/* * Copyright (c) 2009 Pawel Jakub Dawidek * All rights reserved. * * Copyright (c) 2012 Spectra Logic Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) #include #endif #include #if __FreeBSD_version < 1201522 #define taskqueue_start_threads_in_proc(tqp, count, pri, proc, name, ...) \ taskqueue_start_threads(tqp, count, pri, name, __VA_ARGS__) #endif static uint_t taskq_tsd; static uma_zone_t taskq_zone; /* * Global system-wide dynamic task queue available for all consumers. This * taskq is not intended for long-running tasks; instead, a dedicated taskq * should be created. */ taskq_t *system_taskq = NULL; taskq_t *system_delay_taskq = NULL; taskq_t *dynamic_taskq = NULL; proc_t *system_proc; static MALLOC_DEFINE(M_TASKQ, "taskq", "taskq structures"); static LIST_HEAD(tqenthashhead, taskq_ent) *tqenthashtbl; static unsigned long tqenthash; static unsigned long tqenthashlock; static struct sx *tqenthashtbl_lock; static taskqid_t tqidnext; #define TQIDHASH(tqid) (&tqenthashtbl[(tqid) & tqenthash]) #define TQIDHASHLOCK(tqid) (&tqenthashtbl_lock[((tqid) & tqenthashlock)]) #define NORMAL_TASK 0 #define TIMEOUT_TASK 1 static void system_taskq_init(void *arg) { int i; tsd_create(&taskq_tsd, NULL); tqenthashtbl = hashinit(mp_ncpus * 8, M_TASKQ, &tqenthash); tqenthashlock = (tqenthash + 1) / 8; if (tqenthashlock > 0) tqenthashlock--; tqenthashtbl_lock = malloc(sizeof (*tqenthashtbl_lock) * (tqenthashlock + 1), M_TASKQ, M_WAITOK | M_ZERO); for (i = 0; i < tqenthashlock + 1; i++) sx_init_flags(&tqenthashtbl_lock[i], "tqenthash", SX_DUPOK); taskq_zone = uma_zcreate("taskq_zone", sizeof (taskq_ent_t), NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); system_taskq = taskq_create("system_taskq", mp_ncpus, minclsyspri, 0, 0, 0); system_delay_taskq = taskq_create("system_delay_taskq", mp_ncpus, minclsyspri, 0, 0, 0); } SYSINIT(system_taskq_init, SI_SUB_CONFIGURE, SI_ORDER_ANY, system_taskq_init, NULL); static void system_taskq_fini(void *arg) { int i; taskq_destroy(system_delay_taskq); taskq_destroy(system_taskq); uma_zdestroy(taskq_zone); tsd_destroy(&taskq_tsd); for (i = 0; i < tqenthashlock + 1; i++) sx_destroy(&tqenthashtbl_lock[i]); for (i = 0; i < tqenthash + 1; i++) VERIFY(LIST_EMPTY(&tqenthashtbl[i])); free(tqenthashtbl_lock, M_TASKQ); free(tqenthashtbl, M_TASKQ); } SYSUNINIT(system_taskq_fini, SI_SUB_CONFIGURE, SI_ORDER_ANY, system_taskq_fini, NULL); #ifdef __LP64__ static taskqid_t __taskq_genid(void) { taskqid_t tqid; /* * Assume a 64-bit counter will not wrap in practice. */ tqid = atomic_add_64_nv(&tqidnext, 1); VERIFY(tqid); return (tqid); } #else static taskqid_t __taskq_genid(void) { taskqid_t tqid; for (;;) { tqid = atomic_add_32_nv(&tqidnext, 1); if (__predict_true(tqid != 0)) break; } VERIFY(tqid); return (tqid); } #endif static taskq_ent_t * taskq_lookup(taskqid_t tqid) { taskq_ent_t *ent = NULL; if (tqid == 0) return (NULL); sx_slock(TQIDHASHLOCK(tqid)); LIST_FOREACH(ent, TQIDHASH(tqid), tqent_hash) { if (ent->tqent_id == tqid) break; } if (ent != NULL) refcount_acquire(&ent->tqent_rc); sx_sunlock(TQIDHASHLOCK(tqid)); return (ent); } static taskqid_t taskq_insert(taskq_ent_t *ent) { taskqid_t tqid = __taskq_genid(); ent->tqent_id = tqid; sx_xlock(TQIDHASHLOCK(tqid)); LIST_INSERT_HEAD(TQIDHASH(tqid), ent, tqent_hash); sx_xunlock(TQIDHASHLOCK(tqid)); return (tqid); } static void taskq_remove(taskq_ent_t *ent) { taskqid_t tqid = ent->tqent_id; if (tqid == 0) return; sx_xlock(TQIDHASHLOCK(tqid)); if (ent->tqent_id != 0) { LIST_REMOVE(ent, tqent_hash); ent->tqent_id = 0; } sx_xunlock(TQIDHASHLOCK(tqid)); } static void taskq_tsd_set(void *context) { taskq_t *tq = context; #if defined(__amd64__) || defined(__i386__) || defined(__aarch64__) if (context != NULL && tsd_get(taskq_tsd) == NULL) fpu_kern_thread(FPU_KERN_NORMAL); #endif tsd_set(taskq_tsd, tq); } static taskq_t * taskq_create_impl(const char *name, int nthreads, pri_t pri, proc_t *proc __maybe_unused, uint_t flags) { taskq_t *tq; if ((flags & TASKQ_THREADS_CPU_PCT) != 0) nthreads = MAX((mp_ncpus * nthreads) / 100, 1); tq = kmem_alloc(sizeof (*tq), KM_SLEEP); tq->tq_nthreads = nthreads; tq->tq_queue = taskqueue_create(name, M_WAITOK, taskqueue_thread_enqueue, &tq->tq_queue); taskqueue_set_callback(tq->tq_queue, TASKQUEUE_CALLBACK_TYPE_INIT, taskq_tsd_set, tq); taskqueue_set_callback(tq->tq_queue, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN, taskq_tsd_set, NULL); (void) taskqueue_start_threads_in_proc(&tq->tq_queue, nthreads, pri, proc, "%s", name); return ((taskq_t *)tq); } taskq_t * taskq_create(const char *name, int nthreads, pri_t pri, int minalloc __unused, int maxalloc __unused, uint_t flags) { return (taskq_create_impl(name, nthreads, pri, system_proc, flags)); } taskq_t * taskq_create_proc(const char *name, int nthreads, pri_t pri, int minalloc __unused, int maxalloc __unused, proc_t *proc, uint_t flags) { return (taskq_create_impl(name, nthreads, pri, proc, flags)); } void taskq_destroy(taskq_t *tq) { taskqueue_free(tq->tq_queue); kmem_free(tq, sizeof (*tq)); } static void taskq_sync_assign(void *arg); typedef struct taskq_sync_arg { kthread_t *tqa_thread; kcondvar_t tqa_cv; kmutex_t tqa_lock; int tqa_ready; } taskq_sync_arg_t; static void taskq_sync_assign(void *arg) { taskq_sync_arg_t *tqa = arg; mutex_enter(&tqa->tqa_lock); tqa->tqa_thread = curthread; tqa->tqa_ready = 1; cv_signal(&tqa->tqa_cv); while (tqa->tqa_ready == 1) cv_wait(&tqa->tqa_cv, &tqa->tqa_lock); mutex_exit(&tqa->tqa_lock); } /* * Create a taskq with a specified number of pool threads. Allocate * and return an array of nthreads kthread_t pointers, one for each * thread in the pool. The array is not ordered and must be freed * by the caller. */ taskq_t * taskq_create_synced(const char *name, int nthreads, pri_t pri, int minalloc, int maxalloc, uint_t flags, kthread_t ***ktpp) { taskq_t *tq; taskq_sync_arg_t *tqs = kmem_zalloc(sizeof (*tqs) * nthreads, KM_SLEEP); kthread_t **kthreads = kmem_zalloc(sizeof (*kthreads) * nthreads, KM_SLEEP); flags &= ~(TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT | TASKQ_DC_BATCH); tq = taskq_create(name, nthreads, minclsyspri, nthreads, INT_MAX, flags | TASKQ_PREPOPULATE); VERIFY(tq != NULL); VERIFY(tq->tq_nthreads == nthreads); /* spawn all syncthreads */ for (int i = 0; i < nthreads; i++) { cv_init(&tqs[i].tqa_cv, NULL, CV_DEFAULT, NULL); mutex_init(&tqs[i].tqa_lock, NULL, MUTEX_DEFAULT, NULL); (void) taskq_dispatch(tq, taskq_sync_assign, &tqs[i], TQ_FRONT); } /* wait on all syncthreads to start */ for (int i = 0; i < nthreads; i++) { mutex_enter(&tqs[i].tqa_lock); while (tqs[i].tqa_ready == 0) cv_wait(&tqs[i].tqa_cv, &tqs[i].tqa_lock); mutex_exit(&tqs[i].tqa_lock); } /* let all syncthreads resume, finish */ for (int i = 0; i < nthreads; i++) { mutex_enter(&tqs[i].tqa_lock); tqs[i].tqa_ready = 2; cv_broadcast(&tqs[i].tqa_cv); mutex_exit(&tqs[i].tqa_lock); } taskq_wait(tq); for (int i = 0; i < nthreads; i++) { kthreads[i] = tqs[i].tqa_thread; mutex_destroy(&tqs[i].tqa_lock); cv_destroy(&tqs[i].tqa_cv); } kmem_free(tqs, sizeof (*tqs) * nthreads); *ktpp = kthreads; return (tq); } int taskq_member(taskq_t *tq, kthread_t *thread) { return (taskqueue_member(tq->tq_queue, thread)); } taskq_t * taskq_of_curthread(void) { return (tsd_get(taskq_tsd)); } static void taskq_free(taskq_ent_t *task) { taskq_remove(task); if (refcount_release(&task->tqent_rc)) uma_zfree(taskq_zone, task); } int taskq_cancel_id(taskq_t *tq, taskqid_t tid) { uint32_t pend; int rc; taskq_ent_t *ent; if ((ent = taskq_lookup(tid)) == NULL) return (0); if (ent->tqent_type == NORMAL_TASK) { rc = taskqueue_cancel(tq->tq_queue, &ent->tqent_task, &pend); if (rc == EBUSY) taskqueue_drain(tq->tq_queue, &ent->tqent_task); } else { rc = taskqueue_cancel_timeout(tq->tq_queue, &ent->tqent_timeout_task, &pend); if (rc == EBUSY) { taskqueue_drain_timeout(tq->tq_queue, &ent->tqent_timeout_task); } } if (pend) { /* * Tasks normally free themselves when run, but here the task * was cancelled so it did not free itself. */ taskq_free(ent); } /* Free the extra reference we added with taskq_lookup. */ taskq_free(ent); return (rc); } static void taskq_run(void *arg, int pending) { taskq_ent_t *task = arg; if (pending == 0) return; task->tqent_func(task->tqent_arg); taskq_free(task); } taskqid_t taskq_dispatch_delay(taskq_t *tq, task_func_t func, void *arg, uint_t flags, clock_t expire_time) { taskq_ent_t *task; taskqid_t tqid; clock_t timo; int mflag; timo = expire_time - ddi_get_lbolt(); if (timo <= 0) return (taskq_dispatch(tq, func, arg, flags)); if ((flags & (TQ_SLEEP | TQ_NOQUEUE)) == TQ_SLEEP) mflag = M_WAITOK; else mflag = M_NOWAIT; task = uma_zalloc(taskq_zone, mflag); if (task == NULL) return (0); task->tqent_func = func; task->tqent_arg = arg; task->tqent_type = TIMEOUT_TASK; refcount_init(&task->tqent_rc, 1); tqid = taskq_insert(task); TIMEOUT_TASK_INIT(tq->tq_queue, &task->tqent_timeout_task, 0, taskq_run, task); taskqueue_enqueue_timeout(tq->tq_queue, &task->tqent_timeout_task, timo); return (tqid); } taskqid_t taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags) { taskq_ent_t *task; int mflag, prio; taskqid_t tqid; if ((flags & (TQ_SLEEP | TQ_NOQUEUE)) == TQ_SLEEP) mflag = M_WAITOK; else mflag = M_NOWAIT; /* * If TQ_FRONT is given, we want higher priority for this task, so it * can go at the front of the queue. */ prio = !!(flags & TQ_FRONT); task = uma_zalloc(taskq_zone, mflag); if (task == NULL) return (0); refcount_init(&task->tqent_rc, 1); task->tqent_func = func; task->tqent_arg = arg; task->tqent_type = NORMAL_TASK; tqid = taskq_insert(task); TASK_INIT(&task->tqent_task, prio, taskq_run, task); taskqueue_enqueue(tq->tq_queue, &task->tqent_task); return (tqid); } static void taskq_run_ent(void *arg, int pending) { taskq_ent_t *task = arg; if (pending == 0) return; task->tqent_func(task->tqent_arg); } void taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint32_t flags, taskq_ent_t *task) { int prio; /* * If TQ_FRONT is given, we want higher priority for this task, so it * can go at the front of the queue. */ prio = !!(flags & TQ_FRONT); task->tqent_id = 0; task->tqent_func = func; task->tqent_arg = arg; TASK_INIT(&task->tqent_task, prio, taskq_run_ent, task); taskqueue_enqueue(tq->tq_queue, &task->tqent_task); } void taskq_wait(taskq_t *tq) { taskqueue_quiesce(tq->tq_queue); } void taskq_wait_id(taskq_t *tq, taskqid_t tid) { taskq_ent_t *ent; if ((ent = taskq_lookup(tid)) == NULL) return; if (ent->tqent_type == NORMAL_TASK) taskqueue_drain(tq->tq_queue, &ent->tqent_task); else taskqueue_drain_timeout(tq->tq_queue, &ent->tqent_timeout_task); taskq_free(ent); } void taskq_wait_outstanding(taskq_t *tq, taskqid_t id __unused) { taskqueue_drain_all(tq->tq_queue); } int taskq_empty_ent(taskq_ent_t *t) { return (t->tqent_task.ta_pending == 0); }