/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. * Copyright (c) 2012, Joyent, Inc. All rights reserved. * Copyright (c) 2012 Pawel Jakub Dawidek . * All rights reserved * Copyright (c) 2013 Steven Hartland. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "zfs_fletcher.h" #include "libzfs_impl.h" #include #include #include /* in libzfs_dataset.c */ extern void zfs_setprop_error(libzfs_handle_t *, zfs_prop_t, int, char *); static int zfs_receive_impl(libzfs_handle_t *, const char *, recvflags_t *, int, const char *, nvlist_t *, avl_tree_t *, char **, int, uint64_t *); static const zio_cksum_t zero_cksum = { { 0 } }; typedef struct dedup_arg { int inputfd; int outputfd; libzfs_handle_t *dedup_hdl; } dedup_arg_t; typedef struct progress_arg { zfs_handle_t *pa_zhp; int pa_fd; boolean_t pa_parsable; } progress_arg_t; typedef struct dataref { uint64_t ref_guid; uint64_t ref_object; uint64_t ref_offset; } dataref_t; typedef struct dedup_entry { struct dedup_entry *dde_next; zio_cksum_t dde_chksum; uint64_t dde_prop; dataref_t dde_ref; } dedup_entry_t; #define MAX_DDT_PHYSMEM_PERCENT 20 #define SMALLEST_POSSIBLE_MAX_DDT_MB 128 typedef struct dedup_table { dedup_entry_t **dedup_hash_array; umem_cache_t *ddecache; uint64_t max_ddt_size; /* max dedup table size in bytes */ uint64_t cur_ddt_size; /* current dedup table size in bytes */ uint64_t ddt_count; int numhashbits; boolean_t ddt_full; } dedup_table_t; static int high_order_bit(uint64_t n) { int count; for (count = 0; n != 0; count++) n >>= 1; return (count); } static size_t ssread(void *buf, size_t len, FILE *stream) { size_t outlen; if ((outlen = fread(buf, len, 1, stream)) == 0) return (0); return (outlen); } static void ddt_hash_append(libzfs_handle_t *hdl, dedup_table_t *ddt, dedup_entry_t **ddepp, zio_cksum_t *cs, uint64_t prop, dataref_t *dr) { dedup_entry_t *dde; if (ddt->cur_ddt_size >= ddt->max_ddt_size) { if (ddt->ddt_full == B_FALSE) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Dedup table full. Deduplication will continue " "with existing table entries")); ddt->ddt_full = B_TRUE; } return; } if ((dde = umem_cache_alloc(ddt->ddecache, UMEM_DEFAULT)) != NULL) { assert(*ddepp == NULL); dde->dde_next = NULL; dde->dde_chksum = *cs; dde->dde_prop = prop; dde->dde_ref = *dr; *ddepp = dde; ddt->cur_ddt_size += sizeof (dedup_entry_t); ddt->ddt_count++; } } /* * Using the specified dedup table, do a lookup for an entry with * the checksum cs. If found, return the block's reference info * in *dr. Otherwise, insert a new entry in the dedup table, using * the reference information specified by *dr. * * return value: true - entry was found * false - entry was not found */ static boolean_t ddt_update(libzfs_handle_t *hdl, dedup_table_t *ddt, zio_cksum_t *cs, uint64_t prop, dataref_t *dr) { uint32_t hashcode; dedup_entry_t **ddepp; hashcode = BF64_GET(cs->zc_word[0], 0, ddt->numhashbits); for (ddepp = &(ddt->dedup_hash_array[hashcode]); *ddepp != NULL; ddepp = &((*ddepp)->dde_next)) { if (ZIO_CHECKSUM_EQUAL(((*ddepp)->dde_chksum), *cs) && (*ddepp)->dde_prop == prop) { *dr = (*ddepp)->dde_ref; return (B_TRUE); } } ddt_hash_append(hdl, ddt, ddepp, cs, prop, dr); return (B_FALSE); } static int cksum_and_write(const void *buf, uint64_t len, zio_cksum_t *zc, int outfd) { fletcher_4_incremental_native(buf, len, zc); return (write(outfd, buf, len)); } /* * This function is started in a separate thread when the dedup option * has been requested. The main send thread determines the list of * snapshots to be included in the send stream and makes the ioctl calls * for each one. But instead of having the ioctl send the output to the * the output fd specified by the caller of zfs_send()), the * ioctl is told to direct the output to a pipe, which is read by the * alternate thread running THIS function. This function does the * dedup'ing by: * 1. building a dedup table (the DDT) * 2. doing checksums on each data block and inserting a record in the DDT * 3. looking for matching checksums, and * 4. sending a DRR_WRITE_BYREF record instead of a write record whenever * a duplicate block is found. * The output of this function then goes to the output fd requested * by the caller of zfs_send(). */ static void * cksummer(void *arg) { dedup_arg_t *dda = arg; char *buf = malloc(1<<20); dmu_replay_record_t thedrr; dmu_replay_record_t *drr = &thedrr; struct drr_begin *drrb = &thedrr.drr_u.drr_begin; struct drr_end *drre = &thedrr.drr_u.drr_end; struct drr_object *drro = &thedrr.drr_u.drr_object; struct drr_write *drrw = &thedrr.drr_u.drr_write; struct drr_spill *drrs = &thedrr.drr_u.drr_spill; struct drr_write_embedded *drrwe = &thedrr.drr_u.drr_write_embedded; FILE *ofp; int outfd; dmu_replay_record_t wbr_drr = {0}; struct drr_write_byref *wbr_drrr = &wbr_drr.drr_u.drr_write_byref; dedup_table_t ddt; zio_cksum_t stream_cksum; uint64_t physmem = sysconf(_SC_PHYS_PAGES) * sysconf(_SC_PAGESIZE); uint64_t numbuckets; ddt.max_ddt_size = MAX((physmem * MAX_DDT_PHYSMEM_PERCENT)/100, SMALLEST_POSSIBLE_MAX_DDT_MB<<20); numbuckets = ddt.max_ddt_size/(sizeof (dedup_entry_t)); /* * numbuckets must be a power of 2. Increase number to * a power of 2 if necessary. */ if (!ISP2(numbuckets)) numbuckets = 1 << high_order_bit(numbuckets); ddt.dedup_hash_array = calloc(numbuckets, sizeof (dedup_entry_t *)); ddt.ddecache = umem_cache_create("dde", sizeof (dedup_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0); ddt.cur_ddt_size = numbuckets * sizeof (dedup_entry_t *); ddt.numhashbits = high_order_bit(numbuckets) - 1; ddt.ddt_full = B_FALSE; /* Initialize the write-by-reference block. */ wbr_drr.drr_type = DRR_WRITE_BYREF; wbr_drr.drr_payloadlen = 0; outfd = dda->outputfd; ofp = fdopen(dda->inputfd, "r"); while (ssread(drr, sizeof (dmu_replay_record_t), ofp) != 0) { switch (drr->drr_type) { case DRR_BEGIN: { int fflags; ZIO_SET_CHECKSUM(&stream_cksum, 0, 0, 0, 0); /* set the DEDUP feature flag for this stream */ fflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); fflags |= (DMU_BACKUP_FEATURE_DEDUP | DMU_BACKUP_FEATURE_DEDUPPROPS); DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, fflags); if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM && drr->drr_payloadlen != 0) { int sz = drr->drr_payloadlen; if (sz > 1<<20) { free(buf); buf = malloc(sz); } (void) ssread(buf, sz, ofp); if (ferror(stdin)) perror("fread"); if (cksum_and_write(buf, sz, &stream_cksum, outfd) == -1) goto out; } break; } case DRR_END: { /* use the recalculated checksum */ ZIO_SET_CHECKSUM(&drre->drr_checksum, stream_cksum.zc_word[0], stream_cksum.zc_word[1], stream_cksum.zc_word[2], stream_cksum.zc_word[3]); if ((write(outfd, drr, sizeof (dmu_replay_record_t))) == -1) goto out; break; } case DRR_OBJECT: { if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; if (drro->drr_bonuslen > 0) { (void) ssread(buf, P2ROUNDUP((uint64_t)drro->drr_bonuslen, 8), ofp); if (cksum_and_write(buf, P2ROUNDUP((uint64_t)drro->drr_bonuslen, 8), &stream_cksum, outfd) == -1) goto out; } break; } case DRR_SPILL: { if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; (void) ssread(buf, drrs->drr_length, ofp); if (cksum_and_write(buf, drrs->drr_length, &stream_cksum, outfd) == -1) goto out; break; } case DRR_FREEOBJECTS: { if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; break; } case DRR_WRITE: { dataref_t dataref; (void) ssread(buf, drrw->drr_length, ofp); /* * Use the existing checksum if it's dedup-capable, * else calculate a SHA256 checksum for it. */ if (ZIO_CHECKSUM_EQUAL(drrw->drr_key.ddk_cksum, zero_cksum) || !DRR_IS_DEDUP_CAPABLE(drrw->drr_checksumflags)) { zio_cksum_t tmpsha256; zio_checksum_SHA256(buf, drrw->drr_length, &tmpsha256); drrw->drr_key.ddk_cksum.zc_word[0] = BE_64(tmpsha256.zc_word[0]); drrw->drr_key.ddk_cksum.zc_word[1] = BE_64(tmpsha256.zc_word[1]); drrw->drr_key.ddk_cksum.zc_word[2] = BE_64(tmpsha256.zc_word[2]); drrw->drr_key.ddk_cksum.zc_word[3] = BE_64(tmpsha256.zc_word[3]); drrw->drr_checksumtype = ZIO_CHECKSUM_SHA256; drrw->drr_checksumflags = DRR_CHECKSUM_DEDUP; } dataref.ref_guid = drrw->drr_toguid; dataref.ref_object = drrw->drr_object; dataref.ref_offset = drrw->drr_offset; if (ddt_update(dda->dedup_hdl, &ddt, &drrw->drr_key.ddk_cksum, drrw->drr_key.ddk_prop, &dataref)) { /* block already present in stream */ wbr_drrr->drr_object = drrw->drr_object; wbr_drrr->drr_offset = drrw->drr_offset; wbr_drrr->drr_length = drrw->drr_length; wbr_drrr->drr_toguid = drrw->drr_toguid; wbr_drrr->drr_refguid = dataref.ref_guid; wbr_drrr->drr_refobject = dataref.ref_object; wbr_drrr->drr_refoffset = dataref.ref_offset; wbr_drrr->drr_checksumtype = drrw->drr_checksumtype; wbr_drrr->drr_checksumflags = drrw->drr_checksumtype; wbr_drrr->drr_key.ddk_cksum = drrw->drr_key.ddk_cksum; wbr_drrr->drr_key.ddk_prop = drrw->drr_key.ddk_prop; if (cksum_and_write(&wbr_drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; } else { /* block not previously seen */ if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; if (cksum_and_write(buf, drrw->drr_length, &stream_cksum, outfd) == -1) goto out; } break; } case DRR_WRITE_EMBEDDED: { if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; (void) ssread(buf, P2ROUNDUP((uint64_t)drrwe->drr_psize, 8), ofp); if (cksum_and_write(buf, P2ROUNDUP((uint64_t)drrwe->drr_psize, 8), &stream_cksum, outfd) == -1) goto out; break; } case DRR_FREE: { if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; break; } default: (void) printf("INVALID record type 0x%x\n", drr->drr_type); /* should never happen, so assert */ assert(B_FALSE); } } out: umem_cache_destroy(ddt.ddecache); free(ddt.dedup_hash_array); free(buf); (void) fclose(ofp); return (NULL); } /* * Routines for dealing with the AVL tree of fs-nvlists */ typedef struct fsavl_node { avl_node_t fn_node; nvlist_t *fn_nvfs; char *fn_snapname; uint64_t fn_guid; } fsavl_node_t; static int fsavl_compare(const void *arg1, const void *arg2) { const fsavl_node_t *fn1 = arg1; const fsavl_node_t *fn2 = arg2; if (fn1->fn_guid > fn2->fn_guid) return (+1); else if (fn1->fn_guid < fn2->fn_guid) return (-1); else return (0); } /* * Given the GUID of a snapshot, find its containing filesystem and * (optionally) name. */ static nvlist_t * fsavl_find(avl_tree_t *avl, uint64_t snapguid, char **snapname) { fsavl_node_t fn_find; fsavl_node_t *fn; fn_find.fn_guid = snapguid; fn = avl_find(avl, &fn_find, NULL); if (fn) { if (snapname) *snapname = fn->fn_snapname; return (fn->fn_nvfs); } return (NULL); } static void fsavl_destroy(avl_tree_t *avl) { fsavl_node_t *fn; void *cookie; if (avl == NULL) return; cookie = NULL; while ((fn = avl_destroy_nodes(avl, &cookie)) != NULL) free(fn); avl_destroy(avl); free(avl); } /* * Given an nvlist, produce an avl tree of snapshots, ordered by guid */ static avl_tree_t * fsavl_create(nvlist_t *fss) { avl_tree_t *fsavl; nvpair_t *fselem = NULL; if ((fsavl = malloc(sizeof (avl_tree_t))) == NULL) return (NULL); avl_create(fsavl, fsavl_compare, sizeof (fsavl_node_t), offsetof(fsavl_node_t, fn_node)); while ((fselem = nvlist_next_nvpair(fss, fselem)) != NULL) { nvlist_t *nvfs, *snaps; nvpair_t *snapelem = NULL; VERIFY(0 == nvpair_value_nvlist(fselem, &nvfs)); VERIFY(0 == nvlist_lookup_nvlist(nvfs, "snaps", &snaps)); while ((snapelem = nvlist_next_nvpair(snaps, snapelem)) != NULL) { fsavl_node_t *fn; uint64_t guid; VERIFY(0 == nvpair_value_uint64(snapelem, &guid)); if ((fn = malloc(sizeof (fsavl_node_t))) == NULL) { fsavl_destroy(fsavl); return (NULL); } fn->fn_nvfs = nvfs; fn->fn_snapname = nvpair_name(snapelem); fn->fn_guid = guid; /* * Note: if there are multiple snaps with the * same GUID, we ignore all but one. */ if (avl_find(fsavl, fn, NULL) == NULL) avl_add(fsavl, fn); else free(fn); } } return (fsavl); } /* * Routines for dealing with the giant nvlist of fs-nvlists, etc. */ typedef struct send_data { uint64_t parent_fromsnap_guid; nvlist_t *parent_snaps; nvlist_t *fss; nvlist_t *snapprops; const char *fromsnap; const char *tosnap; boolean_t recursive; boolean_t seenfrom; boolean_t seento; /* * The header nvlist is of the following format: * { * "tosnap" -> string * "fromsnap" -> string (if incremental) * "fss" -> { * id -> { * * "name" -> string (full name; for debugging) * "parentfromsnap" -> number (guid of fromsnap in parent) * * "props" -> { name -> value (only if set here) } * "snaps" -> { name (lastname) -> number (guid) } * "snapprops" -> { name (lastname) -> { name -> value } } * * "origin" -> number (guid) (if clone) * "sent" -> boolean (not on-disk) * } * } * } * */ } send_data_t; static void send_iterate_prop(zfs_handle_t *zhp, nvlist_t *nv); static int send_iterate_snap(zfs_handle_t *zhp, void *arg) { send_data_t *sd = arg; uint64_t guid = zhp->zfs_dmustats.dds_guid; char *snapname; nvlist_t *nv; boolean_t isfromsnap, istosnap, istosnapwithnofrom; snapname = strrchr(zhp->zfs_name, '@')+1; isfromsnap = (sd->fromsnap != NULL && strcmp(sd->fromsnap, snapname) == 0); istosnap = (sd->tosnap != NULL && (strcmp(sd->tosnap, snapname) == 0)); istosnapwithnofrom = (istosnap && sd->fromsnap == NULL); VERIFY(0 == nvlist_add_uint64(sd->parent_snaps, snapname, guid)); /* * NB: if there is no fromsnap here (it's a newly created fs in * an incremental replication), we will substitute the tosnap. */ if (isfromsnap || (sd->parent_fromsnap_guid == 0 && istosnap)) { sd->parent_fromsnap_guid = guid; } if (!sd->recursive) { if (!sd->seenfrom && isfromsnap) { sd->seenfrom = B_TRUE; zfs_close(zhp); return (0); } if ((sd->seento || !sd->seenfrom) && !istosnapwithnofrom) { zfs_close(zhp); return (0); } if (istosnap) sd->seento = B_TRUE; } VERIFY(0 == nvlist_alloc(&nv, NV_UNIQUE_NAME, 0)); send_iterate_prop(zhp, nv); VERIFY(0 == nvlist_add_nvlist(sd->snapprops, snapname, nv)); nvlist_free(nv); zfs_close(zhp); return (0); } static void send_iterate_prop(zfs_handle_t *zhp, nvlist_t *nv) { nvpair_t *elem = NULL; while ((elem = nvlist_next_nvpair(zhp->zfs_props, elem)) != NULL) { char *propname = nvpair_name(elem); zfs_prop_t prop = zfs_name_to_prop(propname); nvlist_t *propnv; if (!zfs_prop_user(propname)) { /* * Realistically, this should never happen. However, * we want the ability to add DSL properties without * needing to make incompatible version changes. We * need to ignore unknown properties to allow older * software to still send datasets containing these * properties, with the unknown properties elided. */ if (prop == ZPROP_INVAL) continue; if (zfs_prop_readonly(prop)) continue; } verify(nvpair_value_nvlist(elem, &propnv) == 0); if (prop == ZFS_PROP_QUOTA || prop == ZFS_PROP_RESERVATION || prop == ZFS_PROP_REFQUOTA || prop == ZFS_PROP_REFRESERVATION) { char *source; uint64_t value; verify(nvlist_lookup_uint64(propnv, ZPROP_VALUE, &value) == 0); if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) continue; /* * May have no source before SPA_VERSION_RECVD_PROPS, * but is still modifiable. */ if (nvlist_lookup_string(propnv, ZPROP_SOURCE, &source) == 0) { if ((strcmp(source, zhp->zfs_name) != 0) && (strcmp(source, ZPROP_SOURCE_VAL_RECVD) != 0)) continue; } } else { char *source; if (nvlist_lookup_string(propnv, ZPROP_SOURCE, &source) != 0) continue; if ((strcmp(source, zhp->zfs_name) != 0) && (strcmp(source, ZPROP_SOURCE_VAL_RECVD) != 0)) continue; } if (zfs_prop_user(propname) || zfs_prop_get_type(prop) == PROP_TYPE_STRING) { char *value; verify(nvlist_lookup_string(propnv, ZPROP_VALUE, &value) == 0); VERIFY(0 == nvlist_add_string(nv, propname, value)); } else { uint64_t value; verify(nvlist_lookup_uint64(propnv, ZPROP_VALUE, &value) == 0); VERIFY(0 == nvlist_add_uint64(nv, propname, value)); } } } /* * recursively generate nvlists describing datasets. See comment * for the data structure send_data_t above for description of contents * of the nvlist. */ static int send_iterate_fs(zfs_handle_t *zhp, void *arg) { send_data_t *sd = arg; nvlist_t *nvfs, *nv; int rv = 0; uint64_t parent_fromsnap_guid_save = sd->parent_fromsnap_guid; uint64_t guid = zhp->zfs_dmustats.dds_guid; char guidstring[64]; VERIFY(0 == nvlist_alloc(&nvfs, NV_UNIQUE_NAME, 0)); VERIFY(0 == nvlist_add_string(nvfs, "name", zhp->zfs_name)); VERIFY(0 == nvlist_add_uint64(nvfs, "parentfromsnap", sd->parent_fromsnap_guid)); if (zhp->zfs_dmustats.dds_origin[0]) { zfs_handle_t *origin = zfs_open(zhp->zfs_hdl, zhp->zfs_dmustats.dds_origin, ZFS_TYPE_SNAPSHOT); if (origin == NULL) return (-1); VERIFY(0 == nvlist_add_uint64(nvfs, "origin", origin->zfs_dmustats.dds_guid)); } /* iterate over props */ VERIFY(0 == nvlist_alloc(&nv, NV_UNIQUE_NAME, 0)); send_iterate_prop(zhp, nv); VERIFY(0 == nvlist_add_nvlist(nvfs, "props", nv)); nvlist_free(nv); /* iterate over snaps, and set sd->parent_fromsnap_guid */ sd->parent_fromsnap_guid = 0; VERIFY(0 == nvlist_alloc(&sd->parent_snaps, NV_UNIQUE_NAME, 0)); VERIFY(0 == nvlist_alloc(&sd->snapprops, NV_UNIQUE_NAME, 0)); (void) zfs_iter_snapshots_sorted(zhp, send_iterate_snap, sd); VERIFY(0 == nvlist_add_nvlist(nvfs, "snaps", sd->parent_snaps)); VERIFY(0 == nvlist_add_nvlist(nvfs, "snapprops", sd->snapprops)); nvlist_free(sd->parent_snaps); nvlist_free(sd->snapprops); /* add this fs to nvlist */ (void) snprintf(guidstring, sizeof (guidstring), "0x%llx", (longlong_t)guid); VERIFY(0 == nvlist_add_nvlist(sd->fss, guidstring, nvfs)); nvlist_free(nvfs); /* iterate over children */ if (sd->recursive) rv = zfs_iter_filesystems(zhp, send_iterate_fs, sd); sd->parent_fromsnap_guid = parent_fromsnap_guid_save; zfs_close(zhp); return (rv); } static int gather_nvlist(libzfs_handle_t *hdl, const char *fsname, const char *fromsnap, const char *tosnap, boolean_t recursive, nvlist_t **nvlp, avl_tree_t **avlp) { zfs_handle_t *zhp; send_data_t sd = { 0 }; int error; zhp = zfs_open(hdl, fsname, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (zhp == NULL) return (EZFS_BADTYPE); VERIFY(0 == nvlist_alloc(&sd.fss, NV_UNIQUE_NAME, 0)); sd.fromsnap = fromsnap; sd.tosnap = tosnap; sd.recursive = recursive; if ((error = send_iterate_fs(zhp, &sd)) != 0) { nvlist_free(sd.fss); if (avlp != NULL) *avlp = NULL; *nvlp = NULL; return (error); } if (avlp != NULL && (*avlp = fsavl_create(sd.fss)) == NULL) { nvlist_free(sd.fss); *nvlp = NULL; return (EZFS_NOMEM); } *nvlp = sd.fss; return (0); } /* * Routines specific to "zfs send" */ typedef struct send_dump_data { /* these are all just the short snapname (the part after the @) */ const char *fromsnap; const char *tosnap; char prevsnap[ZFS_MAXNAMELEN]; uint64_t prevsnap_obj; boolean_t seenfrom, seento, replicate, doall, fromorigin; boolean_t verbose, dryrun, parsable, progress, embed_data; int outfd; boolean_t err; nvlist_t *fss; nvlist_t *snapholds; avl_tree_t *fsavl; snapfilter_cb_t *filter_cb; void *filter_cb_arg; nvlist_t *debugnv; char holdtag[ZFS_MAXNAMELEN]; int cleanup_fd; uint64_t size; } send_dump_data_t; static int estimate_ioctl(zfs_handle_t *zhp, uint64_t fromsnap_obj, boolean_t fromorigin, uint64_t *sizep) { zfs_cmd_t zc = {"\0"}; libzfs_handle_t *hdl = zhp->zfs_hdl; assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); assert(fromsnap_obj == 0 || !fromorigin); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); zc.zc_obj = fromorigin; zc.zc_sendobj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID); zc.zc_fromobj = fromsnap_obj; zc.zc_guid = 1; /* estimate flag */ if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_SEND, &zc) != 0) { char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "warning: cannot estimate space for '%s'"), zhp->zfs_name); switch (errno) { case EXDEV: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "not an earlier snapshot from the same fs")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); case ENOENT: if (zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_SNAPSHOT)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "incremental source (@%s) does not exist"), zc.zc_value); } return (zfs_error(hdl, EZFS_NOENT, errbuf)); case EDQUOT: case EFBIG: case EIO: case ENOLINK: case ENOSPC: case ENOSTR: case ENXIO: case EPIPE: case ERANGE: case EFAULT: case EROFS: zfs_error_aux(hdl, strerror(errno)); return (zfs_error(hdl, EZFS_BADBACKUP, errbuf)); default: return (zfs_standard_error(hdl, errno, errbuf)); } } *sizep = zc.zc_objset_type; return (0); } /* * Dumps a backup of the given snapshot (incremental from fromsnap if it's not * NULL) to the file descriptor specified by outfd. */ static int dump_ioctl(zfs_handle_t *zhp, const char *fromsnap, uint64_t fromsnap_obj, boolean_t fromorigin, int outfd, enum lzc_send_flags flags, nvlist_t *debugnv) { zfs_cmd_t zc = {"\0"}; libzfs_handle_t *hdl = zhp->zfs_hdl; nvlist_t *thisdbg; assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); assert(fromsnap_obj == 0 || !fromorigin); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); zc.zc_cookie = outfd; zc.zc_obj = fromorigin; zc.zc_sendobj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID); zc.zc_fromobj = fromsnap_obj; zc.zc_flags = flags; VERIFY(0 == nvlist_alloc(&thisdbg, NV_UNIQUE_NAME, 0)); if (fromsnap && fromsnap[0] != '\0') { VERIFY(0 == nvlist_add_string(thisdbg, "fromsnap", fromsnap)); } if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_SEND, &zc) != 0) { char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "warning: cannot send '%s'"), zhp->zfs_name); VERIFY(0 == nvlist_add_uint64(thisdbg, "error", errno)); if (debugnv) { VERIFY(0 == nvlist_add_nvlist(debugnv, zhp->zfs_name, thisdbg)); } nvlist_free(thisdbg); switch (errno) { case EXDEV: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "not an earlier snapshot from the same fs")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); case ENOENT: if (zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_SNAPSHOT)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "incremental source (@%s) does not exist"), zc.zc_value); } return (zfs_error(hdl, EZFS_NOENT, errbuf)); case EDQUOT: case EFBIG: case EIO: case ENOLINK: case ENOSPC: case ENOSTR: case ENXIO: case EPIPE: case ERANGE: case EFAULT: case EROFS: zfs_error_aux(hdl, strerror(errno)); return (zfs_error(hdl, EZFS_BADBACKUP, errbuf)); default: return (zfs_standard_error(hdl, errno, errbuf)); } } if (debugnv) VERIFY(0 == nvlist_add_nvlist(debugnv, zhp->zfs_name, thisdbg)); nvlist_free(thisdbg); return (0); } static void gather_holds(zfs_handle_t *zhp, send_dump_data_t *sdd) { assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); /* * zfs_send() only sets snapholds for sends that need them, * e.g. replication and doall. */ if (sdd->snapholds == NULL) return; fnvlist_add_string(sdd->snapholds, zhp->zfs_name, sdd->holdtag); } static void * send_progress_thread(void *arg) { progress_arg_t *pa = arg; zfs_cmd_t zc = {"\0"}; zfs_handle_t *zhp = pa->pa_zhp; libzfs_handle_t *hdl = zhp->zfs_hdl; unsigned long long bytes; char buf[16]; time_t t; struct tm *tm; assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (!pa->pa_parsable) (void) fprintf(stderr, "TIME SENT SNAPSHOT\n"); /* * Print the progress from ZFS_IOC_SEND_PROGRESS every second. */ for (;;) { (void) sleep(1); zc.zc_cookie = pa->pa_fd; if (zfs_ioctl(hdl, ZFS_IOC_SEND_PROGRESS, &zc) != 0) return ((void *)-1); (void) time(&t); tm = localtime(&t); bytes = zc.zc_cookie; if (pa->pa_parsable) { (void) fprintf(stderr, "%02d:%02d:%02d\t%llu\t%s\n", tm->tm_hour, tm->tm_min, tm->tm_sec, bytes, zhp->zfs_name); } else { zfs_nicenum(bytes, buf, sizeof (buf)); (void) fprintf(stderr, "%02d:%02d:%02d %5s %s\n", tm->tm_hour, tm->tm_min, tm->tm_sec, buf, zhp->zfs_name); } } } static int dump_snapshot(zfs_handle_t *zhp, void *arg) { send_dump_data_t *sdd = arg; progress_arg_t pa = { 0 }; pthread_t tid; char *thissnap; int err; boolean_t isfromsnap, istosnap, fromorigin; boolean_t exclude = B_FALSE; err = 0; thissnap = strchr(zhp->zfs_name, '@') + 1; isfromsnap = (sdd->fromsnap != NULL && strcmp(sdd->fromsnap, thissnap) == 0); if (!sdd->seenfrom && isfromsnap) { gather_holds(zhp, sdd); sdd->seenfrom = B_TRUE; (void) strcpy(sdd->prevsnap, thissnap); sdd->prevsnap_obj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID); zfs_close(zhp); return (0); } if (sdd->seento || !sdd->seenfrom) { zfs_close(zhp); return (0); } istosnap = (strcmp(sdd->tosnap, thissnap) == 0); if (istosnap) sdd->seento = B_TRUE; if (!sdd->doall && !isfromsnap && !istosnap) { if (sdd->replicate) { char *snapname; nvlist_t *snapprops; /* * Filter out all intermediate snapshots except origin * snapshots needed to replicate clones. */ nvlist_t *nvfs = fsavl_find(sdd->fsavl, zhp->zfs_dmustats.dds_guid, &snapname); VERIFY(0 == nvlist_lookup_nvlist(nvfs, "snapprops", &snapprops)); VERIFY(0 == nvlist_lookup_nvlist(snapprops, thissnap, &snapprops)); exclude = !nvlist_exists(snapprops, "is_clone_origin"); } else { exclude = B_TRUE; } } /* * If a filter function exists, call it to determine whether * this snapshot will be sent. */ if (exclude || (sdd->filter_cb != NULL && sdd->filter_cb(zhp, sdd->filter_cb_arg) == B_FALSE)) { /* * This snapshot is filtered out. Don't send it, and don't * set prevsnap_obj, so it will be as if this snapshot didn't * exist, and the next accepted snapshot will be sent as * an incremental from the last accepted one, or as the * first (and full) snapshot in the case of a replication, * non-incremental send. */ zfs_close(zhp); return (0); } gather_holds(zhp, sdd); fromorigin = sdd->prevsnap[0] == '\0' && (sdd->fromorigin || sdd->replicate); if (sdd->verbose) { uint64_t size; err = estimate_ioctl(zhp, sdd->prevsnap_obj, fromorigin, &size); if (sdd->parsable) { if (sdd->prevsnap[0] != '\0') { (void) fprintf(stderr, "incremental\t%s\t%s", sdd->prevsnap, zhp->zfs_name); } else { (void) fprintf(stderr, "full\t%s", zhp->zfs_name); } } else { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "send from @%s to %s"), sdd->prevsnap, zhp->zfs_name); } if (err == 0) { if (sdd->parsable) { (void) fprintf(stderr, "\t%llu\n", (longlong_t)size); } else { char buf[16]; zfs_nicenum(size, buf, sizeof (buf)); (void) fprintf(stderr, dgettext(TEXT_DOMAIN, " estimated size is %s\n"), buf); } sdd->size += size; } else { (void) fprintf(stderr, "\n"); } } if (!sdd->dryrun) { /* * If progress reporting is requested, spawn a new thread to * poll ZFS_IOC_SEND_PROGRESS at a regular interval. */ if (sdd->progress) { pa.pa_zhp = zhp; pa.pa_fd = sdd->outfd; pa.pa_parsable = sdd->parsable; if ((err = pthread_create(&tid, NULL, send_progress_thread, &pa))) { zfs_close(zhp); return (err); } } enum lzc_send_flags flags = 0; if (sdd->embed_data) flags |= LZC_SEND_FLAG_EMBED_DATA; err = dump_ioctl(zhp, sdd->prevsnap, sdd->prevsnap_obj, fromorigin, sdd->outfd, flags, sdd->debugnv); if (sdd->progress) { (void) pthread_cancel(tid); (void) pthread_join(tid, NULL); } } (void) strcpy(sdd->prevsnap, thissnap); sdd->prevsnap_obj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID); zfs_close(zhp); return (err); } static int dump_filesystem(zfs_handle_t *zhp, void *arg) { int rv = 0; send_dump_data_t *sdd = arg; boolean_t missingfrom = B_FALSE; zfs_cmd_t zc = {"\0"}; (void) snprintf(zc.zc_name, sizeof (zc.zc_name), "%s@%s", zhp->zfs_name, sdd->tosnap); if (ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "WARNING: could not send %s@%s: does not exist\n"), zhp->zfs_name, sdd->tosnap); sdd->err = B_TRUE; return (0); } if (sdd->replicate && sdd->fromsnap) { /* * If this fs does not have fromsnap, and we're doing * recursive, we need to send a full stream from the * beginning (or an incremental from the origin if this * is a clone). If we're doing non-recursive, then let * them get the error. */ (void) snprintf(zc.zc_name, sizeof (zc.zc_name), "%s@%s", zhp->zfs_name, sdd->fromsnap); if (ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0) { missingfrom = B_TRUE; } } sdd->seenfrom = sdd->seento = sdd->prevsnap[0] = 0; sdd->prevsnap_obj = 0; if (sdd->fromsnap == NULL || missingfrom) sdd->seenfrom = B_TRUE; rv = zfs_iter_snapshots_sorted(zhp, dump_snapshot, arg); if (!sdd->seenfrom) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "WARNING: could not send %s@%s:\n" "incremental source (%s@%s) does not exist\n"), zhp->zfs_name, sdd->tosnap, zhp->zfs_name, sdd->fromsnap); sdd->err = B_TRUE; } else if (!sdd->seento) { if (sdd->fromsnap) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "WARNING: could not send %s@%s:\n" "incremental source (%s@%s) " "is not earlier than it\n"), zhp->zfs_name, sdd->tosnap, zhp->zfs_name, sdd->fromsnap); } else { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "WARNING: " "could not send %s@%s: does not exist\n"), zhp->zfs_name, sdd->tosnap); } sdd->err = B_TRUE; } return (rv); } static int dump_filesystems(zfs_handle_t *rzhp, void *arg) { send_dump_data_t *sdd = arg; nvpair_t *fspair; boolean_t needagain, progress; if (!sdd->replicate) return (dump_filesystem(rzhp, sdd)); /* Mark the clone origin snapshots. */ for (fspair = nvlist_next_nvpair(sdd->fss, NULL); fspair; fspair = nvlist_next_nvpair(sdd->fss, fspair)) { nvlist_t *nvfs; uint64_t origin_guid = 0; VERIFY(0 == nvpair_value_nvlist(fspair, &nvfs)); (void) nvlist_lookup_uint64(nvfs, "origin", &origin_guid); if (origin_guid != 0) { char *snapname; nvlist_t *origin_nv = fsavl_find(sdd->fsavl, origin_guid, &snapname); if (origin_nv != NULL) { nvlist_t *snapprops; VERIFY(0 == nvlist_lookup_nvlist(origin_nv, "snapprops", &snapprops)); VERIFY(0 == nvlist_lookup_nvlist(snapprops, snapname, &snapprops)); VERIFY(0 == nvlist_add_boolean( snapprops, "is_clone_origin")); } } } again: needagain = progress = B_FALSE; for (fspair = nvlist_next_nvpair(sdd->fss, NULL); fspair; fspair = nvlist_next_nvpair(sdd->fss, fspair)) { nvlist_t *fslist, *parent_nv; char *fsname; zfs_handle_t *zhp; int err; uint64_t origin_guid = 0; uint64_t parent_guid = 0; VERIFY(nvpair_value_nvlist(fspair, &fslist) == 0); if (nvlist_lookup_boolean(fslist, "sent") == 0) continue; VERIFY(nvlist_lookup_string(fslist, "name", &fsname) == 0); (void) nvlist_lookup_uint64(fslist, "origin", &origin_guid); (void) nvlist_lookup_uint64(fslist, "parentfromsnap", &parent_guid); if (parent_guid != 0) { parent_nv = fsavl_find(sdd->fsavl, parent_guid, NULL); if (!nvlist_exists(parent_nv, "sent")) { /* parent has not been sent; skip this one */ needagain = B_TRUE; continue; } } if (origin_guid != 0) { nvlist_t *origin_nv = fsavl_find(sdd->fsavl, origin_guid, NULL); if (origin_nv != NULL && !nvlist_exists(origin_nv, "sent")) { /* * origin has not been sent yet; * skip this clone. */ needagain = B_TRUE; continue; } } zhp = zfs_open(rzhp->zfs_hdl, fsname, ZFS_TYPE_DATASET); if (zhp == NULL) return (-1); err = dump_filesystem(zhp, sdd); VERIFY(nvlist_add_boolean(fslist, "sent") == 0); progress = B_TRUE; zfs_close(zhp); if (err) return (err); } if (needagain) { assert(progress); goto again; } /* clean out the sent flags in case we reuse this fss */ for (fspair = nvlist_next_nvpair(sdd->fss, NULL); fspair; fspair = nvlist_next_nvpair(sdd->fss, fspair)) { nvlist_t *fslist; VERIFY(nvpair_value_nvlist(fspair, &fslist) == 0); (void) nvlist_remove_all(fslist, "sent"); } return (0); } /* * Generate a send stream for the dataset identified by the argument zhp. * * The content of the send stream is the snapshot identified by * 'tosnap'. Incremental streams are requested in two ways: * - from the snapshot identified by "fromsnap" (if non-null) or * - from the origin of the dataset identified by zhp, which must * be a clone. In this case, "fromsnap" is null and "fromorigin" * is TRUE. * * The send stream is recursive (i.e. dumps a hierarchy of snapshots) and * uses a special header (with a hdrtype field of DMU_COMPOUNDSTREAM) * if "replicate" is set. If "doall" is set, dump all the intermediate * snapshots. The DMU_COMPOUNDSTREAM header is used in the "doall" * case too. If "props" is set, send properties. */ int zfs_send(zfs_handle_t *zhp, const char *fromsnap, const char *tosnap, sendflags_t *flags, int outfd, snapfilter_cb_t filter_func, void *cb_arg, nvlist_t **debugnvp) { char errbuf[1024]; send_dump_data_t sdd = { 0 }; int err = 0; nvlist_t *fss = NULL; avl_tree_t *fsavl = NULL; static uint64_t holdseq; int spa_version; pthread_t tid = 0; int pipefd[2]; dedup_arg_t dda = { 0 }; int featureflags = 0; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot send '%s'"), zhp->zfs_name); if (fromsnap && fromsnap[0] == '\0') { zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "zero-length incremental source")); return (zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf)); } if (zhp->zfs_type == ZFS_TYPE_FILESYSTEM) { uint64_t version; version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION); if (version >= ZPL_VERSION_SA) { featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; } } if (flags->dedup && !flags->dryrun) { featureflags |= (DMU_BACKUP_FEATURE_DEDUP | DMU_BACKUP_FEATURE_DEDUPPROPS); if ((err = socketpair(AF_UNIX, SOCK_STREAM, 0, pipefd))) { zfs_error_aux(zhp->zfs_hdl, strerror(errno)); return (zfs_error(zhp->zfs_hdl, EZFS_PIPEFAILED, errbuf)); } dda.outputfd = outfd; dda.inputfd = pipefd[1]; dda.dedup_hdl = zhp->zfs_hdl; if ((err = pthread_create(&tid, NULL, cksummer, &dda))) { (void) close(pipefd[0]); (void) close(pipefd[1]); zfs_error_aux(zhp->zfs_hdl, strerror(errno)); return (zfs_error(zhp->zfs_hdl, EZFS_THREADCREATEFAILED, errbuf)); } } if (flags->replicate || flags->doall || flags->props) { dmu_replay_record_t drr = { 0 }; char *packbuf = NULL; size_t buflen = 0; zio_cksum_t zc = { { 0 } }; if (flags->replicate || flags->props) { nvlist_t *hdrnv; VERIFY(0 == nvlist_alloc(&hdrnv, NV_UNIQUE_NAME, 0)); if (fromsnap) { VERIFY(0 == nvlist_add_string(hdrnv, "fromsnap", fromsnap)); } VERIFY(0 == nvlist_add_string(hdrnv, "tosnap", tosnap)); if (!flags->replicate) { VERIFY(0 == nvlist_add_boolean(hdrnv, "not_recursive")); } err = gather_nvlist(zhp->zfs_hdl, zhp->zfs_name, fromsnap, tosnap, flags->replicate, &fss, &fsavl); if (err) goto err_out; VERIFY(0 == nvlist_add_nvlist(hdrnv, "fss", fss)); err = nvlist_pack(hdrnv, &packbuf, &buflen, NV_ENCODE_XDR, 0); if (debugnvp) *debugnvp = hdrnv; else nvlist_free(hdrnv); if (err) goto stderr_out; } if (!flags->dryrun) { /* write first begin record */ drr.drr_type = DRR_BEGIN; drr.drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; DMU_SET_STREAM_HDRTYPE(drr.drr_u.drr_begin. drr_versioninfo, DMU_COMPOUNDSTREAM); DMU_SET_FEATUREFLAGS(drr.drr_u.drr_begin. drr_versioninfo, featureflags); (void) snprintf(drr.drr_u.drr_begin.drr_toname, sizeof (drr.drr_u.drr_begin.drr_toname), "%s@%s", zhp->zfs_name, tosnap); drr.drr_payloadlen = buflen; err = cksum_and_write(&drr, sizeof (drr), &zc, outfd); /* write header nvlist */ if (err != -1 && packbuf != NULL) { err = cksum_and_write(packbuf, buflen, &zc, outfd); } free(packbuf); if (err == -1) { err = errno; goto stderr_out; } /* write end record */ bzero(&drr, sizeof (drr)); drr.drr_type = DRR_END; drr.drr_u.drr_end.drr_checksum = zc; err = write(outfd, &drr, sizeof (drr)); if (err == -1) { err = errno; goto stderr_out; } err = 0; } } /* dump each stream */ sdd.fromsnap = fromsnap; sdd.tosnap = tosnap; if (tid != 0) sdd.outfd = pipefd[0]; else sdd.outfd = outfd; sdd.replicate = flags->replicate; sdd.doall = flags->doall; sdd.fromorigin = flags->fromorigin; sdd.fss = fss; sdd.fsavl = fsavl; sdd.verbose = flags->verbose; sdd.parsable = flags->parsable; sdd.progress = flags->progress; sdd.dryrun = flags->dryrun; sdd.embed_data = flags->embed_data; sdd.filter_cb = filter_func; sdd.filter_cb_arg = cb_arg; if (debugnvp) sdd.debugnv = *debugnvp; /* * Some flags require that we place user holds on the datasets that are * being sent so they don't get destroyed during the send. We can skip * this step if the pool is imported read-only since the datasets cannot * be destroyed. */ if (!flags->dryrun && !zpool_get_prop_int(zfs_get_pool_handle(zhp), ZPOOL_PROP_READONLY, NULL) && zfs_spa_version(zhp, &spa_version) == 0 && spa_version >= SPA_VERSION_USERREFS && (flags->doall || flags->replicate)) { ++holdseq; (void) snprintf(sdd.holdtag, sizeof (sdd.holdtag), ".send-%d-%llu", getpid(), (u_longlong_t)holdseq); sdd.cleanup_fd = open(ZFS_DEV, O_RDWR); if (sdd.cleanup_fd < 0) { err = errno; goto stderr_out; } sdd.snapholds = fnvlist_alloc(); } else { sdd.cleanup_fd = -1; sdd.snapholds = NULL; } if (flags->verbose || sdd.snapholds != NULL) { /* * Do a verbose no-op dry run to get all the verbose output * or to gather snapshot hold's before generating any data, * then do a non-verbose real run to generate the streams. */ sdd.dryrun = B_TRUE; err = dump_filesystems(zhp, &sdd); if (err != 0) goto stderr_out; if (flags->verbose) { if (flags->parsable) { (void) fprintf(stderr, "size\t%llu\n", (longlong_t)sdd.size); } else { char buf[16]; zfs_nicenum(sdd.size, buf, sizeof (buf)); (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "total estimated size is %s\n"), buf); } } /* Ensure no snaps found is treated as an error. */ if (!sdd.seento) { err = ENOENT; goto err_out; } /* Skip the second run if dryrun was requested. */ if (flags->dryrun) goto err_out; if (sdd.snapholds != NULL) { err = zfs_hold_nvl(zhp, sdd.cleanup_fd, sdd.snapholds); if (err != 0) goto stderr_out; fnvlist_free(sdd.snapholds); sdd.snapholds = NULL; } sdd.dryrun = B_FALSE; sdd.verbose = B_FALSE; } err = dump_filesystems(zhp, &sdd); fsavl_destroy(fsavl); nvlist_free(fss); /* Ensure no snaps found is treated as an error. */ if (err == 0 && !sdd.seento) err = ENOENT; if (tid != 0) { if (err != 0) (void) pthread_cancel(tid); (void) close(pipefd[0]); (void) pthread_join(tid, NULL); } if (sdd.cleanup_fd != -1) { VERIFY(0 == close(sdd.cleanup_fd)); sdd.cleanup_fd = -1; } if (!flags->dryrun && (flags->replicate || flags->doall || flags->props)) { /* * write final end record. NB: want to do this even if * there was some error, because it might not be totally * failed. */ dmu_replay_record_t drr = { 0 }; drr.drr_type = DRR_END; if (write(outfd, &drr, sizeof (drr)) == -1) { return (zfs_standard_error(zhp->zfs_hdl, errno, errbuf)); } } return (err || sdd.err); stderr_out: err = zfs_standard_error(zhp->zfs_hdl, err, errbuf); err_out: fsavl_destroy(fsavl); nvlist_free(fss); fnvlist_free(sdd.snapholds); if (sdd.cleanup_fd != -1) VERIFY(0 == close(sdd.cleanup_fd)); if (tid != 0) { (void) pthread_cancel(tid); (void) close(pipefd[0]); (void) pthread_join(tid, NULL); } return (err); } int zfs_send_one(zfs_handle_t *zhp, const char *from, int fd, enum lzc_send_flags flags) { int err; libzfs_handle_t *hdl = zhp->zfs_hdl; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "warning: cannot send '%s'"), zhp->zfs_name); err = lzc_send(zhp->zfs_name, from, fd, flags); if (err != 0) { switch (errno) { case EXDEV: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "not an earlier snapshot from the same fs")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); case ENOENT: case ESRCH: if (lzc_exists(zhp->zfs_name)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "incremental source (%s) does not exist"), from); } return (zfs_error(hdl, EZFS_NOENT, errbuf)); case EBUSY: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "target is busy; if a filesystem, " "it must not be mounted")); return (zfs_error(hdl, EZFS_BUSY, errbuf)); case EDQUOT: case EFBIG: case EIO: case ENOLINK: case ENOSPC: case ENOSTR: case ENXIO: case EPIPE: case ERANGE: case EFAULT: case EROFS: zfs_error_aux(hdl, strerror(errno)); return (zfs_error(hdl, EZFS_BADBACKUP, errbuf)); default: return (zfs_standard_error(hdl, errno, errbuf)); } } return (err != 0); } /* * Routines specific to "zfs recv" */ static int recv_read(libzfs_handle_t *hdl, int fd, void *buf, int ilen, boolean_t byteswap, zio_cksum_t *zc) { char *cp = buf; int rv; int len = ilen; do { rv = read(fd, cp, len); cp += rv; len -= rv; } while (rv > 0); if (rv < 0 || len != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "failed to read from stream")); return (zfs_error(hdl, EZFS_BADSTREAM, dgettext(TEXT_DOMAIN, "cannot receive"))); } if (zc) { if (byteswap) fletcher_4_incremental_byteswap(buf, ilen, zc); else fletcher_4_incremental_native(buf, ilen, zc); } return (0); } static int recv_read_nvlist(libzfs_handle_t *hdl, int fd, int len, nvlist_t **nvp, boolean_t byteswap, zio_cksum_t *zc) { char *buf; int err; buf = zfs_alloc(hdl, len); if (buf == NULL) return (ENOMEM); err = recv_read(hdl, fd, buf, len, byteswap, zc); if (err != 0) { free(buf); return (err); } err = nvlist_unpack(buf, len, nvp, 0); free(buf); if (err != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "stream (malformed nvlist)")); return (EINVAL); } return (0); } static int recv_rename(libzfs_handle_t *hdl, const char *name, const char *tryname, int baselen, char *newname, recvflags_t *flags) { static int seq; zfs_cmd_t zc = {"\0"}; int err; prop_changelist_t *clp; zfs_handle_t *zhp; zhp = zfs_open(hdl, name, ZFS_TYPE_DATASET); if (zhp == NULL) return (-1); clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, flags->force ? MS_FORCE : 0); zfs_close(zhp); if (clp == NULL) return (-1); err = changelist_prefix(clp); if (err) return (err); zc.zc_objset_type = DMU_OST_ZFS; (void) strlcpy(zc.zc_name, name, sizeof (zc.zc_name)); if (tryname) { (void) strcpy(newname, tryname); (void) strlcpy(zc.zc_value, tryname, sizeof (zc.zc_value)); if (flags->verbose) { (void) printf("attempting rename %s to %s\n", zc.zc_name, zc.zc_value); } err = ioctl(hdl->libzfs_fd, ZFS_IOC_RENAME, &zc); if (err == 0) changelist_rename(clp, name, tryname); } else { err = ENOENT; } if (err != 0 && strncmp(name + baselen, "recv-", 5) != 0) { seq++; (void) snprintf(newname, ZFS_MAXNAMELEN, "%.*srecv-%u-%u", baselen, name, getpid(), seq); (void) strlcpy(zc.zc_value, newname, sizeof (zc.zc_value)); if (flags->verbose) { (void) printf("failed - trying rename %s to %s\n", zc.zc_name, zc.zc_value); } err = ioctl(hdl->libzfs_fd, ZFS_IOC_RENAME, &zc); if (err == 0) changelist_rename(clp, name, newname); if (err && flags->verbose) { (void) printf("failed (%u) - " "will try again on next pass\n", errno); } err = EAGAIN; } else if (flags->verbose) { if (err == 0) (void) printf("success\n"); else (void) printf("failed (%u)\n", errno); } (void) changelist_postfix(clp); changelist_free(clp); return (err); } static int recv_destroy(libzfs_handle_t *hdl, const char *name, int baselen, char *newname, recvflags_t *flags) { zfs_cmd_t zc = {"\0"}; int err = 0; prop_changelist_t *clp; zfs_handle_t *zhp; boolean_t defer = B_FALSE; int spa_version; zhp = zfs_open(hdl, name, ZFS_TYPE_DATASET); if (zhp == NULL) return (-1); clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, flags->force ? MS_FORCE : 0); if (zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT && zfs_spa_version(zhp, &spa_version) == 0 && spa_version >= SPA_VERSION_USERREFS) defer = B_TRUE; zfs_close(zhp); if (clp == NULL) return (-1); err = changelist_prefix(clp); if (err) return (err); zc.zc_objset_type = DMU_OST_ZFS; zc.zc_defer_destroy = defer; (void) strlcpy(zc.zc_name, name, sizeof (zc.zc_name)); if (flags->verbose) (void) printf("attempting destroy %s\n", zc.zc_name); err = ioctl(hdl->libzfs_fd, ZFS_IOC_DESTROY, &zc); if (err == 0) { if (flags->verbose) (void) printf("success\n"); changelist_remove(clp, zc.zc_name); } (void) changelist_postfix(clp); changelist_free(clp); /* * Deferred destroy might destroy the snapshot or only mark it to be * destroyed later, and it returns success in either case. */ if (err != 0 || (defer && zfs_dataset_exists(hdl, name, ZFS_TYPE_SNAPSHOT))) { err = recv_rename(hdl, name, NULL, baselen, newname, flags); } return (err); } typedef struct guid_to_name_data { uint64_t guid; char *name; char *skip; } guid_to_name_data_t; static int guid_to_name_cb(zfs_handle_t *zhp, void *arg) { guid_to_name_data_t *gtnd = arg; int err; if (gtnd->skip != NULL && strcmp(zhp->zfs_name, gtnd->skip) == 0) { return (0); } if (zhp->zfs_dmustats.dds_guid == gtnd->guid) { (void) strcpy(gtnd->name, zhp->zfs_name); zfs_close(zhp); return (EEXIST); } err = zfs_iter_children(zhp, guid_to_name_cb, gtnd); zfs_close(zhp); return (err); } /* * Attempt to find the local dataset associated with this guid. In the case of * multiple matches, we attempt to find the "best" match by searching * progressively larger portions of the hierarchy. This allows one to send a * tree of datasets individually and guarantee that we will find the source * guid within that hierarchy, even if there are multiple matches elsewhere. */ static int guid_to_name(libzfs_handle_t *hdl, const char *parent, uint64_t guid, char *name) { /* exhaustive search all local snapshots */ char pname[ZFS_MAXNAMELEN]; guid_to_name_data_t gtnd; int err = 0; zfs_handle_t *zhp; char *cp; gtnd.guid = guid; gtnd.name = name; gtnd.skip = NULL; (void) strlcpy(pname, parent, sizeof (pname)); /* * Search progressively larger portions of the hierarchy. This will * select the "most local" version of the origin snapshot in the case * that there are multiple matching snapshots in the system. */ while ((cp = strrchr(pname, '/')) != NULL) { /* Chop off the last component and open the parent */ *cp = '\0'; zhp = make_dataset_handle(hdl, pname); if (zhp == NULL) continue; err = zfs_iter_children(zhp, guid_to_name_cb, >nd); zfs_close(zhp); if (err == EEXIST) return (0); /* * Remember the dataset that we already searched, so we * skip it next time through. */ gtnd.skip = pname; } return (ENOENT); } /* * Return +1 if guid1 is before guid2, 0 if they are the same, and -1 if * guid1 is after guid2. */ static int created_before(libzfs_handle_t *hdl, avl_tree_t *avl, uint64_t guid1, uint64_t guid2) { nvlist_t *nvfs; char *fsname, *snapname; char buf[ZFS_MAXNAMELEN]; int rv; zfs_handle_t *guid1hdl, *guid2hdl; uint64_t create1, create2; if (guid2 == 0) return (0); if (guid1 == 0) return (1); nvfs = fsavl_find(avl, guid1, &snapname); VERIFY(0 == nvlist_lookup_string(nvfs, "name", &fsname)); (void) snprintf(buf, sizeof (buf), "%s@%s", fsname, snapname); guid1hdl = zfs_open(hdl, buf, ZFS_TYPE_SNAPSHOT); if (guid1hdl == NULL) return (-1); nvfs = fsavl_find(avl, guid2, &snapname); VERIFY(0 == nvlist_lookup_string(nvfs, "name", &fsname)); (void) snprintf(buf, sizeof (buf), "%s@%s", fsname, snapname); guid2hdl = zfs_open(hdl, buf, ZFS_TYPE_SNAPSHOT); if (guid2hdl == NULL) { zfs_close(guid1hdl); return (-1); } create1 = zfs_prop_get_int(guid1hdl, ZFS_PROP_CREATETXG); create2 = zfs_prop_get_int(guid2hdl, ZFS_PROP_CREATETXG); if (create1 < create2) rv = -1; else if (create1 > create2) rv = +1; else rv = 0; zfs_close(guid1hdl); zfs_close(guid2hdl); return (rv); } static int recv_incremental_replication(libzfs_handle_t *hdl, const char *tofs, recvflags_t *flags, nvlist_t *stream_nv, avl_tree_t *stream_avl, nvlist_t *renamed) { nvlist_t *local_nv, *deleted = NULL; avl_tree_t *local_avl; nvpair_t *fselem, *nextfselem; char *fromsnap; char newname[ZFS_MAXNAMELEN]; char guidname[32]; int error; boolean_t needagain, progress, recursive; char *s1, *s2; VERIFY(0 == nvlist_lookup_string(stream_nv, "fromsnap", &fromsnap)); recursive = (nvlist_lookup_boolean(stream_nv, "not_recursive") == ENOENT); if (flags->dryrun) return (0); again: needagain = progress = B_FALSE; VERIFY(0 == nvlist_alloc(&deleted, NV_UNIQUE_NAME, 0)); if ((error = gather_nvlist(hdl, tofs, fromsnap, NULL, recursive, &local_nv, &local_avl)) != 0) return (error); /* * Process deletes and renames */ for (fselem = nvlist_next_nvpair(local_nv, NULL); fselem; fselem = nextfselem) { nvlist_t *nvfs, *snaps; nvlist_t *stream_nvfs = NULL; nvpair_t *snapelem, *nextsnapelem; uint64_t fromguid = 0; uint64_t originguid = 0; uint64_t stream_originguid = 0; uint64_t parent_fromsnap_guid, stream_parent_fromsnap_guid; char *fsname, *stream_fsname; nextfselem = nvlist_next_nvpair(local_nv, fselem); VERIFY(0 == nvpair_value_nvlist(fselem, &nvfs)); VERIFY(0 == nvlist_lookup_nvlist(nvfs, "snaps", &snaps)); VERIFY(0 == nvlist_lookup_string(nvfs, "name", &fsname)); VERIFY(0 == nvlist_lookup_uint64(nvfs, "parentfromsnap", &parent_fromsnap_guid)); (void) nvlist_lookup_uint64(nvfs, "origin", &originguid); /* * First find the stream's fs, so we can check for * a different origin (due to "zfs promote") */ for (snapelem = nvlist_next_nvpair(snaps, NULL); snapelem; snapelem = nvlist_next_nvpair(snaps, snapelem)) { uint64_t thisguid; VERIFY(0 == nvpair_value_uint64(snapelem, &thisguid)); stream_nvfs = fsavl_find(stream_avl, thisguid, NULL); if (stream_nvfs != NULL) break; } /* check for promote */ (void) nvlist_lookup_uint64(stream_nvfs, "origin", &stream_originguid); if (stream_nvfs && originguid != stream_originguid) { switch (created_before(hdl, local_avl, stream_originguid, originguid)) { case 1: { /* promote it! */ zfs_cmd_t zc = {"\0"}; nvlist_t *origin_nvfs; char *origin_fsname; if (flags->verbose) (void) printf("promoting %s\n", fsname); origin_nvfs = fsavl_find(local_avl, originguid, NULL); VERIFY(0 == nvlist_lookup_string(origin_nvfs, "name", &origin_fsname)); (void) strlcpy(zc.zc_value, origin_fsname, sizeof (zc.zc_value)); (void) strlcpy(zc.zc_name, fsname, sizeof (zc.zc_name)); error = zfs_ioctl(hdl, ZFS_IOC_PROMOTE, &zc); if (error == 0) progress = B_TRUE; break; } default: break; case -1: fsavl_destroy(local_avl); nvlist_free(local_nv); return (-1); } /* * We had/have the wrong origin, therefore our * list of snapshots is wrong. Need to handle * them on the next pass. */ needagain = B_TRUE; continue; } for (snapelem = nvlist_next_nvpair(snaps, NULL); snapelem; snapelem = nextsnapelem) { uint64_t thisguid; char *stream_snapname; nvlist_t *found, *props; nextsnapelem = nvlist_next_nvpair(snaps, snapelem); VERIFY(0 == nvpair_value_uint64(snapelem, &thisguid)); found = fsavl_find(stream_avl, thisguid, &stream_snapname); /* check for delete */ if (found == NULL) { char name[ZFS_MAXNAMELEN]; if (!flags->force) continue; (void) snprintf(name, sizeof (name), "%s@%s", fsname, nvpair_name(snapelem)); error = recv_destroy(hdl, name, strlen(fsname)+1, newname, flags); if (error) needagain = B_TRUE; else progress = B_TRUE; sprintf(guidname, "%lu", thisguid); nvlist_add_boolean(deleted, guidname); continue; } stream_nvfs = found; if (0 == nvlist_lookup_nvlist(stream_nvfs, "snapprops", &props) && 0 == nvlist_lookup_nvlist(props, stream_snapname, &props)) { zfs_cmd_t zc = {"\0"}; zc.zc_cookie = B_TRUE; /* received */ (void) snprintf(zc.zc_name, sizeof (zc.zc_name), "%s@%s", fsname, nvpair_name(snapelem)); if (zcmd_write_src_nvlist(hdl, &zc, props) == 0) { (void) zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc); zcmd_free_nvlists(&zc); } } /* check for different snapname */ if (strcmp(nvpair_name(snapelem), stream_snapname) != 0) { char name[ZFS_MAXNAMELEN]; char tryname[ZFS_MAXNAMELEN]; (void) snprintf(name, sizeof (name), "%s@%s", fsname, nvpair_name(snapelem)); (void) snprintf(tryname, sizeof (name), "%s@%s", fsname, stream_snapname); error = recv_rename(hdl, name, tryname, strlen(fsname)+1, newname, flags); if (error) needagain = B_TRUE; else progress = B_TRUE; } if (strcmp(stream_snapname, fromsnap) == 0) fromguid = thisguid; } /* check for delete */ if (stream_nvfs == NULL) { if (!flags->force) continue; error = recv_destroy(hdl, fsname, strlen(tofs)+1, newname, flags); if (error) needagain = B_TRUE; else progress = B_TRUE; sprintf(guidname, "%lu", parent_fromsnap_guid); nvlist_add_boolean(deleted, guidname); continue; } if (fromguid == 0) { if (flags->verbose) { (void) printf("local fs %s does not have " "fromsnap (%s in stream); must have " "been deleted locally; ignoring\n", fsname, fromsnap); } continue; } VERIFY(0 == nvlist_lookup_string(stream_nvfs, "name", &stream_fsname)); VERIFY(0 == nvlist_lookup_uint64(stream_nvfs, "parentfromsnap", &stream_parent_fromsnap_guid)); s1 = strrchr(fsname, '/'); s2 = strrchr(stream_fsname, '/'); /* * Check if we're going to rename based on parent guid change * and the current parent guid was also deleted. If it was then * rename will fail and is likely unneeded, so avoid this and * force an early retry to determine the new * parent_fromsnap_guid. */ if (stream_parent_fromsnap_guid != 0 && parent_fromsnap_guid != 0 && stream_parent_fromsnap_guid != parent_fromsnap_guid) { sprintf(guidname, "%lu", parent_fromsnap_guid); if (nvlist_exists(deleted, guidname)) { progress = B_TRUE; needagain = B_TRUE; goto doagain; } } /* * Check for rename. If the exact receive path is specified, it * does not count as a rename, but we still need to check the * datasets beneath it. */ if ((stream_parent_fromsnap_guid != 0 && parent_fromsnap_guid != 0 && stream_parent_fromsnap_guid != parent_fromsnap_guid) || ((flags->isprefix || strcmp(tofs, fsname) != 0) && (s1 != NULL) && (s2 != NULL) && strcmp(s1, s2) != 0)) { nvlist_t *parent; char tryname[ZFS_MAXNAMELEN]; parent = fsavl_find(local_avl, stream_parent_fromsnap_guid, NULL); /* * NB: parent might not be found if we used the * tosnap for stream_parent_fromsnap_guid, * because the parent is a newly-created fs; * we'll be able to rename it after we recv the * new fs. */ if (parent != NULL) { char *pname; VERIFY(0 == nvlist_lookup_string(parent, "name", &pname)); (void) snprintf(tryname, sizeof (tryname), "%s%s", pname, strrchr(stream_fsname, '/')); } else { tryname[0] = '\0'; if (flags->verbose) { (void) printf("local fs %s new parent " "not found\n", fsname); } } newname[0] = '\0'; error = recv_rename(hdl, fsname, tryname, strlen(tofs)+1, newname, flags); if (renamed != NULL && newname[0] != '\0') { VERIFY(0 == nvlist_add_boolean(renamed, newname)); } if (error) needagain = B_TRUE; else progress = B_TRUE; } } doagain: fsavl_destroy(local_avl); nvlist_free(local_nv); nvlist_free(deleted); if (needagain && progress) { /* do another pass to fix up temporary names */ if (flags->verbose) (void) printf("another pass:\n"); goto again; } return (needagain); } static int zfs_receive_package(libzfs_handle_t *hdl, int fd, const char *destname, recvflags_t *flags, dmu_replay_record_t *drr, zio_cksum_t *zc, char **top_zfs, int cleanup_fd, uint64_t *action_handlep) { nvlist_t *stream_nv = NULL; avl_tree_t *stream_avl = NULL; char *fromsnap = NULL; char *cp; char tofs[ZFS_MAXNAMELEN]; char sendfs[ZFS_MAXNAMELEN]; char errbuf[1024]; dmu_replay_record_t drre; int error; boolean_t anyerr = B_FALSE; boolean_t softerr = B_FALSE; boolean_t recursive; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive")); assert(drr->drr_type == DRR_BEGIN); assert(drr->drr_u.drr_begin.drr_magic == DMU_BACKUP_MAGIC); assert(DMU_GET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo) == DMU_COMPOUNDSTREAM); /* * Read in the nvlist from the stream. */ if (drr->drr_payloadlen != 0) { error = recv_read_nvlist(hdl, fd, drr->drr_payloadlen, &stream_nv, flags->byteswap, zc); if (error) { error = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } } recursive = (nvlist_lookup_boolean(stream_nv, "not_recursive") == ENOENT); if (recursive && strchr(destname, '@')) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot specify snapshot name for multi-snapshot stream")); error = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } /* * Read in the end record and verify checksum. */ if (0 != (error = recv_read(hdl, fd, &drre, sizeof (drre), flags->byteswap, NULL))) goto out; if (flags->byteswap) { drre.drr_type = BSWAP_32(drre.drr_type); drre.drr_u.drr_end.drr_checksum.zc_word[0] = BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[0]); drre.drr_u.drr_end.drr_checksum.zc_word[1] = BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[1]); drre.drr_u.drr_end.drr_checksum.zc_word[2] = BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[2]); drre.drr_u.drr_end.drr_checksum.zc_word[3] = BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[3]); } if (drre.drr_type != DRR_END) { error = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } if (!ZIO_CHECKSUM_EQUAL(drre.drr_u.drr_end.drr_checksum, *zc)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "incorrect header checksum")); error = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } (void) nvlist_lookup_string(stream_nv, "fromsnap", &fromsnap); if (drr->drr_payloadlen != 0) { nvlist_t *stream_fss; VERIFY(0 == nvlist_lookup_nvlist(stream_nv, "fss", &stream_fss)); if ((stream_avl = fsavl_create(stream_fss)) == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "couldn't allocate avl tree")); error = zfs_error(hdl, EZFS_NOMEM, errbuf); goto out; } if (fromsnap != NULL) { nvlist_t *renamed = NULL; nvpair_t *pair = NULL; (void) strlcpy(tofs, destname, ZFS_MAXNAMELEN); if (flags->isprefix) { struct drr_begin *drrb = &drr->drr_u.drr_begin; int i; if (flags->istail) { cp = strrchr(drrb->drr_toname, '/'); if (cp == NULL) { (void) strlcat(tofs, "/", ZFS_MAXNAMELEN); i = 0; } else { i = (cp - drrb->drr_toname); } } else { i = strcspn(drrb->drr_toname, "/@"); } /* zfs_receive_one() will create_parents() */ (void) strlcat(tofs, &drrb->drr_toname[i], ZFS_MAXNAMELEN); *strchr(tofs, '@') = '\0'; } if (recursive && !flags->dryrun && !flags->nomount) { VERIFY(0 == nvlist_alloc(&renamed, NV_UNIQUE_NAME, 0)); } softerr = recv_incremental_replication(hdl, tofs, flags, stream_nv, stream_avl, renamed); /* Unmount renamed filesystems before receiving. */ while ((pair = nvlist_next_nvpair(renamed, pair)) != NULL) { zfs_handle_t *zhp; prop_changelist_t *clp = NULL; zhp = zfs_open(hdl, nvpair_name(pair), ZFS_TYPE_FILESYSTEM); if (zhp != NULL) { clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, 0); zfs_close(zhp); if (clp != NULL) { softerr |= changelist_prefix(clp); changelist_free(clp); } } } nvlist_free(renamed); } } /* * Get the fs specified by the first path in the stream (the top level * specified by 'zfs send') and pass it to each invocation of * zfs_receive_one(). */ (void) strlcpy(sendfs, drr->drr_u.drr_begin.drr_toname, ZFS_MAXNAMELEN); if ((cp = strchr(sendfs, '@')) != NULL) *cp = '\0'; /* Finally, receive each contained stream */ do { /* * we should figure out if it has a recoverable * error, in which case do a recv_skip() and drive on. * Note, if we fail due to already having this guid, * zfs_receive_one() will take care of it (ie, * recv_skip() and return 0). */ error = zfs_receive_impl(hdl, destname, flags, fd, sendfs, stream_nv, stream_avl, top_zfs, cleanup_fd, action_handlep); if (error == ENODATA) { error = 0; break; } anyerr |= error; } while (error == 0); if (drr->drr_payloadlen != 0 && fromsnap != NULL) { /* * Now that we have the fs's they sent us, try the * renames again. */ softerr = recv_incremental_replication(hdl, tofs, flags, stream_nv, stream_avl, NULL); } out: fsavl_destroy(stream_avl); if (stream_nv) nvlist_free(stream_nv); if (softerr) error = -2; if (anyerr) error = -1; return (error); } static void trunc_prop_errs(int truncated) { ASSERT(truncated != 0); if (truncated == 1) (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "1 more property could not be set\n")); else (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "%d more properties could not be set\n"), truncated); } static int recv_skip(libzfs_handle_t *hdl, int fd, boolean_t byteswap) { dmu_replay_record_t *drr; void *buf = malloc(1<<20); char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive:")); /* XXX would be great to use lseek if possible... */ drr = buf; while (recv_read(hdl, fd, drr, sizeof (dmu_replay_record_t), byteswap, NULL) == 0) { if (byteswap) drr->drr_type = BSWAP_32(drr->drr_type); switch (drr->drr_type) { case DRR_BEGIN: /* NB: not to be used on v2 stream packages */ if (drr->drr_payloadlen != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid substream header")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } break; case DRR_END: free(buf); return (0); case DRR_OBJECT: if (byteswap) { drr->drr_u.drr_object.drr_bonuslen = BSWAP_32(drr->drr_u.drr_object. drr_bonuslen); } (void) recv_read(hdl, fd, buf, P2ROUNDUP(drr->drr_u.drr_object.drr_bonuslen, 8), B_FALSE, NULL); break; case DRR_WRITE: if (byteswap) { drr->drr_u.drr_write.drr_length = BSWAP_64(drr->drr_u.drr_write.drr_length); } (void) recv_read(hdl, fd, buf, drr->drr_u.drr_write.drr_length, B_FALSE, NULL); break; case DRR_SPILL: if (byteswap) { drr->drr_u.drr_write.drr_length = BSWAP_64(drr->drr_u.drr_spill.drr_length); } (void) recv_read(hdl, fd, buf, drr->drr_u.drr_spill.drr_length, B_FALSE, NULL); break; case DRR_WRITE_EMBEDDED: if (byteswap) { drr->drr_u.drr_write_embedded.drr_psize = BSWAP_32(drr->drr_u.drr_write_embedded. drr_psize); } (void) recv_read(hdl, fd, buf, P2ROUNDUP(drr->drr_u.drr_write_embedded.drr_psize, 8), B_FALSE, NULL); break; case DRR_WRITE_BYREF: case DRR_FREEOBJECTS: case DRR_FREE: break; default: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid record type")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } } free(buf); return (-1); } /* * Restores a backup of tosnap from the file descriptor specified by infd. */ static int zfs_receive_one(libzfs_handle_t *hdl, int infd, const char *tosnap, recvflags_t *flags, dmu_replay_record_t *drr, dmu_replay_record_t *drr_noswap, const char *sendfs, nvlist_t *stream_nv, avl_tree_t *stream_avl, char **top_zfs, int cleanup_fd, uint64_t *action_handlep) { zfs_cmd_t zc = {"\0"}; time_t begin_time; int ioctl_err, ioctl_errno, err; char *cp; struct drr_begin *drrb = &drr->drr_u.drr_begin; char errbuf[1024]; char prop_errbuf[1024]; const char *chopprefix; boolean_t newfs = B_FALSE; boolean_t stream_wantsnewfs; uint64_t parent_snapguid = 0; prop_changelist_t *clp = NULL; nvlist_t *snapprops_nvlist = NULL; zprop_errflags_t prop_errflags; boolean_t recursive; begin_time = time(NULL); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive")); recursive = (nvlist_lookup_boolean(stream_nv, "not_recursive") == ENOENT); if (stream_avl != NULL) { char *snapname; nvlist_t *fs = fsavl_find(stream_avl, drrb->drr_toguid, &snapname); nvlist_t *props; int ret; (void) nvlist_lookup_uint64(fs, "parentfromsnap", &parent_snapguid); err = nvlist_lookup_nvlist(fs, "props", &props); if (err) VERIFY(0 == nvlist_alloc(&props, NV_UNIQUE_NAME, 0)); if (flags->canmountoff) { VERIFY(0 == nvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_CANMOUNT), 0)); } ret = zcmd_write_src_nvlist(hdl, &zc, props); if (err) nvlist_free(props); if (ret != 0) return (-1); } cp = NULL; /* * Determine how much of the snapshot name stored in the stream * we are going to tack on to the name they specified on the * command line, and how much we are going to chop off. * * If they specified a snapshot, chop the entire name stored in * the stream. */ if (flags->istail) { /* * A filesystem was specified with -e. We want to tack on only * the tail of the sent snapshot path. */ if (strchr(tosnap, '@')) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "argument - snapshot not allowed with -e")); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } chopprefix = strrchr(sendfs, '/'); if (chopprefix == NULL) { /* * The tail is the poolname, so we need to * prepend a path separator. */ int len = strlen(drrb->drr_toname); cp = malloc(len + 2); cp[0] = '/'; (void) strcpy(&cp[1], drrb->drr_toname); chopprefix = cp; } else { chopprefix = drrb->drr_toname + (chopprefix - sendfs); } } else if (flags->isprefix) { /* * A filesystem was specified with -d. We want to tack on * everything but the first element of the sent snapshot path * (all but the pool name). */ if (strchr(tosnap, '@')) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "argument - snapshot not allowed with -d")); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } chopprefix = strchr(drrb->drr_toname, '/'); if (chopprefix == NULL) chopprefix = strchr(drrb->drr_toname, '@'); } else if (strchr(tosnap, '@') == NULL) { /* * If a filesystem was specified without -d or -e, we want to * tack on everything after the fs specified by 'zfs send'. */ chopprefix = drrb->drr_toname + strlen(sendfs); } else { /* A snapshot was specified as an exact path (no -d or -e). */ if (recursive) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot specify snapshot name for multi-snapshot " "stream")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } chopprefix = drrb->drr_toname + strlen(drrb->drr_toname); } ASSERT(strstr(drrb->drr_toname, sendfs) == drrb->drr_toname); ASSERT(chopprefix > drrb->drr_toname); ASSERT(chopprefix <= drrb->drr_toname + strlen(drrb->drr_toname)); ASSERT(chopprefix[0] == '/' || chopprefix[0] == '@' || chopprefix[0] == '\0'); /* * Determine name of destination snapshot, store in zc_value. */ (void) strcpy(zc.zc_value, tosnap); (void) strlcat(zc.zc_value, chopprefix, sizeof (zc.zc_value)); free(cp); if (!zfs_name_valid(zc.zc_value, ZFS_TYPE_SNAPSHOT)) { zcmd_free_nvlists(&zc); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } /* * Determine the name of the origin snapshot, store in zc_string. */ if (drrb->drr_flags & DRR_FLAG_CLONE) { if (guid_to_name(hdl, zc.zc_value, drrb->drr_fromguid, zc.zc_string) != 0) { zcmd_free_nvlists(&zc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "local origin for clone %s does not exist"), zc.zc_value); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } if (flags->verbose) (void) printf("found clone origin %s\n", zc.zc_string); } stream_wantsnewfs = (drrb->drr_fromguid == 0 || (drrb->drr_flags & DRR_FLAG_CLONE)); if (stream_wantsnewfs) { /* * if the parent fs does not exist, look for it based on * the parent snap GUID */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive new filesystem stream")); (void) strcpy(zc.zc_name, zc.zc_value); cp = strrchr(zc.zc_name, '/'); if (cp) *cp = '\0'; if (cp && !zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_DATASET)) { char suffix[ZFS_MAXNAMELEN]; (void) strcpy(suffix, strrchr(zc.zc_value, '/')); if (guid_to_name(hdl, zc.zc_name, parent_snapguid, zc.zc_value) == 0) { *strchr(zc.zc_value, '@') = '\0'; (void) strcat(zc.zc_value, suffix); } } } else { /* * if the fs does not exist, look for it based on the * fromsnap GUID */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive incremental stream")); (void) strcpy(zc.zc_name, zc.zc_value); *strchr(zc.zc_name, '@') = '\0'; /* * If the exact receive path was specified and this is the * topmost path in the stream, then if the fs does not exist we * should look no further. */ if ((flags->isprefix || (*(chopprefix = drrb->drr_toname + strlen(sendfs)) != '\0' && *chopprefix != '@')) && !zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_DATASET)) { char snap[ZFS_MAXNAMELEN]; (void) strcpy(snap, strchr(zc.zc_value, '@')); if (guid_to_name(hdl, zc.zc_name, drrb->drr_fromguid, zc.zc_value) == 0) { *strchr(zc.zc_value, '@') = '\0'; (void) strcat(zc.zc_value, snap); } } } (void) strcpy(zc.zc_name, zc.zc_value); *strchr(zc.zc_name, '@') = '\0'; if (zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_DATASET)) { zfs_handle_t *zhp; /* * Destination fs exists. Therefore this should either * be an incremental, or the stream specifies a new fs * (full stream or clone) and they want us to blow it * away (and have therefore specified -F and removed any * snapshots). */ if (stream_wantsnewfs) { if (!flags->force) { zcmd_free_nvlists(&zc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination '%s' exists\n" "must specify -F to overwrite it"), zc.zc_name); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); } if (ioctl(hdl->libzfs_fd, ZFS_IOC_SNAPSHOT_LIST_NEXT, &zc) == 0) { zcmd_free_nvlists(&zc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination has snapshots (eg. %s)\n" "must destroy them to overwrite it"), zc.zc_name); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); } } if ((zhp = zfs_open(hdl, zc.zc_name, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) == NULL) { zcmd_free_nvlists(&zc); return (-1); } if (stream_wantsnewfs && zhp->zfs_dmustats.dds_origin[0]) { zcmd_free_nvlists(&zc); zfs_close(zhp); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination '%s' is a clone\n" "must destroy it to overwrite it"), zc.zc_name); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); } if (!flags->dryrun && zhp->zfs_type == ZFS_TYPE_FILESYSTEM && stream_wantsnewfs) { /* We can't do online recv in this case */ clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, 0); if (clp == NULL) { zfs_close(zhp); zcmd_free_nvlists(&zc); return (-1); } if (changelist_prefix(clp) != 0) { changelist_free(clp); zfs_close(zhp); zcmd_free_nvlists(&zc); return (-1); } } zfs_close(zhp); } else { /* * Destination filesystem does not exist. Therefore we better * be creating a new filesystem (either from a full backup, or * a clone). It would therefore be invalid if the user * specified only the pool name (i.e. if the destination name * contained no slash character). */ if (!stream_wantsnewfs || (cp = strrchr(zc.zc_name, '/')) == NULL) { zcmd_free_nvlists(&zc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination '%s' does not exist"), zc.zc_name); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } /* * Trim off the final dataset component so we perform the * recvbackup ioctl to the filesystems's parent. */ *cp = '\0'; if (flags->isprefix && !flags->istail && !flags->dryrun && create_parents(hdl, zc.zc_value, strlen(tosnap)) != 0) { zcmd_free_nvlists(&zc); return (zfs_error(hdl, EZFS_BADRESTORE, errbuf)); } newfs = B_TRUE; } zc.zc_begin_record = drr_noswap->drr_u.drr_begin; zc.zc_cookie = infd; zc.zc_guid = flags->force; if (flags->verbose) { (void) printf("%s %s stream of %s into %s\n", flags->dryrun ? "would receive" : "receiving", drrb->drr_fromguid ? "incremental" : "full", drrb->drr_toname, zc.zc_value); (void) fflush(stdout); } if (flags->dryrun) { zcmd_free_nvlists(&zc); return (recv_skip(hdl, infd, flags->byteswap)); } zc.zc_nvlist_dst = (uint64_t)(uintptr_t)prop_errbuf; zc.zc_nvlist_dst_size = sizeof (prop_errbuf); zc.zc_cleanup_fd = cleanup_fd; zc.zc_action_handle = *action_handlep; err = ioctl_err = zfs_ioctl(hdl, ZFS_IOC_RECV, &zc); ioctl_errno = errno; prop_errflags = (zprop_errflags_t)zc.zc_obj; if (err == 0) { nvlist_t *prop_errors; VERIFY(0 == nvlist_unpack((void *)(uintptr_t)zc.zc_nvlist_dst, zc.zc_nvlist_dst_size, &prop_errors, 0)); nvpair_t *prop_err = NULL; while ((prop_err = nvlist_next_nvpair(prop_errors, prop_err)) != NULL) { char tbuf[1024]; zfs_prop_t prop; int intval; prop = zfs_name_to_prop(nvpair_name(prop_err)); (void) nvpair_value_int32(prop_err, &intval); if (strcmp(nvpair_name(prop_err), ZPROP_N_MORE_ERRORS) == 0) { trunc_prop_errs(intval); break; } else { (void) snprintf(tbuf, sizeof (tbuf), dgettext(TEXT_DOMAIN, "cannot receive %s property on %s"), nvpair_name(prop_err), zc.zc_name); zfs_setprop_error(hdl, prop, intval, tbuf); } } nvlist_free(prop_errors); } zc.zc_nvlist_dst = 0; zc.zc_nvlist_dst_size = 0; zcmd_free_nvlists(&zc); if (err == 0 && snapprops_nvlist) { zfs_cmd_t zc2 = {"\0"}; (void) strcpy(zc2.zc_name, zc.zc_value); zc2.zc_cookie = B_TRUE; /* received */ if (zcmd_write_src_nvlist(hdl, &zc2, snapprops_nvlist) == 0) { (void) zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc2); zcmd_free_nvlists(&zc2); } } if (err && (ioctl_errno == ENOENT || ioctl_errno == EEXIST)) { /* * It may be that this snapshot already exists, * in which case we want to consume & ignore it * rather than failing. */ avl_tree_t *local_avl; nvlist_t *local_nv, *fs; cp = strchr(zc.zc_value, '@'); /* * XXX Do this faster by just iterating over snaps in * this fs. Also if zc_value does not exist, we will * get a strange "does not exist" error message. */ *cp = '\0'; if (gather_nvlist(hdl, zc.zc_value, NULL, NULL, B_FALSE, &local_nv, &local_avl) == 0) { *cp = '@'; fs = fsavl_find(local_avl, drrb->drr_toguid, NULL); fsavl_destroy(local_avl); nvlist_free(local_nv); if (fs != NULL) { if (flags->verbose) { (void) printf("snap %s already exists; " "ignoring\n", zc.zc_value); } err = ioctl_err = recv_skip(hdl, infd, flags->byteswap); } } *cp = '@'; } if (ioctl_err != 0) { switch (ioctl_errno) { case ENODEV: cp = strchr(zc.zc_value, '@'); *cp = '\0'; zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "most recent snapshot of %s does not\n" "match incremental source"), zc.zc_value); (void) zfs_error(hdl, EZFS_BADRESTORE, errbuf); *cp = '@'; break; case ETXTBSY: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination %s has been modified\n" "since most recent snapshot"), zc.zc_name); (void) zfs_error(hdl, EZFS_BADRESTORE, errbuf); break; case EEXIST: cp = strchr(zc.zc_value, '@'); if (newfs) { /* it's the containing fs that exists */ *cp = '\0'; } zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination already exists")); (void) zfs_error_fmt(hdl, EZFS_EXISTS, dgettext(TEXT_DOMAIN, "cannot restore to %s"), zc.zc_value); *cp = '@'; break; case EINVAL: (void) zfs_error(hdl, EZFS_BADSTREAM, errbuf); break; case ECKSUM: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid stream (checksum mismatch)")); (void) zfs_error(hdl, EZFS_BADSTREAM, errbuf); break; case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded to receive this stream.")); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); break; case EDQUOT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination %s space quota exceeded"), zc.zc_name); (void) zfs_error(hdl, EZFS_NOSPC, errbuf); break; default: (void) zfs_standard_error(hdl, ioctl_errno, errbuf); } } /* * Mount the target filesystem (if created). Also mount any * children of the target filesystem if we did a replication * receive (indicated by stream_avl being non-NULL). */ cp = strchr(zc.zc_value, '@'); if (cp && (ioctl_err == 0 || !newfs)) { zfs_handle_t *h; *cp = '\0'; h = zfs_open(hdl, zc.zc_value, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (h != NULL) { if (h->zfs_type == ZFS_TYPE_VOLUME) { *cp = '@'; } else if (newfs || stream_avl) { /* * Track the first/top of hierarchy fs, * for mounting and sharing later. */ if (top_zfs && *top_zfs == NULL) *top_zfs = zfs_strdup(hdl, zc.zc_value); } zfs_close(h); } *cp = '@'; } if (clp) { err |= changelist_postfix(clp); changelist_free(clp); } if (prop_errflags & ZPROP_ERR_NOCLEAR) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "Warning: " "failed to clear unreceived properties on %s"), zc.zc_name); (void) fprintf(stderr, "\n"); } if (prop_errflags & ZPROP_ERR_NORESTORE) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "Warning: " "failed to restore original properties on %s"), zc.zc_name); (void) fprintf(stderr, "\n"); } if (err || ioctl_err) return (-1); *action_handlep = zc.zc_action_handle; if (flags->verbose) { char buf1[64]; char buf2[64]; uint64_t bytes = zc.zc_cookie; time_t delta = time(NULL) - begin_time; if (delta == 0) delta = 1; zfs_nicenum(bytes, buf1, sizeof (buf1)); zfs_nicenum(bytes/delta, buf2, sizeof (buf1)); (void) printf("received %sB stream in %lu seconds (%sB/sec)\n", buf1, delta, buf2); } return (0); } static int zfs_receive_impl(libzfs_handle_t *hdl, const char *tosnap, recvflags_t *flags, int infd, const char *sendfs, nvlist_t *stream_nv, avl_tree_t *stream_avl, char **top_zfs, int cleanup_fd, uint64_t *action_handlep) { int err; dmu_replay_record_t drr, drr_noswap; struct drr_begin *drrb = &drr.drr_u.drr_begin; char errbuf[1024]; zio_cksum_t zcksum = { { 0 } }; uint64_t featureflags; int hdrtype; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive")); if (flags->isprefix && !zfs_dataset_exists(hdl, tosnap, ZFS_TYPE_DATASET)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "specified fs " "(%s) does not exist"), tosnap); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } /* read in the BEGIN record */ if (0 != (err = recv_read(hdl, infd, &drr, sizeof (drr), B_FALSE, &zcksum))) return (err); if (drr.drr_type == DRR_END || drr.drr_type == BSWAP_32(DRR_END)) { /* It's the double end record at the end of a package */ return (ENODATA); } /* the kernel needs the non-byteswapped begin record */ drr_noswap = drr; flags->byteswap = B_FALSE; if (drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { /* * We computed the checksum in the wrong byteorder in * recv_read() above; do it again correctly. */ bzero(&zcksum, sizeof (zio_cksum_t)); fletcher_4_incremental_byteswap(&drr, sizeof (drr), &zcksum); flags->byteswap = B_TRUE; drr.drr_type = BSWAP_32(drr.drr_type); drr.drr_payloadlen = BSWAP_32(drr.drr_payloadlen); drrb->drr_magic = BSWAP_64(drrb->drr_magic); drrb->drr_versioninfo = BSWAP_64(drrb->drr_versioninfo); drrb->drr_creation_time = BSWAP_64(drrb->drr_creation_time); drrb->drr_type = BSWAP_32(drrb->drr_type); drrb->drr_flags = BSWAP_32(drrb->drr_flags); drrb->drr_toguid = BSWAP_64(drrb->drr_toguid); drrb->drr_fromguid = BSWAP_64(drrb->drr_fromguid); } if (drrb->drr_magic != DMU_BACKUP_MAGIC || drr.drr_type != DRR_BEGIN) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "stream (bad magic number)")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); hdrtype = DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo); if (!DMU_STREAM_SUPPORTED(featureflags) || (hdrtype != DMU_SUBSTREAM && hdrtype != DMU_COMPOUNDSTREAM)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "stream has unsupported feature, feature flags = %lx"), featureflags); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } if (strchr(drrb->drr_toname, '@') == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "stream (bad snapshot name)")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_SUBSTREAM) { char nonpackage_sendfs[ZFS_MAXNAMELEN]; if (sendfs == NULL) { /* * We were not called from zfs_receive_package(). Get * the fs specified by 'zfs send'. */ char *cp; (void) strlcpy(nonpackage_sendfs, drr.drr_u.drr_begin.drr_toname, ZFS_MAXNAMELEN); if ((cp = strchr(nonpackage_sendfs, '@')) != NULL) *cp = '\0'; sendfs = nonpackage_sendfs; } return (zfs_receive_one(hdl, infd, tosnap, flags, &drr, &drr_noswap, sendfs, stream_nv, stream_avl, top_zfs, cleanup_fd, action_handlep)); } else { assert(DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM); return (zfs_receive_package(hdl, infd, tosnap, flags, &drr, &zcksum, top_zfs, cleanup_fd, action_handlep)); } } /* * Restores a backup of tosnap from the file descriptor specified by infd. * Return 0 on total success, -2 if some things couldn't be * destroyed/renamed/promoted, -1 if some things couldn't be received. * (-1 will override -2). */ int zfs_receive(libzfs_handle_t *hdl, const char *tosnap, recvflags_t *flags, int infd, avl_tree_t *stream_avl) { char *top_zfs = NULL; int err; int cleanup_fd; uint64_t action_handle = 0; struct stat sb; /* * The only way fstat can fail is if we do not have a valid file * descriptor. */ if (fstat(infd, &sb) == -1) { perror("fstat"); return (-2); } #ifdef __linux__ #ifndef F_SETPIPE_SZ #define F_SETPIPE_SZ (F_SETLEASE + 7) #endif /* F_SETPIPE_SZ */ #ifndef F_GETPIPE_SZ #define F_GETPIPE_SZ (F_GETLEASE + 7) #endif /* F_GETPIPE_SZ */ /* * It is not uncommon for gigabytes to be processed in zfs receive. * Speculatively increase the buffer size via Linux-specific fcntl() * call. */ if (S_ISFIFO(sb.st_mode)) { FILE *procf = fopen("/proc/sys/fs/pipe-max-size", "r"); if (procf != NULL) { unsigned long max_psize; long cur_psize; if (fscanf(procf, "%lu", &max_psize) > 0) { cur_psize = fcntl(infd, F_GETPIPE_SZ); if (cur_psize > 0 && max_psize > (unsigned long) cur_psize) (void) fcntl(infd, F_SETPIPE_SZ, max_psize); } fclose(procf); } } #endif /* __linux__ */ cleanup_fd = open(ZFS_DEV, O_RDWR); VERIFY(cleanup_fd >= 0); err = zfs_receive_impl(hdl, tosnap, flags, infd, NULL, NULL, stream_avl, &top_zfs, cleanup_fd, &action_handle); VERIFY(0 == close(cleanup_fd)); if (err == 0 && !flags->nomount && top_zfs) { zfs_handle_t *zhp; prop_changelist_t *clp; zhp = zfs_open(hdl, top_zfs, ZFS_TYPE_FILESYSTEM); if (zhp != NULL) { clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, CL_GATHER_MOUNT_ALWAYS, 0); zfs_close(zhp); if (clp != NULL) { /* mount and share received datasets */ err = changelist_postfix(clp); changelist_free(clp); } } if (zhp == NULL || clp == NULL || err) err = -1; } if (top_zfs) free(top_zfs); return (err); }