/* * This file is part of the SPL: Solaris Porting Layer. * * Copyright (c) 2008 Lawrence Livermore National Security, LLC. * Produced at Lawrence Livermore National Laboratory * Written by: * Brian Behlendorf , * Herb Wartens , * Jim Garlick * UCRL-CODE-235197 * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "splat-internal.h" #define SPLAT_SUBSYSTEM_KMEM 0x0100 #define SPLAT_KMEM_NAME "kmem" #define SPLAT_KMEM_DESC "Kernel Malloc/Slab Tests" #define SPLAT_KMEM_TEST1_ID 0x0101 #define SPLAT_KMEM_TEST1_NAME "kmem_alloc" #define SPLAT_KMEM_TEST1_DESC "Memory allocation test (kmem_alloc)" #define SPLAT_KMEM_TEST2_ID 0x0102 #define SPLAT_KMEM_TEST2_NAME "kmem_zalloc" #define SPLAT_KMEM_TEST2_DESC "Memory allocation test (kmem_zalloc)" #define SPLAT_KMEM_TEST3_ID 0x0103 #define SPLAT_KMEM_TEST3_NAME "vmem_alloc" #define SPLAT_KMEM_TEST3_DESC "Memory allocation test (vmem_alloc)" #define SPLAT_KMEM_TEST4_ID 0x0104 #define SPLAT_KMEM_TEST4_NAME "vmem_zalloc" #define SPLAT_KMEM_TEST4_DESC "Memory allocation test (vmem_zalloc)" #define SPLAT_KMEM_TEST5_ID 0x0105 #define SPLAT_KMEM_TEST5_NAME "kmem_small" #define SPLAT_KMEM_TEST5_DESC "Slab ctor/dtor test (small)" #define SPLAT_KMEM_TEST6_ID 0x0106 #define SPLAT_KMEM_TEST6_NAME "kmem_large" #define SPLAT_KMEM_TEST6_DESC "Slab ctor/dtor test (large)" #define SPLAT_KMEM_TEST7_ID 0x0107 #define SPLAT_KMEM_TEST7_NAME "kmem_reap" #define SPLAT_KMEM_TEST7_DESC "Slab reaping test" #define SPLAT_KMEM_TEST8_ID 0x0108 #define SPLAT_KMEM_TEST8_NAME "kmem_lock" #define SPLAT_KMEM_TEST8_DESC "Slab locking test" #define SPLAT_KMEM_TEST9_ID 0x0109 #define SPLAT_KMEM_TEST9_NAME "kmem_align" #define SPLAT_KMEM_TEST9_DESC "Slab alignment test" #define SPLAT_KMEM_ALLOC_COUNT 10 #define SPLAT_VMEM_ALLOC_COUNT 10 /* XXX - This test may fail under tight memory conditions */ static int splat_kmem_test1(struct file *file, void *arg) { void *ptr[SPLAT_KMEM_ALLOC_COUNT]; int size = PAGE_SIZE; int i, count, rc = 0; /* We are intentionally going to push kmem_alloc to its max * allocation size, so suppress the console warnings for now */ kmem_set_warning(0); while ((!rc) && (size <= (PAGE_SIZE * 32))) { count = 0; for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) { ptr[i] = kmem_alloc(size, KM_SLEEP); if (ptr[i]) count++; } for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) if (ptr[i]) kmem_free(ptr[i], size); splat_vprint(file, SPLAT_KMEM_TEST1_NAME, "%d byte allocations, %d/%d successful\n", size, count, SPLAT_KMEM_ALLOC_COUNT); if (count != SPLAT_KMEM_ALLOC_COUNT) rc = -ENOMEM; size *= 2; } kmem_set_warning(1); return rc; } static int splat_kmem_test2(struct file *file, void *arg) { void *ptr[SPLAT_KMEM_ALLOC_COUNT]; int size = PAGE_SIZE; int i, j, count, rc = 0; /* We are intentionally going to push kmem_alloc to its max * allocation size, so suppress the console warnings for now */ kmem_set_warning(0); while ((!rc) && (size <= (PAGE_SIZE * 32))) { count = 0; for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) { ptr[i] = kmem_zalloc(size, KM_SLEEP); if (ptr[i]) count++; } /* Ensure buffer has been zero filled */ for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) { for (j = 0; j < size; j++) { if (((char *)ptr[i])[j] != '\0') { splat_vprint(file, SPLAT_KMEM_TEST2_NAME, "%d-byte allocation was " "not zeroed\n", size); rc = -EFAULT; } } } for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) if (ptr[i]) kmem_free(ptr[i], size); splat_vprint(file, SPLAT_KMEM_TEST2_NAME, "%d byte allocations, %d/%d successful\n", size, count, SPLAT_KMEM_ALLOC_COUNT); if (count != SPLAT_KMEM_ALLOC_COUNT) rc = -ENOMEM; size *= 2; } kmem_set_warning(1); return rc; } static int splat_kmem_test3(struct file *file, void *arg) { void *ptr[SPLAT_VMEM_ALLOC_COUNT]; int size = PAGE_SIZE; int i, count, rc = 0; while ((!rc) && (size <= (PAGE_SIZE * 1024))) { count = 0; for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) { ptr[i] = vmem_alloc(size, KM_SLEEP); if (ptr[i]) count++; } for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) if (ptr[i]) vmem_free(ptr[i], size); splat_vprint(file, SPLAT_KMEM_TEST3_NAME, "%d byte allocations, %d/%d successful\n", size, count, SPLAT_VMEM_ALLOC_COUNT); if (count != SPLAT_VMEM_ALLOC_COUNT) rc = -ENOMEM; size *= 2; } return rc; } static int splat_kmem_test4(struct file *file, void *arg) { void *ptr[SPLAT_VMEM_ALLOC_COUNT]; int size = PAGE_SIZE; int i, j, count, rc = 0; while ((!rc) && (size <= (PAGE_SIZE * 1024))) { count = 0; for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) { ptr[i] = vmem_zalloc(size, KM_SLEEP); if (ptr[i]) count++; } /* Ensure buffer has been zero filled */ for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) { for (j = 0; j < size; j++) { if (((char *)ptr[i])[j] != '\0') { splat_vprint(file, SPLAT_KMEM_TEST4_NAME, "%d-byte allocation was " "not zeroed\n", size); rc = -EFAULT; } } } for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) if (ptr[i]) vmem_free(ptr[i], size); splat_vprint(file, SPLAT_KMEM_TEST4_NAME, "%d byte allocations, %d/%d successful\n", size, count, SPLAT_VMEM_ALLOC_COUNT); if (count != SPLAT_VMEM_ALLOC_COUNT) rc = -ENOMEM; size *= 2; } return rc; } #define SPLAT_KMEM_TEST_MAGIC 0x004488CCUL #define SPLAT_KMEM_CACHE_NAME "kmem_test" #define SPLAT_KMEM_OBJ_COUNT 128 #define SPLAT_KMEM_OBJ_RECLAIM 16 typedef struct kmem_cache_data { unsigned long kcd_magic; int kcd_flag; char kcd_buf[0]; } kmem_cache_data_t; typedef struct kmem_cache_priv { unsigned long kcp_magic; struct file *kcp_file; kmem_cache_t *kcp_cache; kmem_cache_data_t *kcp_kcd[SPLAT_KMEM_OBJ_COUNT]; spinlock_t kcp_lock; wait_queue_head_t kcp_waitq; int kcp_size; int kcp_align; int kcp_count; int kcp_threads; int kcp_alloc; int kcp_rc; } kmem_cache_priv_t; static int splat_kmem_cache_test_constructor(void *ptr, void *priv, int flags) { kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv; kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr; if (kcd && kcp) { kcd->kcd_magic = kcp->kcp_magic; kcd->kcd_flag = 1; memset(kcd->kcd_buf, 0xaa, kcp->kcp_size - (sizeof *kcd)); kcp->kcp_count++; } return 0; } static void splat_kmem_cache_test_destructor(void *ptr, void *priv) { kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv; kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr; if (kcd && kcp) { kcd->kcd_magic = 0; kcd->kcd_flag = 0; memset(kcd->kcd_buf, 0xbb, kcp->kcp_size - (sizeof *kcd)); kcp->kcp_count--; } return; } static int splat_kmem_cache_test(struct file *file, void *arg, char *name, int size, int align, int flags) { kmem_cache_t *cache = NULL; kmem_cache_data_t *kcd = NULL; kmem_cache_priv_t kcp; int rc = 0, max; kcp.kcp_magic = SPLAT_KMEM_TEST_MAGIC; kcp.kcp_file = file; kcp.kcp_size = size; kcp.kcp_align = align; kcp.kcp_count = 0; kcp.kcp_rc = 0; cache = kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp.kcp_size, kcp.kcp_align, splat_kmem_cache_test_constructor, splat_kmem_cache_test_destructor, NULL, &kcp, NULL, flags); if (!cache) { splat_vprint(file, name, "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME); return -ENOMEM; } kcd = kmem_cache_alloc(cache, KM_SLEEP); if (!kcd) { splat_vprint(file, name, "Unable to allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME); rc = -EINVAL; goto out_free; } if (!kcd->kcd_flag) { splat_vprint(file, name, "Failed to run contructor for '%s'\n", SPLAT_KMEM_CACHE_NAME); rc = -EINVAL; goto out_free; } if (kcd->kcd_magic != kcp.kcp_magic) { splat_vprint(file, name, "Failed to pass private data to constructor " "for '%s'\n", SPLAT_KMEM_CACHE_NAME); rc = -EINVAL; goto out_free; } max = kcp.kcp_count; kmem_cache_free(cache, kcd); /* Destroy the entire cache which will force destructors to * run and we can verify one was called for every object */ kmem_cache_destroy(cache); if (kcp.kcp_count) { splat_vprint(file, name, "Failed to run destructor on all slab objects " "for '%s'\n", SPLAT_KMEM_CACHE_NAME); rc = -EINVAL; } splat_vprint(file, name, "Successfully ran ctors/dtors for %d elements in '%s'\n", max, SPLAT_KMEM_CACHE_NAME); return rc; out_free: if (kcd) kmem_cache_free(cache, kcd); kmem_cache_destroy(cache); return rc; } /* Validate small object cache behavior for dynamic/kmem/vmem caches */ static int splat_kmem_test5(struct file *file, void *arg) { char *name = SPLAT_KMEM_TEST5_NAME; int rc; rc = splat_kmem_cache_test(file, arg, name, 128, 0, 0); if (rc) return rc; rc = splat_kmem_cache_test(file, arg, name, 128, 0, KMC_KMEM); if (rc) return rc; return splat_kmem_cache_test(file, arg, name, 128, 0, KMC_VMEM); } /* Validate large object cache behavior for dynamic/kmem/vmem caches */ static int splat_kmem_test6(struct file *file, void *arg) { char *name = SPLAT_KMEM_TEST6_NAME; int rc; rc = splat_kmem_cache_test(file, arg, name, 128*1024, 0, 0); if (rc) return rc; rc = splat_kmem_cache_test(file, arg, name, 128*1024, 0, KMC_KMEM); if (rc) return rc; return splat_kmem_cache_test(file, arg, name, 128*1028, 0, KMC_VMEM); } static void splat_kmem_cache_test_reclaim(void *priv) { kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv; int i, count; count = min(SPLAT_KMEM_OBJ_RECLAIM, kcp->kcp_count); splat_vprint(kcp->kcp_file, SPLAT_KMEM_TEST7_NAME, "Reaping %d objects from '%s'\n", count, SPLAT_KMEM_CACHE_NAME); for (i = 0; i < SPLAT_KMEM_OBJ_COUNT; i++) { if (kcp->kcp_kcd[i]) { kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[i]); kcp->kcp_kcd[i] = NULL; if (--count == 0) break; } } return; } static int splat_kmem_test7(struct file *file, void *arg) { kmem_cache_t *cache; kmem_cache_priv_t kcp; int i, rc = 0; kcp.kcp_magic = SPLAT_KMEM_TEST_MAGIC; kcp.kcp_file = file; kcp.kcp_size = 256; kcp.kcp_count = 0; kcp.kcp_rc = 0; cache = kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp.kcp_size, 0, splat_kmem_cache_test_constructor, splat_kmem_cache_test_destructor, splat_kmem_cache_test_reclaim, &kcp, NULL, 0); if (!cache) { splat_vprint(file, SPLAT_KMEM_TEST7_NAME, "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME); return -ENOMEM; } kcp.kcp_cache = cache; for (i = 0; i < SPLAT_KMEM_OBJ_COUNT; i++) { /* All allocations need not succeed */ kcp.kcp_kcd[i] = kmem_cache_alloc(cache, KM_SLEEP); if (!kcp.kcp_kcd[i]) { splat_vprint(file, SPLAT_KMEM_TEST7_NAME, "Unable to allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME); } } ASSERT(kcp.kcp_count > 0); /* Request the slab cache free any objects it can. For a few reasons * this may not immediately result in more free memory even if objects * are freed. First off, due to fragmentation we may not be able to * reclaim any slabs. Secondly, even if we do we fully clear some * slabs we will not want to immedately reclaim all of them because * we may contend with cache allocs and thrash. What we want to see * is slab size decrease more gradually as it becomes clear they * will not be needed. This should be acheivable in less than minute * if it takes longer than this something has gone wrong. */ for (i = 0; i < 60; i++) { kmem_cache_reap_now(cache); splat_vprint(file, SPLAT_KMEM_TEST7_NAME, "%s cache objects %d, slabs %u/%u objs %u/%u\n", SPLAT_KMEM_CACHE_NAME, kcp.kcp_count, (unsigned)cache->skc_slab_alloc, (unsigned)cache->skc_slab_total, (unsigned)cache->skc_obj_alloc, (unsigned)cache->skc_obj_total); if (cache->skc_obj_total == 0) break; set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(HZ); } if (cache->skc_obj_total == 0) { splat_vprint(file, SPLAT_KMEM_TEST7_NAME, "Successfully created %d objects " "in cache %s and reclaimed them\n", SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME); } else { splat_vprint(file, SPLAT_KMEM_TEST7_NAME, "Failed to reclaim %u/%d objects from cache %s\n", (unsigned)cache->skc_obj_total, SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME); rc = -ENOMEM; } /* Cleanup our mess (for failure case of time expiring) */ for (i = 0; i < SPLAT_KMEM_OBJ_COUNT; i++) if (kcp.kcp_kcd[i]) kmem_cache_free(cache, kcp.kcp_kcd[i]); kmem_cache_destroy(cache); return rc; } static void splat_kmem_test8_thread(void *arg) { kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)arg; int count = kcp->kcp_alloc, rc = 0, i; void **objs; ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC); objs = vmem_zalloc(count * sizeof(void *), KM_SLEEP); if (!objs) { splat_vprint(kcp->kcp_file, SPLAT_KMEM_TEST8_NAME, "Unable to alloc objp array for cache '%s'\n", kcp->kcp_cache->skc_name); rc = -ENOMEM; goto out; } for (i = 0; i < count; i++) { objs[i] = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP); if (!objs[i]) { splat_vprint(kcp->kcp_file, SPLAT_KMEM_TEST8_NAME, "Unable to allocate from cache '%s'\n", kcp->kcp_cache->skc_name); rc = -ENOMEM; break; } } for (i = 0; i < count; i++) if (objs[i]) kmem_cache_free(kcp->kcp_cache, objs[i]); vmem_free(objs, count * sizeof(void *)); out: spin_lock(&kcp->kcp_lock); if (!kcp->kcp_rc) kcp->kcp_rc = rc; if (--kcp->kcp_threads == 0) wake_up(&kcp->kcp_waitq); spin_unlock(&kcp->kcp_lock); thread_exit(); } static int splat_kmem_test8_count(kmem_cache_priv_t *kcp, int threads) { int ret; spin_lock(&kcp->kcp_lock); ret = (kcp->kcp_threads == threads); spin_unlock(&kcp->kcp_lock); return ret; } /* This test will always pass and is simply here so I can easily * eyeball the slab cache locking overhead to ensure it is reasonable. */ static int splat_kmem_test8_sc(struct file *file, void *arg, int size, int count) { kmem_cache_priv_t kcp; kthread_t *thr; struct timespec start, stop, delta; char cache_name[32]; int i, j, rc = 0, threads = 32; kcp.kcp_magic = SPLAT_KMEM_TEST_MAGIC; kcp.kcp_file = file; splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "%-22s %s", "name", "time (sec)\tslabs \tobjs \thash\n"); splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "%-22s %s", "", " \ttot/max/calc\ttot/max/calc\n"); for (i = 1; i <= count; i *= 2) { kcp.kcp_size = size; kcp.kcp_count = 0; kcp.kcp_threads = 0; kcp.kcp_alloc = i; kcp.kcp_rc = 0; spin_lock_init(&kcp.kcp_lock); init_waitqueue_head(&kcp.kcp_waitq); (void)snprintf(cache_name, 32, "%s-%d-%d", SPLAT_KMEM_CACHE_NAME, size, i); kcp.kcp_cache = kmem_cache_create(cache_name, kcp.kcp_size, 0, splat_kmem_cache_test_constructor, splat_kmem_cache_test_destructor, NULL, &kcp, NULL, 0); if (!kcp.kcp_cache) { splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "Unable to create '%s' cache\n", SPLAT_KMEM_CACHE_NAME); rc = -ENOMEM; break; } start = current_kernel_time(); for (j = 0; j < threads; j++) { thr = thread_create(NULL, 0, splat_kmem_test8_thread, &kcp, 0, &p0, TS_RUN, minclsyspri); if (thr == NULL) { rc = -ESRCH; break; } spin_lock(&kcp.kcp_lock); kcp.kcp_threads++; spin_unlock(&kcp.kcp_lock); } /* Sleep until the thread sets kcp.kcp_threads == 0 */ wait_event(kcp.kcp_waitq, splat_kmem_test8_count(&kcp, 0)); stop = current_kernel_time(); delta = timespec_sub(stop, start); splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "%-22s %2ld.%09ld\t" "%lu/%lu/%lu\t%lu/%lu/%lu\n", kcp.kcp_cache->skc_name, delta.tv_sec, delta.tv_nsec, (unsigned long)kcp.kcp_cache->skc_slab_total, (unsigned long)kcp.kcp_cache->skc_slab_max, (unsigned long)(kcp.kcp_alloc * threads / SPL_KMEM_CACHE_OBJ_PER_SLAB), (unsigned long)kcp.kcp_cache->skc_obj_total, (unsigned long)kcp.kcp_cache->skc_obj_max, (unsigned long)(kcp.kcp_alloc * threads)); kmem_cache_destroy(kcp.kcp_cache); if (!rc && kcp.kcp_rc) rc = kcp.kcp_rc; if (rc) break; } return rc; } static int splat_kmem_test8(struct file *file, void *arg) { int i, rc = 0; /* Run through slab cache with objects size from * 16-1Mb in 4x multiples with 1024 objects each */ for (i = 16; i <= 1024*1024; i *= 4) { rc = splat_kmem_test8_sc(file, arg, i, 256); if (rc) break; } return rc; } /* Validate object alignment cache behavior for caches */ static int splat_kmem_test9(struct file *file, void *arg) { char *name = SPLAT_KMEM_TEST9_NAME; int i, rc; for (i = 8; i <= PAGE_SIZE; i *= 2) { rc = splat_kmem_cache_test(file, arg, name, 157, i, 0); if (rc) return rc; } return rc; } splat_subsystem_t * splat_kmem_init(void) { splat_subsystem_t *sub; sub = kmalloc(sizeof(*sub), GFP_KERNEL); if (sub == NULL) return NULL; memset(sub, 0, sizeof(*sub)); strncpy(sub->desc.name, SPLAT_KMEM_NAME, SPLAT_NAME_SIZE); strncpy(sub->desc.desc, SPLAT_KMEM_DESC, SPLAT_DESC_SIZE); INIT_LIST_HEAD(&sub->subsystem_list); INIT_LIST_HEAD(&sub->test_list); spin_lock_init(&sub->test_lock); sub->desc.id = SPLAT_SUBSYSTEM_KMEM; SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST1_NAME, SPLAT_KMEM_TEST1_DESC, SPLAT_KMEM_TEST1_ID, splat_kmem_test1); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST2_NAME, SPLAT_KMEM_TEST2_DESC, SPLAT_KMEM_TEST2_ID, splat_kmem_test2); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST3_NAME, SPLAT_KMEM_TEST3_DESC, SPLAT_KMEM_TEST3_ID, splat_kmem_test3); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST4_NAME, SPLAT_KMEM_TEST4_DESC, SPLAT_KMEM_TEST4_ID, splat_kmem_test4); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST5_NAME, SPLAT_KMEM_TEST5_DESC, SPLAT_KMEM_TEST5_ID, splat_kmem_test5); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST6_NAME, SPLAT_KMEM_TEST6_DESC, SPLAT_KMEM_TEST6_ID, splat_kmem_test6); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST7_NAME, SPLAT_KMEM_TEST7_DESC, SPLAT_KMEM_TEST7_ID, splat_kmem_test7); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST8_NAME, SPLAT_KMEM_TEST8_DESC, SPLAT_KMEM_TEST8_ID, splat_kmem_test8); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST9_NAME, SPLAT_KMEM_TEST9_DESC, SPLAT_KMEM_TEST9_ID, splat_kmem_test9); return sub; } void splat_kmem_fini(splat_subsystem_t *sub) { ASSERT(sub); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST9_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST8_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST7_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST6_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST5_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST4_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST3_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST2_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST1_ID); kfree(sub); } int splat_kmem_id(void) { return SPLAT_SUBSYSTEM_KMEM; }