim); return (SET_ERROR(EAGAIN)); } spa->spa_lowmem_page_load = 0; return (0); } static void arc_set_sys_free(uint64_t allmem) { /* * The ARC tries to keep at least this much memory available for the * system. This gives the ARC time to shrink in response to memory * pressure, before running completely out of memory and invoking the * direct-reclaim ARC shrinker. * * This should be more than twice high_wmark_pages(), so that * arc_wait_for_eviction() will wait until at least the * high_wmark_pages() are free (see arc_evict_state_impl()). * * Note: Even when the system is very low on memory, the kernel's * shrinker code may only ask for one "batch" of pages (512KB) to be * evicted. If concurrent allocations consume these pages, there may * still be insufficient free pages, and the OOM killer takes action. * * By setting arc_sys_free large enough, and having * arc_wait_for_eviction() wait until there is at least arc_sys_free/2 * free memory, it is much less likely that concurrent allocations can * consume all the memory that was evicted before checking for * OOM. * * It's hard to iterate the zones from a linux kernel module, which * makes it difficult to determine the watermark dynamically. Instead * we compute the maximum high watermark for this system, based * on the amount of memory, assuming default parameters on Linux kernel * 5.3. */ /* * Base wmark_low is 4 * the square root of Kbytes of RAM. */ long wmark = 4 * int_sqrt(allmem/1024) * 1024; /* * Clamp to between 128K and 64MB. */ wmark = MAX(wmark, 128 * 1024); wmark = MIN(wmark, 64 * 1024 * 1024); /* * watermark_boost can increase the wmark by up to 150%. */ wmark += wmark * 150 / 100; /* * arc_sys_free needs to be more than 2x the watermark, because * arc_wait_for_eviction() waits for half of arc_sys_free. Bump this up * to 3x to ensure we're above it. */ arc_sys_free = wmark * 3 + allmem / 32; } void arc_lowmem_init(void) { uint64_t allmem = arc_all_memory(); /* * Register a shrinker to support synchronous (direct) memory * reclaim from the arc. This is done to prevent kswapd from * swapping out pages when it is preferable to shrink the arc. */ spl_register_shrinker(&arc_shrinker); arc_set_sys_free(allmem); } void arc_lowmem_fini(void) { spl_unregister_shrinker(&arc_shrinker); } int param_set_arc_long(const char *buf, zfs_kernel_param_t *kp) { int error; error = param_set_long(buf, kp); if (error < 0) return (SET_ERROR(error)); arc_tuning_update(B_TRUE); return (0); } int param_set_arc_min(const char *buf, zfs_kernel_param_t *kp) { return (param_set_arc_long(buf, kp)); } int param_set_arc_max(const char *buf, zfs_kernel_param_t *kp) { return (param_set_arc_long(buf, kp)); } int param_set_arc_int(const char *buf, zfs_kernel_param_t *kp) { int error; error = param_set_int(buf, kp); if (error < 0) return (SET_ERROR(error)); arc_tuning_update(B_TRUE); return (0); } #ifdef CONFIG_MEMORY_HOTPLUG static int arc_hotplug_callback(struct notifier_block *self, unsigned long action, void *arg) { (void) self, (void) arg; uint64_t allmem = arc_all_memory(); if (action != MEM_ONLINE) return (NOTIFY_OK); arc_set_limits(allmem); #ifdef __LP64__ if (zfs_dirty_data_max_max == 0) zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, allmem * zfs_dirty_data_max_max_percent / 100); #else if (zfs_dirty_data_max_max == 0) zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, allmem * zfs_dirty_data_max_max_percent / 100); #endif arc_set_sys_free(allmem); return (NOTIFY_OK); } #endif void arc_register_hotplug(void) { #ifdef CONFIG_MEMORY_HOTPLUG arc_hotplug_callback_mem_nb.notifier_call = arc_hotplug_callback; /* There is no significance to the value 100 */ arc_hotplug_callback_mem_nb.priority = 100; register_memory_notifier(&arc_hotplug_callback_mem_nb); #endif } void arc_unregister_hotplug(void) { #ifdef CONFIG_MEMORY_HOTPLUG unregister_memory_notifier(&arc_hotplug_callback_mem_nb); #endif } #else /* _KERNEL */ int64_t arc_available_memory(void) { int64_t lowest = INT64_MAX; /* Every 100 calls, free a small amount */ if (random_in_range(100) == 0) lowest = -1024; return (lowest); } int arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg) { (void) spa, (void) reserve, (void) txg; return (0); } uint64_t arc_all_memory(void) { return (ptob(physmem) / 2); } uint64_t arc_free_memory(void) { return (random_in_range(arc_all_memory() * 20 / 100)); } void arc_register_hotplug(void) { } void arc_unregister_hotplug(void) { } #endif /* _KERNEL */ /* * Helper function for arc_prune_async() it is responsible for safely * handling the execution of a registered arc_prune_func_t. */ static void arc_prune_task(void *ptr) { arc_prune_t *ap = (arc_prune_t *)ptr; arc_prune_func_t *func = ap->p_pfunc; if (func != NULL) func(ap->p_adjust, ap->p_private); zfs_refcount_remove(&ap->p_refcnt, func); } /* * Notify registered consumers they must drop holds on a portion of the ARC * buffered they reference. This provides a mechanism to ensure the ARC can * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This * is analogous to dnlc_reduce_cache() but more generic. * * This operation is performed asynchronously so it may be safely called * in the context of the arc_reclaim_thread(). A reference is taken here * for each registered arc_prune_t and the arc_prune_task() is responsible * for releasing it once the registered arc_prune_func_t has completed. */ void arc_prune_async(uint64_t adjust) { arc_prune_t *ap; mutex_enter(&arc_prune_mtx); for (ap = list_head(&arc_prune_list); ap != NULL; ap = list_next(&arc_prune_list, ap)) { if (zfs_refcount_count(&ap->p_refcnt) >= 2) continue; zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc); ap->p_adjust = adjust; if (taskq_dispatch(arc_prune_taskq, arc_prune_task, ap, TQ_SLEEP) == TASKQID_INVALID) { zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc); continue; } ARCSTAT_BUMP(arcstat_prune); } mutex_exit(&arc_prune_mtx); } ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, shrinker_limit, INT, ZMOD_RW, "Limit on number of pages that ARC shrinker can reclaim at once");