/* * CDDL HEADER START * * This file and its contents are supplied under the terms of the * Common Development and Distribution License ("CDDL"), version 1.0. * You may only use this file in accordance with the terms of version * 1.0 of the CDDL. * * A full copy of the text of the CDDL should have accompanied this * source. A copy of the CDDL is also available via the Internet at * http://www.illumos.org/license/CDDL. * * CDDL HEADER END */ /* * Copyright (c) 2013, 2017 by Delphix. All rights reserved. */ #include #include #include /* needed for spa_get_random() */ #include /* * This overrides the number of sublists in each multilist_t, which defaults * to the number of CPUs in the system (see multilist_create()). */ int zfs_multilist_num_sublists = 0; /* * Given the object contained on the list, return a pointer to the * object's multilist_node_t structure it contains. */ #ifdef ZFS_DEBUG static multilist_node_t * multilist_d2l(multilist_t *ml, void *obj) { return ((multilist_node_t *)((char *)obj + ml->ml_offset)); } #endif /* * Initialize a new mutlilist using the parameters specified. * * - 'size' denotes the size of the structure containing the * multilist_node_t. * - 'offset' denotes the byte offset of the mutlilist_node_t within * the structure that contains it. * - 'num' specifies the number of internal sublists to create. * - 'index_func' is used to determine which sublist to insert into * when the multilist_insert() function is called; as well as which * sublist to remove from when multilist_remove() is called. The * requirements this function must meet, are the following: * * - It must always return the same value when called on the same * object (to ensure the object is removed from the list it was * inserted into). * * - It must return a value in the range [0, number of sublists). * The multilist_get_num_sublists() function may be used to * determine the number of sublists in the multilist. * * Also, in order to reduce internal contention between the sublists * during insertion and removal, this function should choose evenly * between all available sublists when inserting. This isn't a hard * requirement, but a general rule of thumb in order to garner the * best multi-threaded performance out of the data structure. */ static multilist_t * multilist_create_impl(size_t size, size_t offset, unsigned int num, multilist_sublist_index_func_t *index_func) { ASSERT3U(size, >, 0); ASSERT3U(size, >=, offset + sizeof (multilist_node_t)); ASSERT3U(num, >, 0); ASSERT3P(index_func, !=, NULL); multilist_t *ml = kmem_alloc(sizeof (*ml), KM_SLEEP); ml->ml_offset = offset; ml->ml_num_sublists = num; ml->ml_index_func = index_func; ml->ml_sublists = kmem_zalloc(sizeof (multilist_sublist_t) * ml->ml_num_sublists, KM_SLEEP); ASSERT3P(ml->ml_sublists, !=, NULL); for (int i = 0; i < ml->ml_num_sublists; i++) { multilist_sublist_t *mls = &ml->ml_sublists[i]; mutex_init(&mls->mls_lock, NULL, MUTEX_NOLOCKDEP, NULL); list_create(&mls->mls_list, size, offset); } return (ml); } /* * Allocate a new multilist, using the default number of sublists (the number * of CPUs, or at least 4, or the tunable zfs_multilist_num_sublists). Note * that the multilists do not expand if more CPUs are hot-added. In that case, * we will have less fanout than boot_ncpus, but we don't want to always * reserve the RAM necessary to create the extra slots for additional CPUs up * front, and dynamically adding them is a complex task. */ multilist_t * multilist_create(size_t size, size_t offset, multilist_sublist_index_func_t *index_func) { int num_sublists; if (zfs_multilist_num_sublists > 0) { num_sublists = zfs_multilist_num_sublists; } else { num_sublists = MAX(boot_ncpus, 4); } return (multilist_create_impl(size, offset, num_sublists, index_func)); } /* * Destroy the given multilist object, and free up any memory it holds. */ void multilist_destroy(multilist_t *ml) { ASSERT(multilist_is_empty(ml)); for (int i = 0; i < ml->ml_num_sublists; i++) { multilist_sublist_t *mls = &ml->ml_sublists[i]; ASSERT(list_is_empty(&mls->mls_list)); list_destroy(&mls->mls_list); mutex_destroy(&mls->mls_lock); } ASSERT3P(ml->ml_sublists, !=, NULL); kmem_free(ml->ml_sublists, sizeof (multilist_sublist_t) * ml->ml_num_sublists); ml->ml_num_sublists = 0; ml->ml_offset = 0; kmem_free(ml, sizeof (multilist_t)); } /* * Insert the given object into the multilist. * * This function will insert the object specified into the sublist * determined using the function given at multilist creation time. * * The sublist locks are automatically acquired if not already held, to * ensure consistency when inserting and removing from multiple threads. */ void multilist_insert(multilist_t *ml, void *obj) { unsigned int sublist_idx = ml->ml_index_func(ml, obj); multilist_sublist_t *mls; boolean_t need_lock; DTRACE_PROBE3(multilist__insert, multilist_t *, ml, unsigned int, sublist_idx, void *, obj); ASSERT3U(sublist_idx, <, ml->ml_num_sublists); mls = &ml->ml_sublists[sublist_idx]; /* * Note: Callers may already hold the sublist lock by calling * multilist_sublist_lock(). Here we rely on MUTEX_HELD() * returning TRUE if and only if the current thread holds the * lock. While it's a little ugly to make the lock recursive in * this way, it works and allows the calling code to be much * simpler -- otherwise it would have to pass around a flag * indicating that it already has the lock. */ need_lock = !MUTEX_HELD(&mls->mls_lock); if (need_lock) mutex_enter(&mls->mls_lock); ASSERT(!multilist_link_active(multilist_d2l(ml, obj))); multilist_sublist_insert_head(mls, obj); if (need_lock) mutex_exit(&mls->mls_lock); } /* * Remove the given object from the multilist. * * This function will remove the object specified from the sublist * determined using the function given at multilist creation time. * * The necessary sublist locks are automatically acquired, to ensure * consistency when inserting and removing from multiple threads. */ void multilist_remove(multilist_t *ml, void *obj) { unsigned int sublist_idx = ml->ml_index_func(ml, obj); multilist_sublist_t *mls; boolean_t need_lock; DTRACE_PROBE3(multilist__remove, multilist_t *, ml, unsigned int, sublist_idx, void *, obj); ASSERT3U(sublist_idx, <, ml->ml_num_sublists); mls = &ml->ml_sublists[sublist_idx]; /* See comment in multilist_insert(). */ need_lock = !MUTEX_HELD(&mls->mls_lock); if (need_lock) mutex_enter(&mls->mls_lock); ASSERT(multilist_link_active(multilist_d2l(ml, obj))); multilist_sublist_remove(mls, obj); if (need_lock) mutex_exit(&mls->mls_lock); } /* * Check to see if this multilist object is empty. * * This will return TRUE if it finds all of the sublists of this * multilist to be empty, and FALSE otherwise. Each sublist lock will be * automatically acquired as necessary. * * If concurrent insertions and removals are occurring, the semantics * of this function become a little fuzzy. Instead of locking all * sublists for the entire call time of the function, each sublist is * only locked as it is individually checked for emptiness. Thus, it's * possible for this function to return TRUE with non-empty sublists at * the time the function returns. This would be due to another thread * inserting into a given sublist, after that specific sublist was check * and deemed empty, but before all sublists have been checked. */ int multilist_is_empty(multilist_t *ml) { for (int i = 0; i < ml->ml_num_sublists; i++) { multilist_sublist_t *mls = &ml->ml_sublists[i]; /* See comment in multilist_insert(). */ boolean_t need_lock = !MUTEX_HELD(&mls->mls_lock); if (need_lock) mutex_enter(&mls->mls_lock); if (!list_is_empty(&mls->mls_list)) { if (need_lock) mutex_exit(&mls->mls_lock); return (FALSE); } if (need_lock) mutex_exit(&mls->mls_lock); } return (TRUE); } /* Return the number of sublists composing this multilist */ unsigned int multilist_get_num_sublists(multilist_t *ml) { return (ml->ml_num_sublists); } /* Return a randomly selected, valid sublist index for this multilist */ unsigned int multilist_get_random_index(multilist_t *ml) { return (spa_get_random(ml->ml_num_sublists)); } /* Lock and return the sublist specified at the given index */ multilist_sublist_t * multilist_sublist_lock(multilist_t *ml, unsigned int sublist_idx) { multilist_sublist_t *mls; ASSERT3U(sublist_idx, <, ml->ml_num_sublists); mls = &ml->ml_sublists[sublist_idx]; mutex_enter(&mls->mls_lock); return (mls); } /* Lock and return the sublist that would be used to store the specified obj */ multilist_sublist_t * multilist_sublist_lock_obj(multilist_t *ml, void *obj) { return (multilist_sublist_lock(ml, ml->ml_index_func(ml, obj))); } void multilist_sublist_unlock(multilist_sublist_t *mls) { mutex_exit(&mls->mls_lock); } /* * We're allowing any object to be inserted into this specific sublist, * but this can lead to trouble if multilist_remove() is called to * remove this object. Specifically, if calling ml_index_func on this * object returns an index for sublist different than what is passed as * a parameter here, any call to multilist_remove() with this newly * inserted object is undefined! (the call to multilist_remove() will * remove the object from a list that it isn't contained in) */ void multilist_sublist_insert_head(multilist_sublist_t *mls, void *obj) { ASSERT(MUTEX_HELD(&mls->mls_lock)); list_insert_head(&mls->mls_list, obj); } /* please see comment above multilist_sublist_insert_head */ void multilist_sublist_insert_tail(multilist_sublist_t *mls, void *obj) { ASSERT(MUTEX_HELD(&mls->mls_lock)); list_insert_tail(&mls->mls_list, obj); } /* * Move the object one element forward in the list. * * This function will move the given object forward in the list (towards * the head) by one object. So, in essence, it will swap its position in * the list with its "prev" pointer. If the given object is already at the * head of the list, it cannot be moved forward any more than it already * is, so no action is taken. * * NOTE: This function **must not** remove any object from the list other * than the object given as the parameter. This is relied upon in * arc_evict_state_impl(). */ void multilist_sublist_move_forward(multilist_sublist_t *mls, void *obj) { void *prev = list_prev(&mls->mls_list, obj); ASSERT(MUTEX_HELD(&mls->mls_lock)); ASSERT(!list_is_empty(&mls->mls_list)); /* 'obj' must be at the head of the list, nothing to do */ if (prev == NULL) return; list_remove(&mls->mls_list, obj); list_insert_before(&mls->mls_list, prev, obj); } void multilist_sublist_remove(multilist_sublist_t *mls, void *obj) { ASSERT(MUTEX_HELD(&mls->mls_lock)); list_remove(&mls->mls_list, obj); } int multilist_sublist_is_empty(multilist_sublist_t *mls) { ASSERT(MUTEX_HELD(&mls->mls_lock)); return (list_is_empty(&mls->mls_list)); } int multilist_sublist_is_empty_idx(multilist_t *ml, unsigned int sublist_idx) { multilist_sublist_t *mls; int empty; ASSERT3U(sublist_idx, <, ml->ml_num_sublists); mls = &ml->ml_sublists[sublist_idx]; ASSERT(!MUTEX_HELD(&mls->mls_lock)); mutex_enter(&mls->mls_lock); empty = list_is_empty(&mls->mls_list); mutex_exit(&mls->mls_lock); return (empty); } void * multilist_sublist_head(multilist_sublist_t *mls) { ASSERT(MUTEX_HELD(&mls->mls_lock)); return (list_head(&mls->mls_list)); } void * multilist_sublist_tail(multilist_sublist_t *mls) { ASSERT(MUTEX_HELD(&mls->mls_lock)); return (list_tail(&mls->mls_list)); } void * multilist_sublist_next(multilist_sublist_t *mls, void *obj) { ASSERT(MUTEX_HELD(&mls->mls_lock)); return (list_next(&mls->mls_list, obj)); } void * multilist_sublist_prev(multilist_sublist_t *mls, void *obj) { ASSERT(MUTEX_HELD(&mls->mls_lock)); return (list_prev(&mls->mls_list, obj)); } void multilist_link_init(multilist_node_t *link) { list_link_init(link); } int multilist_link_active(multilist_node_t *link) { return (list_link_active(link)); } /* BEGIN CSTYLED */ ZFS_MODULE_PARAM(zfs, zfs_, multilist_num_sublists, INT, ZMOD_RW, "Number of sublists used in each multilist"); /* END CSTYLED */