/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2020 by Delphix. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include dnode_stats_t dnode_stats = { { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 }, { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 }, { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 }, { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 }, { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 }, { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 }, { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 }, { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 }, { "dnode_hold_free_hits", KSTAT_DATA_UINT64 }, { "dnode_hold_free_misses", KSTAT_DATA_UINT64 }, { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 }, { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 }, { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 }, { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 }, { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 }, { "dnode_allocate", KSTAT_DATA_UINT64 }, { "dnode_reallocate", KSTAT_DATA_UINT64 }, { "dnode_buf_evict", KSTAT_DATA_UINT64 }, { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 }, { "dnode_alloc_race", KSTAT_DATA_UINT64 }, { "dnode_alloc_next_block", KSTAT_DATA_UINT64 }, { "dnode_move_invalid", KSTAT_DATA_UINT64 }, { "dnode_move_recheck1", KSTAT_DATA_UINT64 }, { "dnode_move_recheck2", KSTAT_DATA_UINT64 }, { "dnode_move_special", KSTAT_DATA_UINT64 }, { "dnode_move_handle", KSTAT_DATA_UINT64 }, { "dnode_move_rwlock", KSTAT_DATA_UINT64 }, { "dnode_move_active", KSTAT_DATA_UINT64 }, }; static kstat_t *dnode_ksp; static kmem_cache_t *dnode_cache; static dnode_phys_t dnode_phys_zero __maybe_unused; int zfs_default_bs = SPA_MINBLOCKSHIFT; int zfs_default_ibs = DN_MAX_INDBLKSHIFT; #ifdef _KERNEL static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); #endif /* _KERNEL */ static int dbuf_compare(const void *x1, const void *x2) { const dmu_buf_impl_t *d1 = x1; const dmu_buf_impl_t *d2 = x2; int cmp = TREE_CMP(d1->db_level, d2->db_level); if (likely(cmp)) return (cmp); cmp = TREE_CMP(d1->db_blkid, d2->db_blkid); if (likely(cmp)) return (cmp); if (d1->db_state == DB_SEARCH) { ASSERT3S(d2->db_state, !=, DB_SEARCH); return (-1); } else if (d2->db_state == DB_SEARCH) { ASSERT3S(d1->db_state, !=, DB_SEARCH); return (1); } return (TREE_PCMP(d1, d2)); } /* ARGSUSED */ static int dnode_cons(void *arg, void *unused, int kmflag) { dnode_t *dn = arg; int i; rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL); mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL); /* * Every dbuf has a reference, and dropping a tracked reference is * O(number of references), so don't track dn_holds. */ zfs_refcount_create_untracked(&dn->dn_holds); zfs_refcount_create(&dn->dn_tx_holds); list_link_init(&dn->dn_link); bzero(&dn->dn_next_type[0], sizeof (dn->dn_next_type)); bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid)); for (i = 0; i < TXG_SIZE; i++) { multilist_link_init(&dn->dn_dirty_link[i]); dn->dn_free_ranges[i] = NULL; list_create(&dn->dn_dirty_records[i], sizeof (dbuf_dirty_record_t), offsetof(dbuf_dirty_record_t, dr_dirty_node)); } dn->dn_allocated_txg = 0; dn->dn_free_txg = 0; dn->dn_assigned_txg = 0; dn->dn_dirty_txg = 0; dn->dn_dirtyctx = 0; dn->dn_dirtyctx_firstset = NULL; dn->dn_bonus = NULL; dn->dn_have_spill = B_FALSE; dn->dn_zio = NULL; dn->dn_oldused = 0; dn->dn_oldflags = 0; dn->dn_olduid = 0; dn->dn_oldgid = 0; dn->dn_oldprojid = ZFS_DEFAULT_PROJID; dn->dn_newuid = 0; dn->dn_newgid = 0; dn->dn_newprojid = ZFS_DEFAULT_PROJID; dn->dn_id_flags = 0; dn->dn_dbufs_count = 0; avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), offsetof(dmu_buf_impl_t, db_link)); dn->dn_moved = 0; return (0); } /* ARGSUSED */ static void dnode_dest(void *arg, void *unused) { int i; dnode_t *dn = arg; rw_destroy(&dn->dn_struct_rwlock); mutex_destroy(&dn->dn_mtx); mutex_destroy(&dn->dn_dbufs_mtx); cv_destroy(&dn->dn_notxholds); cv_destroy(&dn->dn_nodnholds); zfs_refcount_destroy(&dn->dn_holds); zfs_refcount_destroy(&dn->dn_tx_holds); ASSERT(!list_link_active(&dn->dn_link)); for (i = 0; i < TXG_SIZE; i++) { ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); ASSERT3P(dn->dn_free_ranges[i], ==, NULL); list_destroy(&dn->dn_dirty_records[i]); ASSERT0(dn->dn_next_nblkptr[i]); ASSERT0(dn->dn_next_nlevels[i]); ASSERT0(dn->dn_next_indblkshift[i]); ASSERT0(dn->dn_next_bonustype[i]); ASSERT0(dn->dn_rm_spillblk[i]); ASSERT0(dn->dn_next_bonuslen[i]); ASSERT0(dn->dn_next_blksz[i]); ASSERT0(dn->dn_next_maxblkid[i]); } ASSERT0(dn->dn_allocated_txg); ASSERT0(dn->dn_free_txg); ASSERT0(dn->dn_assigned_txg); ASSERT0(dn->dn_dirty_txg); ASSERT0(dn->dn_dirtyctx); ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); ASSERT3P(dn->dn_bonus, ==, NULL); ASSERT(!dn->dn_have_spill); ASSERT3P(dn->dn_zio, ==, NULL); ASSERT0(dn->dn_oldused); ASSERT0(dn->dn_oldflags); ASSERT0(dn->dn_olduid); ASSERT0(dn->dn_oldgid); ASSERT0(dn->dn_oldprojid); ASSERT0(dn->dn_newuid); ASSERT0(dn->dn_newgid); ASSERT0(dn->dn_newprojid); ASSERT0(dn->dn_id_flags); ASSERT0(dn->dn_dbufs_count); avl_destroy(&dn->dn_dbufs); } void dnode_init(void) { ASSERT(dnode_cache == NULL); dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t), 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); kmem_cache_set_move(dnode_cache, dnode_move); dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc", KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (dnode_ksp != NULL) { dnode_ksp->ks_data = &dnode_stats; kstat_install(dnode_ksp); } } void dnode_fini(void) { if (dnode_ksp != NULL) { kstat_delete(dnode_ksp); dnode_ksp = NULL; } kmem_cache_destroy(dnode_cache); dnode_cache = NULL; } #ifdef ZFS_DEBUG void dnode_verify(dnode_t *dn) { int drop_struct_lock = FALSE; ASSERT(dn->dn_phys); ASSERT(dn->dn_objset); ASSERT(dn->dn_handle->dnh_dnode == dn); ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) return; if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { rw_enter(&dn->dn_struct_rwlock, RW_READER); drop_struct_lock = TRUE; } if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { int i; int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); if (dn->dn_datablkshift) { ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); ASSERT3U(1<dn_datablkshift, ==, dn->dn_datablksz); } ASSERT3U(dn->dn_nlevels, <=, 30); ASSERT(DMU_OT_IS_VALID(dn->dn_type)); ASSERT3U(dn->dn_nblkptr, >=, 1); ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen); ASSERT3U(dn->dn_datablksz, ==, dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + dn->dn_bonuslen, <=, max_bonuslen); for (i = 0; i < TXG_SIZE; i++) { ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); } } if (dn->dn_phys->dn_type != DMU_OT_NONE) ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); if (dn->dn_dbuf != NULL) { ASSERT3P(dn->dn_phys, ==, (dnode_phys_t *)dn->dn_dbuf->db.db_data + (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); } if (drop_struct_lock) rw_exit(&dn->dn_struct_rwlock); } #endif void dnode_byteswap(dnode_phys_t *dnp) { uint64_t *buf64 = (void*)&dnp->dn_blkptr; int i; if (dnp->dn_type == DMU_OT_NONE) { bzero(dnp, sizeof (dnode_phys_t)); return; } dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots); dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); dnp->dn_used = BSWAP_64(dnp->dn_used); /* * dn_nblkptr is only one byte, so it's OK to read it in either * byte order. We can't read dn_bouslen. */ ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) buf64[i] = BSWAP_64(buf64[i]); /* * OK to check dn_bonuslen for zero, because it won't matter if * we have the wrong byte order. This is necessary because the * dnode dnode is smaller than a regular dnode. */ if (dnp->dn_bonuslen != 0) { /* * Note that the bonus length calculated here may be * longer than the actual bonus buffer. This is because * we always put the bonus buffer after the last block * pointer (instead of packing it against the end of the * dnode buffer). */ int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); int slots = dnp->dn_extra_slots + 1; size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off; dmu_object_byteswap_t byteswap; ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype); dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); } /* Swap SPILL block if we have one */ if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t)); } void dnode_buf_byteswap(void *vbuf, size_t size) { int i = 0; ASSERT3U(sizeof (dnode_phys_t), ==, (1<dn_type != DMU_OT_NONE) i += dnp->dn_extra_slots * DNODE_MIN_SIZE; } } void dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) { ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); dnode_setdirty(dn, tx); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - (dn->dn_nblkptr-1) * sizeof (blkptr_t)); if (newsize < dn->dn_bonuslen) { /* clear any data after the end of the new size */ size_t diff = dn->dn_bonuslen - newsize; char *data_end = ((char *)dn->dn_bonus->db.db_data) + newsize; bzero(data_end, diff); } dn->dn_bonuslen = newsize; if (newsize == 0) dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; else dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; rw_exit(&dn->dn_struct_rwlock); } void dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) { ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); dnode_setdirty(dn, tx); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); dn->dn_bonustype = newtype; dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; rw_exit(&dn->dn_struct_rwlock); } void dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) { ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); dnode_setdirty(dn, tx); dn->dn_rm_spillblk[tx->tx_txg & TXG_MASK] = DN_KILL_SPILLBLK; dn->dn_have_spill = B_FALSE; } static void dnode_setdblksz(dnode_t *dn, int size) { ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); ASSERT3U(size, >=, SPA_MINBLOCKSIZE); ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); dn->dn_datablksz = size; dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; } static dnode_t * dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, uint64_t object, dnode_handle_t *dnh) { dnode_t *dn; dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); dn->dn_moved = 0; /* * Defer setting dn_objset until the dnode is ready to be a candidate * for the dnode_move() callback. */ dn->dn_object = object; dn->dn_dbuf = db; dn->dn_handle = dnh; dn->dn_phys = dnp; if (dnp->dn_datablkszsec) { dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); } else { dn->dn_datablksz = 0; dn->dn_datablkszsec = 0; dn->dn_datablkshift = 0; } dn->dn_indblkshift = dnp->dn_indblkshift; dn->dn_nlevels = dnp->dn_nlevels; dn->dn_type = dnp->dn_type; dn->dn_nblkptr = dnp->dn_nblkptr; dn->dn_checksum = dnp->dn_checksum; dn->dn_compress = dnp->dn_compress; dn->dn_bonustype = dnp->dn_bonustype; dn->dn_bonuslen = dnp->dn_bonuslen; dn->dn_num_slots = dnp->dn_extra_slots + 1; dn->dn_maxblkid = dnp->dn_maxblkid; dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); dn->dn_id_flags = 0; dmu_zfetch_init(&dn->dn_zfetch, dn); ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode)); mutex_enter(&os->os_lock); /* * Exclude special dnodes from os_dnodes so an empty os_dnodes * signifies that the special dnodes have no references from * their children (the entries in os_dnodes). This allows * dnode_destroy() to easily determine if the last child has * been removed and then complete eviction of the objset. */ if (!DMU_OBJECT_IS_SPECIAL(object)) list_insert_head(&os->os_dnodes, dn); membar_producer(); /* * Everything else must be valid before assigning dn_objset * makes the dnode eligible for dnode_move(). */ dn->dn_objset = os; dnh->dnh_dnode = dn; mutex_exit(&os->os_lock); arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE); return (dn); } /* * Caller must be holding the dnode handle, which is released upon return. */ static void dnode_destroy(dnode_t *dn) { objset_t *os = dn->dn_objset; boolean_t complete_os_eviction = B_FALSE; ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); mutex_enter(&os->os_lock); POINTER_INVALIDATE(&dn->dn_objset); if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { list_remove(&os->os_dnodes, dn); complete_os_eviction = list_is_empty(&os->os_dnodes) && list_link_active(&os->os_evicting_node); } mutex_exit(&os->os_lock); /* the dnode can no longer move, so we can release the handle */ if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock)) zrl_remove(&dn->dn_handle->dnh_zrlock); dn->dn_allocated_txg = 0; dn->dn_free_txg = 0; dn->dn_assigned_txg = 0; dn->dn_dirty_txg = 0; dn->dn_dirtyctx = 0; dn->dn_dirtyctx_firstset = NULL; if (dn->dn_bonus != NULL) { mutex_enter(&dn->dn_bonus->db_mtx); dbuf_destroy(dn->dn_bonus); dn->dn_bonus = NULL; } dn->dn_zio = NULL; dn->dn_have_spill = B_FALSE; dn->dn_oldused = 0; dn->dn_oldflags = 0; dn->dn_olduid = 0; dn->dn_oldgid = 0; dn->dn_oldprojid = ZFS_DEFAULT_PROJID; dn->dn_newuid = 0; dn->dn_newgid = 0; dn->dn_newprojid = ZFS_DEFAULT_PROJID; dn->dn_id_flags = 0; dmu_zfetch_fini(&dn->dn_zfetch); kmem_cache_free(dnode_cache, dn); arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE); if (complete_os_eviction) dmu_objset_evict_done(os); } void dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx) { int i; ASSERT3U(dn_slots, >, 0); ASSERT3U(dn_slots << DNODE_SHIFT, <=, spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))); ASSERT3U(blocksize, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); if (blocksize == 0) blocksize = 1 << zfs_default_bs; else blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); if (ibs == 0) ibs = zfs_default_ibs; ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n", dn->dn_objset, (u_longlong_t)dn->dn_object, (u_longlong_t)tx->tx_txg, blocksize, ibs, dn_slots); DNODE_STAT_BUMP(dnode_allocate); ASSERT(dn->dn_type == DMU_OT_NONE); ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); ASSERT(ot != DMU_OT_NONE); ASSERT(DMU_OT_IS_VALID(ot)); ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || (bonustype == DMU_OT_SA && bonuslen == 0) || (bonustype != DMU_OT_NONE && bonuslen != 0)); ASSERT(DMU_OT_IS_VALID(bonustype)); ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots)); ASSERT(dn->dn_type == DMU_OT_NONE); ASSERT0(dn->dn_maxblkid); ASSERT0(dn->dn_allocated_txg); ASSERT0(dn->dn_assigned_txg); ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1); ASSERT(avl_is_empty(&dn->dn_dbufs)); for (i = 0; i < TXG_SIZE; i++) { ASSERT0(dn->dn_next_nblkptr[i]); ASSERT0(dn->dn_next_nlevels[i]); ASSERT0(dn->dn_next_indblkshift[i]); ASSERT0(dn->dn_next_bonuslen[i]); ASSERT0(dn->dn_next_bonustype[i]); ASSERT0(dn->dn_rm_spillblk[i]); ASSERT0(dn->dn_next_blksz[i]); ASSERT0(dn->dn_next_maxblkid[i]); ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); ASSERT3P(dn->dn_free_ranges[i], ==, NULL); } dn->dn_type = ot; dnode_setdblksz(dn, blocksize); dn->dn_indblkshift = ibs; dn->dn_nlevels = 1; dn->dn_num_slots = dn_slots; if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ dn->dn_nblkptr = 1; else { dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR, 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> SPA_BLKPTRSHIFT)); } dn->dn_bonustype = bonustype; dn->dn_bonuslen = bonuslen; dn->dn_checksum = ZIO_CHECKSUM_INHERIT; dn->dn_compress = ZIO_COMPRESS_INHERIT; dn->dn_dirtyctx = 0; dn->dn_free_txg = 0; dn->dn_dirtyctx_firstset = NULL; dn->dn_dirty_txg = 0; dn->dn_allocated_txg = tx->tx_txg; dn->dn_id_flags = 0; dnode_setdirty(dn, tx); dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; } void dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, int bonuslen, int dn_slots, boolean_t keep_spill, dmu_tx_t *tx) { int nblkptr; ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); ASSERT3U(blocksize, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); ASSERT0(blocksize % SPA_MINBLOCKSIZE); ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); ASSERT(tx->tx_txg != 0); ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || (bonustype != DMU_OT_NONE && bonuslen != 0) || (bonustype == DMU_OT_SA && bonuslen == 0)); ASSERT(DMU_OT_IS_VALID(bonustype)); ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)))); ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT)); dnode_free_interior_slots(dn); DNODE_STAT_BUMP(dnode_reallocate); /* clean up any unreferenced dbufs */ dnode_evict_dbufs(dn); dn->dn_id_flags = 0; rw_enter(&dn->dn_struct_rwlock, RW_WRITER); dnode_setdirty(dn, tx); if (dn->dn_datablksz != blocksize) { /* change blocksize */ ASSERT0(dn->dn_maxblkid); ASSERT(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || dnode_block_freed(dn, 0)); dnode_setdblksz(dn, blocksize); dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = blocksize; } if (dn->dn_bonuslen != bonuslen) dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = bonuslen; if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ nblkptr = 1; else nblkptr = MIN(DN_MAX_NBLKPTR, 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> SPA_BLKPTRSHIFT)); if (dn->dn_bonustype != bonustype) dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = bonustype; if (dn->dn_nblkptr != nblkptr) dn->dn_next_nblkptr[tx->tx_txg & TXG_MASK] = nblkptr; if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) { dbuf_rm_spill(dn, tx); dnode_rm_spill(dn, tx); } rw_exit(&dn->dn_struct_rwlock); /* change type */ dn->dn_type = ot; /* change bonus size and type */ mutex_enter(&dn->dn_mtx); dn->dn_bonustype = bonustype; dn->dn_bonuslen = bonuslen; dn->dn_num_slots = dn_slots; dn->dn_nblkptr = nblkptr; dn->dn_checksum = ZIO_CHECKSUM_INHERIT; dn->dn_compress = ZIO_COMPRESS_INHERIT; ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); /* fix up the bonus db_size */ if (dn->dn_bonus) { dn->dn_bonus->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - (dn->dn_nblkptr-1) * sizeof (blkptr_t); ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); } dn->dn_allocated_txg = tx->tx_txg; mutex_exit(&dn->dn_mtx); } #ifdef _KERNEL static void dnode_move_impl(dnode_t *odn, dnode_t *ndn) { int i; ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); /* Copy fields. */ ndn->dn_objset = odn->dn_objset; ndn->dn_object = odn->dn_object; ndn->dn_dbuf = odn->dn_dbuf; ndn->dn_handle = odn->dn_handle; ndn->dn_phys = odn->dn_phys; ndn->dn_type = odn->dn_type; ndn->dn_bonuslen = odn->dn_bonuslen; ndn->dn_bonustype = odn->dn_bonustype; ndn->dn_nblkptr = odn->dn_nblkptr; ndn->dn_checksum = odn->dn_checksum; ndn->dn_compress = odn->dn_compress; ndn->dn_nlevels = odn->dn_nlevels; ndn->dn_indblkshift = odn->dn_indblkshift; ndn->dn_datablkshift = odn->dn_datablkshift; ndn->dn_datablkszsec = odn->dn_datablkszsec; ndn->dn_datablksz = odn->dn_datablksz; ndn->dn_maxblkid = odn->dn_maxblkid; ndn->dn_num_slots = odn->dn_num_slots; bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0], sizeof (odn->dn_next_type)); bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], sizeof (odn->dn_next_nblkptr)); bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], sizeof (odn->dn_next_nlevels)); bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], sizeof (odn->dn_next_indblkshift)); bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], sizeof (odn->dn_next_bonustype)); bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], sizeof (odn->dn_rm_spillblk)); bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], sizeof (odn->dn_next_bonuslen)); bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], sizeof (odn->dn_next_blksz)); bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0], sizeof (odn->dn_next_maxblkid)); for (i = 0; i < TXG_SIZE; i++) { list_move_tail(&ndn->dn_dirty_records[i], &odn->dn_dirty_records[i]); } bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], sizeof (odn->dn_free_ranges)); ndn->dn_allocated_txg = odn->dn_allocated_txg; ndn->dn_free_txg = odn->dn_free_txg; ndn->dn_assigned_txg = odn->dn_assigned_txg; ndn->dn_dirty_txg = odn->dn_dirty_txg; ndn->dn_dirtyctx = odn->dn_dirtyctx; ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0); zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds); ASSERT(avl_is_empty(&ndn->dn_dbufs)); avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); ndn->dn_dbufs_count = odn->dn_dbufs_count; ndn->dn_bonus = odn->dn_bonus; ndn->dn_have_spill = odn->dn_have_spill; ndn->dn_zio = odn->dn_zio; ndn->dn_oldused = odn->dn_oldused; ndn->dn_oldflags = odn->dn_oldflags; ndn->dn_olduid = odn->dn_olduid; ndn->dn_oldgid = odn->dn_oldgid; ndn->dn_oldprojid = odn->dn_oldprojid; ndn->dn_newuid = odn->dn_newuid; ndn->dn_newgid = odn->dn_newgid; ndn->dn_newprojid = odn->dn_newprojid; ndn->dn_id_flags = odn->dn_id_flags; dmu_zfetch_init(&ndn->dn_zfetch, ndn); /* * Update back pointers. Updating the handle fixes the back pointer of * every descendant dbuf as well as the bonus dbuf. */ ASSERT(ndn->dn_handle->dnh_dnode == odn); ndn->dn_handle->dnh_dnode = ndn; /* * Invalidate the original dnode by clearing all of its back pointers. */ odn->dn_dbuf = NULL; odn->dn_handle = NULL; avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), offsetof(dmu_buf_impl_t, db_link)); odn->dn_dbufs_count = 0; odn->dn_bonus = NULL; dmu_zfetch_fini(&odn->dn_zfetch); /* * Set the low bit of the objset pointer to ensure that dnode_move() * recognizes the dnode as invalid in any subsequent callback. */ POINTER_INVALIDATE(&odn->dn_objset); /* * Satisfy the destructor. */ for (i = 0; i < TXG_SIZE; i++) { list_create(&odn->dn_dirty_records[i], sizeof (dbuf_dirty_record_t), offsetof(dbuf_dirty_record_t, dr_dirty_node)); odn->dn_free_ranges[i] = NULL; odn->dn_next_nlevels[i] = 0; odn->dn_next_indblkshift[i] = 0; odn->dn_next_bonustype[i] = 0; odn->dn_rm_spillblk[i] = 0; odn->dn_next_bonuslen[i] = 0; odn->dn_next_blksz[i] = 0; } odn->dn_allocated_txg = 0; odn->dn_free_txg = 0; odn->dn_assigned_txg = 0; odn->dn_dirty_txg = 0; odn->dn_dirtyctx = 0; odn->dn_dirtyctx_firstset = NULL; odn->dn_have_spill = B_FALSE; odn->dn_zio = NULL; odn->dn_oldused = 0; odn->dn_oldflags = 0; odn->dn_olduid = 0; odn->dn_oldgid = 0; odn->dn_oldprojid = ZFS_DEFAULT_PROJID; odn->dn_newuid = 0; odn->dn_newgid = 0; odn->dn_newprojid = ZFS_DEFAULT_PROJID; odn->dn_id_flags = 0; /* * Mark the dnode. */ ndn->dn_moved = 1; odn->dn_moved = (uint8_t)-1; } /*ARGSUSED*/ static kmem_cbrc_t dnode_move(void *buf, void *newbuf, size_t size, void *arg) { dnode_t *odn = buf, *ndn = newbuf; objset_t *os; int64_t refcount; uint32_t dbufs; /* * The dnode is on the objset's list of known dnodes if the objset * pointer is valid. We set the low bit of the objset pointer when * freeing the dnode to invalidate it, and the memory patterns written * by kmem (baddcafe and deadbeef) set at least one of the two low bits. * A newly created dnode sets the objset pointer last of all to indicate * that the dnode is known and in a valid state to be moved by this * function. */ os = odn->dn_objset; if (!POINTER_IS_VALID(os)) { DNODE_STAT_BUMP(dnode_move_invalid); return (KMEM_CBRC_DONT_KNOW); } /* * Ensure that the objset does not go away during the move. */ rw_enter(&os_lock, RW_WRITER); if (os != odn->dn_objset) { rw_exit(&os_lock); DNODE_STAT_BUMP(dnode_move_recheck1); return (KMEM_CBRC_DONT_KNOW); } /* * If the dnode is still valid, then so is the objset. We know that no * valid objset can be freed while we hold os_lock, so we can safely * ensure that the objset remains in use. */ mutex_enter(&os->os_lock); /* * Recheck the objset pointer in case the dnode was removed just before * acquiring the lock. */ if (os != odn->dn_objset) { mutex_exit(&os->os_lock); rw_exit(&os_lock); DNODE_STAT_BUMP(dnode_move_recheck2); return (KMEM_CBRC_DONT_KNOW); } /* * At this point we know that as long as we hold os->os_lock, the dnode * cannot be freed and fields within the dnode can be safely accessed. * The objset listing this dnode cannot go away as long as this dnode is * on its list. */ rw_exit(&os_lock); if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { mutex_exit(&os->os_lock); DNODE_STAT_BUMP(dnode_move_special); return (KMEM_CBRC_NO); } ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ /* * Lock the dnode handle to prevent the dnode from obtaining any new * holds. This also prevents the descendant dbufs and the bonus dbuf * from accessing the dnode, so that we can discount their holds. The * handle is safe to access because we know that while the dnode cannot * go away, neither can its handle. Once we hold dnh_zrlock, we can * safely move any dnode referenced only by dbufs. */ if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { mutex_exit(&os->os_lock); DNODE_STAT_BUMP(dnode_move_handle); return (KMEM_CBRC_LATER); } /* * Ensure a consistent view of the dnode's holds and the dnode's dbufs. * We need to guarantee that there is a hold for every dbuf in order to * determine whether the dnode is actively referenced. Falsely matching * a dbuf to an active hold would lead to an unsafe move. It's possible * that a thread already having an active dnode hold is about to add a * dbuf, and we can't compare hold and dbuf counts while the add is in * progress. */ if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { zrl_exit(&odn->dn_handle->dnh_zrlock); mutex_exit(&os->os_lock); DNODE_STAT_BUMP(dnode_move_rwlock); return (KMEM_CBRC_LATER); } /* * A dbuf may be removed (evicted) without an active dnode hold. In that * case, the dbuf count is decremented under the handle lock before the * dbuf's hold is released. This order ensures that if we count the hold * after the dbuf is removed but before its hold is released, we will * treat the unmatched hold as active and exit safely. If we count the * hold before the dbuf is removed, the hold is discounted, and the * removal is blocked until the move completes. */ refcount = zfs_refcount_count(&odn->dn_holds); ASSERT(refcount >= 0); dbufs = DN_DBUFS_COUNT(odn); /* We can't have more dbufs than dnode holds. */ ASSERT3U(dbufs, <=, refcount); DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, uint32_t, dbufs); if (refcount > dbufs) { rw_exit(&odn->dn_struct_rwlock); zrl_exit(&odn->dn_handle->dnh_zrlock); mutex_exit(&os->os_lock); DNODE_STAT_BUMP(dnode_move_active); return (KMEM_CBRC_LATER); } rw_exit(&odn->dn_struct_rwlock); /* * At this point we know that anyone with a hold on the dnode is not * actively referencing it. The dnode is known and in a valid state to * move. We're holding the locks needed to execute the critical section. */ dnode_move_impl(odn, ndn); list_link_replace(&odn->dn_link, &ndn->dn_link); /* If the dnode was safe to move, the refcount cannot have changed. */ ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds)); ASSERT(dbufs == DN_DBUFS_COUNT(ndn)); zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ mutex_exit(&os->os_lock); return (KMEM_CBRC_YES); } #endif /* _KERNEL */ static void dnode_slots_hold(dnode_children_t *children, int idx, int slots) { ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); for (int i = idx; i < idx + slots; i++) { dnode_handle_t *dnh = &children->dnc_children[i]; zrl_add(&dnh->dnh_zrlock); } } static void dnode_slots_rele(dnode_children_t *children, int idx, int slots) { ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); for (int i = idx; i < idx + slots; i++) { dnode_handle_t *dnh = &children->dnc_children[i]; if (zrl_is_locked(&dnh->dnh_zrlock)) zrl_exit(&dnh->dnh_zrlock); else zrl_remove(&dnh->dnh_zrlock); } } static int dnode_slots_tryenter(dnode_children_t *children, int idx, int slots) { ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); for (int i = idx; i < idx + slots; i++) { dnode_handle_t *dnh = &children->dnc_children[i]; if (!zrl_tryenter(&dnh->dnh_zrlock)) { for (int j = idx; j < i; j++) { dnh = &children->dnc_children[j]; zrl_exit(&dnh->dnh_zrlock); } return (0); } } return (1); } static void dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr) { ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); for (int i = idx; i < idx + slots; i++) { dnode_handle_t *dnh = &children->dnc_children[i]; dnh->dnh_dnode = ptr; } } static boolean_t dnode_check_slots_free(dnode_children_t *children, int idx, int slots) { ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); /* * If all dnode slots are either already free or * evictable return B_TRUE. */ for (int i = idx; i < idx + slots; i++) { dnode_handle_t *dnh = &children->dnc_children[i]; dnode_t *dn = dnh->dnh_dnode; if (dn == DN_SLOT_FREE) { continue; } else if (DN_SLOT_IS_PTR(dn)) { mutex_enter(&dn->dn_mtx); boolean_t can_free = (dn->dn_type == DMU_OT_NONE && zfs_refcount_is_zero(&dn->dn_holds) && !DNODE_IS_DIRTY(dn)); mutex_exit(&dn->dn_mtx); if (!can_free) return (B_FALSE); else continue; } else { return (B_FALSE); } } return (B_TRUE); } static void dnode_reclaim_slots(dnode_children_t *children, int idx, int slots) { ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); for (int i = idx; i < idx + slots; i++) { dnode_handle_t *dnh = &children->dnc_children[i]; ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE); dnode_destroy(dnh->dnh_dnode); dnh->dnh_dnode = DN_SLOT_FREE; } } } void dnode_free_interior_slots(dnode_t *dn) { dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db); int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT; int idx = (dn->dn_object & (epb - 1)) + 1; int slots = dn->dn_num_slots - 1; if (slots == 0) return; ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); while (!dnode_slots_tryenter(children, idx, slots)) { DNODE_STAT_BUMP(dnode_free_interior_lock_retry); cond_resched(); } dnode_set_slots(children, idx, slots, DN_SLOT_FREE); dnode_slots_rele(children, idx, slots); } void dnode_special_close(dnode_handle_t *dnh) { dnode_t *dn = dnh->dnh_dnode; /* * Ensure dnode_rele_and_unlock() has released dn_mtx, after final * zfs_refcount_remove() */ mutex_enter(&dn->dn_mtx); if (zfs_refcount_count(&dn->dn_holds) > 0) cv_wait(&dn->dn_nodnholds, &dn->dn_mtx); mutex_exit(&dn->dn_mtx); ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0); ASSERT(dn->dn_dbuf == NULL || dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); zrl_add(&dnh->dnh_zrlock); dnode_destroy(dn); /* implicit zrl_remove() */ zrl_destroy(&dnh->dnh_zrlock); dnh->dnh_dnode = NULL; } void dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, dnode_handle_t *dnh) { dnode_t *dn; zrl_init(&dnh->dnh_zrlock); VERIFY3U(1, ==, zrl_tryenter(&dnh->dnh_zrlock)); dn = dnode_create(os, dnp, NULL, object, dnh); DNODE_VERIFY(dn); zrl_exit(&dnh->dnh_zrlock); } static void dnode_buf_evict_async(void *dbu) { dnode_children_t *dnc = dbu; DNODE_STAT_BUMP(dnode_buf_evict); for (int i = 0; i < dnc->dnc_count; i++) { dnode_handle_t *dnh = &dnc->dnc_children[i]; dnode_t *dn; /* * The dnode handle lock guards against the dnode moving to * another valid address, so there is no need here to guard * against changes to or from NULL. */ if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) { zrl_destroy(&dnh->dnh_zrlock); dnh->dnh_dnode = DN_SLOT_UNINIT; continue; } zrl_add(&dnh->dnh_zrlock); dn = dnh->dnh_dnode; /* * If there are holds on this dnode, then there should * be holds on the dnode's containing dbuf as well; thus * it wouldn't be eligible for eviction and this function * would not have been called. */ ASSERT(zfs_refcount_is_zero(&dn->dn_holds)); ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); dnode_destroy(dn); /* implicit zrl_remove() for first slot */ zrl_destroy(&dnh->dnh_zrlock); dnh->dnh_dnode = DN_SLOT_UNINIT; } kmem_free(dnc, sizeof (dnode_children_t) + dnc->dnc_count * sizeof (dnode_handle_t)); } /* * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used * to ensure the hole at the specified object offset is large enough to * hold the dnode being created. The slots parameter is also used to ensure * a dnode does not span multiple dnode blocks. In both of these cases, if * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases * are only possible when using DNODE_MUST_BE_FREE. * * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. * dnode_hold_impl() will check if the requested dnode is already consumed * as an extra dnode slot by an large dnode, in which case it returns * ENOENT. * * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just * return whether the hold would succeed or not. tag and dnp should set to * NULL in this case. * * errors: * EINVAL - Invalid object number or flags. * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE) * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE) * - Refers to a freeing dnode (DNODE_MUST_BE_FREE) * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED) * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED) * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED) * EIO - I/O error when reading the meta dnode dbuf. * * succeeds even for free dnodes. */ int dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots, void *tag, dnode_t **dnp) { int epb, idx, err; int drop_struct_lock = FALSE; int type; uint64_t blk; dnode_t *mdn, *dn; dmu_buf_impl_t *db; dnode_children_t *dnc; dnode_phys_t *dn_block; dnode_handle_t *dnh; ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0)); ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0)); IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL)); /* * If you are holding the spa config lock as writer, you shouldn't * be asking the DMU to do *anything* unless it's the root pool * which may require us to read from the root filesystem while * holding some (not all) of the locks as writer. */ ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || (spa_is_root(os->os_spa) && spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE)); if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT || object == DMU_PROJECTUSED_OBJECT) { if (object == DMU_USERUSED_OBJECT) dn = DMU_USERUSED_DNODE(os); else if (object == DMU_GROUPUSED_OBJECT) dn = DMU_GROUPUSED_DNODE(os); else dn = DMU_PROJECTUSED_DNODE(os); if (dn == NULL) return (SET_ERROR(ENOENT)); type = dn->dn_type; if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) return (SET_ERROR(ENOENT)); if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) return (SET_ERROR(EEXIST)); DNODE_VERIFY(dn); /* Don't actually hold if dry run, just return 0 */ if (!(flag & DNODE_DRY_RUN)) { (void) zfs_refcount_add(&dn->dn_holds, tag); *dnp = dn; } return (0); } if (object == 0 || object >= DN_MAX_OBJECT) return (SET_ERROR(EINVAL)); mdn = DMU_META_DNODE(os); ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); DNODE_VERIFY(mdn); if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { rw_enter(&mdn->dn_struct_rwlock, RW_READER); drop_struct_lock = TRUE; } blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); db = dbuf_hold(mdn, blk, FTAG); if (drop_struct_lock) rw_exit(&mdn->dn_struct_rwlock); if (db == NULL) { DNODE_STAT_BUMP(dnode_hold_dbuf_hold); return (SET_ERROR(EIO)); } /* * We do not need to decrypt to read the dnode so it doesn't matter * if we get the encrypted or decrypted version. */ err = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH); if (err) { DNODE_STAT_BUMP(dnode_hold_dbuf_read); dbuf_rele(db, FTAG); return (err); } ASSERT3U(db->db.db_size, >=, 1<db.db_size >> DNODE_SHIFT; idx = object & (epb - 1); dn_block = (dnode_phys_t *)db->db.db_data; ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); dnc = dmu_buf_get_user(&db->db); dnh = NULL; if (dnc == NULL) { dnode_children_t *winner; int skip = 0; dnc = kmem_zalloc(sizeof (dnode_children_t) + epb * sizeof (dnode_handle_t), KM_SLEEP); dnc->dnc_count = epb; dnh = &dnc->dnc_children[0]; /* Initialize dnode slot status from dnode_phys_t */ for (int i = 0; i < epb; i++) { zrl_init(&dnh[i].dnh_zrlock); if (skip) { skip--; continue; } if (dn_block[i].dn_type != DMU_OT_NONE) { int interior = dn_block[i].dn_extra_slots; dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED); dnode_set_slots(dnc, i + 1, interior, DN_SLOT_INTERIOR); skip = interior; } else { dnh[i].dnh_dnode = DN_SLOT_FREE; skip = 0; } } dmu_buf_init_user(&dnc->dnc_dbu, NULL, dnode_buf_evict_async, NULL); winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu); if (winner != NULL) { for (int i = 0; i < epb; i++) zrl_destroy(&dnh[i].dnh_zrlock); kmem_free(dnc, sizeof (dnode_children_t) + epb * sizeof (dnode_handle_t)); dnc = winner; } } ASSERT(dnc->dnc_count == epb); if (flag & DNODE_MUST_BE_ALLOCATED) { slots = 1; dnode_slots_hold(dnc, idx, slots); dnh = &dnc->dnc_children[idx]; if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { dn = dnh->dnh_dnode; } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) { DNODE_STAT_BUMP(dnode_hold_alloc_interior); dnode_slots_rele(dnc, idx, slots); dbuf_rele(db, FTAG); return (SET_ERROR(EEXIST)); } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) { DNODE_STAT_BUMP(dnode_hold_alloc_misses); dnode_slots_rele(dnc, idx, slots); dbuf_rele(db, FTAG); return (SET_ERROR(ENOENT)); } else { dnode_slots_rele(dnc, idx, slots); while (!dnode_slots_tryenter(dnc, idx, slots)) { DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry); cond_resched(); } /* * Someone else won the race and called dnode_create() * after we checked DN_SLOT_IS_PTR() above but before * we acquired the lock. */ if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses); dn = dnh->dnh_dnode; } else { dn = dnode_create(os, dn_block + idx, db, object, dnh); } } mutex_enter(&dn->dn_mtx); if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) { DNODE_STAT_BUMP(dnode_hold_alloc_type_none); mutex_exit(&dn->dn_mtx); dnode_slots_rele(dnc, idx, slots); dbuf_rele(db, FTAG); return (SET_ERROR(ENOENT)); } /* Don't actually hold if dry run, just return 0 */ if (flag & DNODE_DRY_RUN) { mutex_exit(&dn->dn_mtx); dnode_slots_rele(dnc, idx, slots); dbuf_rele(db, FTAG); return (0); } DNODE_STAT_BUMP(dnode_hold_alloc_hits); } else if (flag & DNODE_MUST_BE_FREE) { if (idx + slots - 1 >= DNODES_PER_BLOCK) { DNODE_STAT_BUMP(dnode_hold_free_overflow); dbuf_rele(db, FTAG); return (SET_ERROR(ENOSPC)); } dnode_slots_hold(dnc, idx, slots); if (!dnode_check_slots_free(dnc, idx, slots)) { DNODE_STAT_BUMP(dnode_hold_free_misses); dnode_slots_rele(dnc, idx, slots); dbuf_rele(db, FTAG); return (SET_ERROR(ENOSPC)); } dnode_slots_rele(dnc, idx, slots); while (!dnode_slots_tryenter(dnc, idx, slots)) { DNODE_STAT_BUMP(dnode_hold_free_lock_retry); cond_resched(); } if (!dnode_check_slots_free(dnc, idx, slots)) { DNODE_STAT_BUMP(dnode_hold_free_lock_misses); dnode_slots_rele(dnc, idx, slots); dbuf_rele(db, FTAG); return (SET_ERROR(ENOSPC)); } /* * Allocated but otherwise free dnodes which would * be in the interior of a multi-slot dnodes need * to be freed. Single slot dnodes can be safely * re-purposed as a performance optimization. */ if (slots > 1) dnode_reclaim_slots(dnc, idx + 1, slots - 1); dnh = &dnc->dnc_children[idx]; if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { dn = dnh->dnh_dnode; } else { dn = dnode_create(os, dn_block + idx, db, object, dnh); } mutex_enter(&dn->dn_mtx); if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) { DNODE_STAT_BUMP(dnode_hold_free_refcount); mutex_exit(&dn->dn_mtx); dnode_slots_rele(dnc, idx, slots); dbuf_rele(db, FTAG); return (SET_ERROR(EEXIST)); } /* Don't actually hold if dry run, just return 0 */ if (flag & DNODE_DRY_RUN) { mutex_exit(&dn->dn_mtx); dnode_slots_rele(dnc, idx, slots); dbuf_rele(db, FTAG); return (0); } dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR); DNODE_STAT_BUMP(dnode_hold_free_hits); } else { dbuf_rele(db, FTAG); return (SET_ERROR(EINVAL)); } ASSERT0(dn->dn_free_txg); if (zfs_refcount_add(&dn->dn_holds, tag) == 1) dbuf_add_ref(db, dnh); mutex_exit(&dn->dn_mtx); /* Now we can rely on the hold to prevent the dnode from moving. */ dnode_slots_rele(dnc, idx, slots); DNODE_VERIFY(dn); ASSERT3P(dnp, !=, NULL); ASSERT3P(dn->dn_dbuf, ==, db); ASSERT3U(dn->dn_object, ==, object); dbuf_rele(db, FTAG); *dnp = dn; return (0); } /* * Return held dnode if the object is allocated, NULL if not. */ int dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) { return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag, dnp)); } /* * Can only add a reference if there is already at least one * reference on the dnode. Returns FALSE if unable to add a * new reference. */ boolean_t dnode_add_ref(dnode_t *dn, void *tag) { mutex_enter(&dn->dn_mtx); if (zfs_refcount_is_zero(&dn->dn_holds)) { mutex_exit(&dn->dn_mtx); return (FALSE); } VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag)); mutex_exit(&dn->dn_mtx); return (TRUE); } void dnode_rele(dnode_t *dn, void *tag) { mutex_enter(&dn->dn_mtx); dnode_rele_and_unlock(dn, tag, B_FALSE); } void dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting) { uint64_t refs; /* Get while the hold prevents the dnode from moving. */ dmu_buf_impl_t *db = dn->dn_dbuf; dnode_handle_t *dnh = dn->dn_handle; refs = zfs_refcount_remove(&dn->dn_holds, tag); if (refs == 0) cv_broadcast(&dn->dn_nodnholds); mutex_exit(&dn->dn_mtx); /* dnode could get destroyed at this point, so don't use it anymore */ /* * It's unsafe to release the last hold on a dnode by dnode_rele() or * indirectly by dbuf_rele() while relying on the dnode handle to * prevent the dnode from moving, since releasing the last hold could * result in the dnode's parent dbuf evicting its dnode handles. For * that reason anyone calling dnode_rele() or dbuf_rele() without some * other direct or indirect hold on the dnode must first drop the dnode * handle. */ ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ if (refs == 0 && db != NULL) { /* * Another thread could add a hold to the dnode handle in * dnode_hold_impl() while holding the parent dbuf. Since the * hold on the parent dbuf prevents the handle from being * destroyed, the hold on the handle is OK. We can't yet assert * that the handle has zero references, but that will be * asserted anyway when the handle gets destroyed. */ mutex_enter(&db->db_mtx); dbuf_rele_and_unlock(db, dnh, evicting); } } /* * Test whether we can create a dnode at the specified location. */ int dnode_try_claim(objset_t *os, uint64_t object, int slots) { return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN, slots, NULL, NULL)); } /* * Checks if the dnode contains any uncommitted dirty records. */ boolean_t dnode_is_dirty(dnode_t *dn) { mutex_enter(&dn->dn_mtx); for (int i = 0; i < TXG_SIZE; i++) { if (multilist_link_active(&dn->dn_dirty_link[i])) { mutex_exit(&dn->dn_mtx); return (B_TRUE); } } mutex_exit(&dn->dn_mtx); return (B_FALSE); } void dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) { objset_t *os = dn->dn_objset; uint64_t txg = tx->tx_txg; if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { dsl_dataset_dirty(os->os_dsl_dataset, tx); return; } DNODE_VERIFY(dn); #ifdef ZFS_DEBUG mutex_enter(&dn->dn_mtx); ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); mutex_exit(&dn->dn_mtx); #endif /* * Determine old uid/gid when necessary */ dmu_objset_userquota_get_ids(dn, B_TRUE, tx); multilist_t *dirtylist = &os->os_dirty_dnodes[txg & TXG_MASK]; multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); /* * If we are already marked dirty, we're done. */ if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { multilist_sublist_unlock(mls); return; } ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) || !avl_is_empty(&dn->dn_dbufs)); ASSERT(dn->dn_datablksz != 0); ASSERT0(dn->dn_next_bonuslen[txg & TXG_MASK]); ASSERT0(dn->dn_next_blksz[txg & TXG_MASK]); ASSERT0(dn->dn_next_bonustype[txg & TXG_MASK]); dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", (u_longlong_t)dn->dn_object, (u_longlong_t)txg); multilist_sublist_insert_head(mls, dn); multilist_sublist_unlock(mls); /* * The dnode maintains a hold on its containing dbuf as * long as there are holds on it. Each instantiated child * dbuf maintains a hold on the dnode. When the last child * drops its hold, the dnode will drop its hold on the * containing dbuf. We add a "dirty hold" here so that the * dnode will hang around after we finish processing its * children. */ VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); (void) dbuf_dirty(dn->dn_dbuf, tx); dsl_dataset_dirty(os->os_dsl_dataset, tx); } void dnode_free(dnode_t *dn, dmu_tx_t *tx) { mutex_enter(&dn->dn_mtx); if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { mutex_exit(&dn->dn_mtx); return; } dn->dn_free_txg = tx->tx_txg; mutex_exit(&dn->dn_mtx); dnode_setdirty(dn, tx); } /* * Try to change the block size for the indicated dnode. This can only * succeed if there are no blocks allocated or dirty beyond first block */ int dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) { dmu_buf_impl_t *db; int err; ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); if (size == 0) size = SPA_MINBLOCKSIZE; else size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); if (ibs == dn->dn_indblkshift) ibs = 0; if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) return (0); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); /* Check for any allocated blocks beyond the first */ if (dn->dn_maxblkid != 0) goto fail; mutex_enter(&dn->dn_dbufs_mtx); for (db = avl_first(&dn->dn_dbufs); db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && db->db_blkid != DMU_SPILL_BLKID) { mutex_exit(&dn->dn_dbufs_mtx); goto fail; } } mutex_exit(&dn->dn_dbufs_mtx); if (ibs && dn->dn_nlevels != 1) goto fail; /* resize the old block */ err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); if (err == 0) { dbuf_new_size(db, size, tx); } else if (err != ENOENT) { goto fail; } dnode_setdblksz(dn, size); dnode_setdirty(dn, tx); dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; if (ibs) { dn->dn_indblkshift = ibs; dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; } /* release after we have fixed the blocksize in the dnode */ if (db) dbuf_rele(db, FTAG); rw_exit(&dn->dn_struct_rwlock); return (0); fail: rw_exit(&dn->dn_struct_rwlock); return (SET_ERROR(ENOTSUP)); } static void dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx) { uint64_t txgoff = tx->tx_txg & TXG_MASK; int old_nlevels = dn->dn_nlevels; dmu_buf_impl_t *db; list_t *list; dbuf_dirty_record_t *new, *dr, *dr_next; ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); ASSERT3U(new_nlevels, >, dn->dn_nlevels); dn->dn_nlevels = new_nlevels; ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); dn->dn_next_nlevels[txgoff] = new_nlevels; /* dirty the left indirects */ db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); ASSERT(db != NULL); new = dbuf_dirty(db, tx); dbuf_rele(db, FTAG); /* transfer the dirty records to the new indirect */ mutex_enter(&dn->dn_mtx); mutex_enter(&new->dt.di.dr_mtx); list = &dn->dn_dirty_records[txgoff]; for (dr = list_head(list); dr; dr = dr_next) { dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); IMPLY(dr->dr_dbuf == NULL, old_nlevels == 1); if (dr->dr_dbuf == NULL || (dr->dr_dbuf->db_level == old_nlevels - 1 && dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID)) { list_remove(&dn->dn_dirty_records[txgoff], dr); list_insert_tail(&new->dt.di.dr_children, dr); dr->dr_parent = new; } } mutex_exit(&new->dt.di.dr_mtx); mutex_exit(&dn->dn_mtx); } int dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx) { int ret = 0; rw_enter(&dn->dn_struct_rwlock, RW_WRITER); if (dn->dn_nlevels == nlevels) { ret = 0; goto out; } else if (nlevels < dn->dn_nlevels) { ret = SET_ERROR(EINVAL); goto out; } dnode_set_nlevels_impl(dn, nlevels, tx); out: rw_exit(&dn->dn_struct_rwlock); return (ret); } /* read-holding callers must not rely on the lock being continuously held */ void dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read, boolean_t force) { int epbs, new_nlevels; uint64_t sz; ASSERT(blkid != DMU_BONUS_BLKID); ASSERT(have_read ? RW_READ_HELD(&dn->dn_struct_rwlock) : RW_WRITE_HELD(&dn->dn_struct_rwlock)); /* * if we have a read-lock, check to see if we need to do any work * before upgrading to a write-lock. */ if (have_read) { if (blkid <= dn->dn_maxblkid) return; if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { rw_exit(&dn->dn_struct_rwlock); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); } } /* * Raw sends (indicated by the force flag) require that we take the * given blkid even if the value is lower than the current value. */ if (!force && blkid <= dn->dn_maxblkid) goto out; /* * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff] * to indicate that this field is set. This allows us to set the * maxblkid to 0 on an existing object in dnode_sync(). */ dn->dn_maxblkid = blkid; dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] = blkid | DMU_NEXT_MAXBLKID_SET; /* * Compute the number of levels necessary to support the new maxblkid. * Raw sends will ensure nlevels is set correctly for us. */ new_nlevels = 1; epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; for (sz = dn->dn_nblkptr; sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) new_nlevels++; ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS); if (!force) { if (new_nlevels > dn->dn_nlevels) dnode_set_nlevels_impl(dn, new_nlevels, tx); } else { ASSERT3U(dn->dn_nlevels, >=, new_nlevels); } out: if (have_read) rw_downgrade(&dn->dn_struct_rwlock); } static void dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) { dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); if (db != NULL) { dmu_buf_will_dirty(&db->db, tx); dbuf_rele(db, FTAG); } } /* * Dirty all the in-core level-1 dbufs in the range specified by start_blkid * and end_blkid. */ static void dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, dmu_tx_t *tx) { dmu_buf_impl_t *db_search; dmu_buf_impl_t *db; avl_index_t where; db_search = kmem_zalloc(sizeof (dmu_buf_impl_t), KM_SLEEP); mutex_enter(&dn->dn_dbufs_mtx); db_search->db_level = 1; db_search->db_blkid = start_blkid + 1; db_search->db_state = DB_SEARCH; for (;;) { db = avl_find(&dn->dn_dbufs, db_search, &where); if (db == NULL) db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); if (db == NULL || db->db_level != 1 || db->db_blkid >= end_blkid) { break; } /* * Setup the next blkid we want to search for. */ db_search->db_blkid = db->db_blkid + 1; ASSERT3U(db->db_blkid, >=, start_blkid); /* * If the dbuf transitions to DB_EVICTING while we're trying * to dirty it, then we will be unable to discover it in * the dbuf hash table. This will result in a call to * dbuf_create() which needs to acquire the dn_dbufs_mtx * lock. To avoid a deadlock, we drop the lock before * dirtying the level-1 dbuf. */ mutex_exit(&dn->dn_dbufs_mtx); dnode_dirty_l1(dn, db->db_blkid, tx); mutex_enter(&dn->dn_dbufs_mtx); } #ifdef ZFS_DEBUG /* * Walk all the in-core level-1 dbufs and verify they have been dirtied. */ db_search->db_level = 1; db_search->db_blkid = start_blkid + 1; db_search->db_state = DB_SEARCH; db = avl_find(&dn->dn_dbufs, db_search, &where); if (db == NULL) db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { if (db->db_level != 1 || db->db_blkid >= end_blkid) break; if (db->db_state != DB_EVICTING) ASSERT(db->db_dirtycnt > 0); } #endif kmem_free(db_search, sizeof (dmu_buf_impl_t)); mutex_exit(&dn->dn_dbufs_mtx); } void dnode_set_dirtyctx(dnode_t *dn, dmu_tx_t *tx, void *tag) { /* * Don't set dirtyctx to SYNC if we're just modifying this as we * initialize the objset. */ if (dn->dn_dirtyctx == DN_UNDIRTIED) { dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; if (ds != NULL) { rrw_enter(&ds->ds_bp_rwlock, RW_READER, tag); } if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { if (dmu_tx_is_syncing(tx)) dn->dn_dirtyctx = DN_DIRTY_SYNC; else dn->dn_dirtyctx = DN_DIRTY_OPEN; dn->dn_dirtyctx_firstset = tag; } if (ds != NULL) { rrw_exit(&ds->ds_bp_rwlock, tag); } } } void dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) { dmu_buf_impl_t *db; uint64_t blkoff, blkid, nblks; int blksz, blkshift, head, tail; int trunc = FALSE; int epbs; blksz = dn->dn_datablksz; blkshift = dn->dn_datablkshift; epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; if (len == DMU_OBJECT_END) { len = UINT64_MAX - off; trunc = TRUE; } /* * First, block align the region to free: */ if (ISP2(blksz)) { head = P2NPHASE(off, blksz); blkoff = P2PHASE(off, blksz); if ((off >> blkshift) > dn->dn_maxblkid) return; } else { ASSERT(dn->dn_maxblkid == 0); if (off == 0 && len >= blksz) { /* * Freeing the whole block; fast-track this request. */ blkid = 0; nblks = 1; if (dn->dn_nlevels > 1) { rw_enter(&dn->dn_struct_rwlock, RW_WRITER); dnode_dirty_l1(dn, 0, tx); rw_exit(&dn->dn_struct_rwlock); } goto done; } else if (off >= blksz) { /* Freeing past end-of-data */ return; } else { /* Freeing part of the block. */ head = blksz - off; ASSERT3U(head, >, 0); } blkoff = off; } /* zero out any partial block data at the start of the range */ if (head) { int res; ASSERT3U(blkoff + head, ==, blksz); if (len < head) head = len; rw_enter(&dn->dn_struct_rwlock, RW_READER); res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), TRUE, FALSE, FTAG, &db); rw_exit(&dn->dn_struct_rwlock); if (res == 0) { caddr_t data; boolean_t dirty; db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); /* don't dirty if it isn't on disk and isn't dirty */ dirty = !list_is_empty(&db->db_dirty_records) || (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr)); dmu_buf_unlock_parent(db, dblt, FTAG); if (dirty) { dmu_buf_will_dirty(&db->db, tx); data = db->db.db_data; bzero(data + blkoff, head); } dbuf_rele(db, FTAG); } off += head; len -= head; } /* If the range was less than one block, we're done */ if (len == 0) return; /* If the remaining range is past end of file, we're done */ if ((off >> blkshift) > dn->dn_maxblkid) return; ASSERT(ISP2(blksz)); if (trunc) tail = 0; else tail = P2PHASE(len, blksz); ASSERT0(P2PHASE(off, blksz)); /* zero out any partial block data at the end of the range */ if (tail) { int res; if (len < tail) tail = len; rw_enter(&dn->dn_struct_rwlock, RW_READER); res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len), TRUE, FALSE, FTAG, &db); rw_exit(&dn->dn_struct_rwlock); if (res == 0) { boolean_t dirty; /* don't dirty if not on disk and not dirty */ db_lock_type_t type = dmu_buf_lock_parent(db, RW_READER, FTAG); dirty = !list_is_empty(&db->db_dirty_records) || (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr)); dmu_buf_unlock_parent(db, type, FTAG); if (dirty) { dmu_buf_will_dirty(&db->db, tx); bzero(db->db.db_data, tail); } dbuf_rele(db, FTAG); } len -= tail; } /* If the range did not include a full block, we are done */ if (len == 0) return; ASSERT(IS_P2ALIGNED(off, blksz)); ASSERT(trunc || IS_P2ALIGNED(len, blksz)); blkid = off >> blkshift; nblks = len >> blkshift; if (trunc) nblks += 1; /* * Dirty all the indirect blocks in this range. Note that only * the first and last indirect blocks can actually be written * (if they were partially freed) -- they must be dirtied, even if * they do not exist on disk yet. The interior blocks will * be freed by free_children(), so they will not actually be written. * Even though these interior blocks will not be written, we * dirty them for two reasons: * * - It ensures that the indirect blocks remain in memory until * syncing context. (They have already been prefetched by * dmu_tx_hold_free(), so we don't have to worry about reading * them serially here.) * * - The dirty space accounting will put pressure on the txg sync * mechanism to begin syncing, and to delay transactions if there * is a large amount of freeing. Even though these indirect * blocks will not be written, we could need to write the same * amount of space if we copy the freed BPs into deadlists. */ if (dn->dn_nlevels > 1) { rw_enter(&dn->dn_struct_rwlock, RW_WRITER); uint64_t first, last; first = blkid >> epbs; dnode_dirty_l1(dn, first, tx); if (trunc) last = dn->dn_maxblkid >> epbs; else last = (blkid + nblks - 1) >> epbs; if (last != first) dnode_dirty_l1(dn, last, tx); dnode_dirty_l1range(dn, first, last, tx); int shift = dn->dn_datablkshift + dn->dn_indblkshift - SPA_BLKPTRSHIFT; for (uint64_t i = first + 1; i < last; i++) { /* * Set i to the blockid of the next non-hole * level-1 indirect block at or after i. Note * that dnode_next_offset() operates in terms of * level-0-equivalent bytes. */ uint64_t ibyte = i << shift; int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0); i = ibyte >> shift; if (i >= last) break; /* * Normally we should not see an error, either * from dnode_next_offset() or dbuf_hold_level() * (except for ESRCH from dnode_next_offset). * If there is an i/o error, then when we read * this block in syncing context, it will use * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according * to the "failmode" property. dnode_next_offset() * doesn't have a flag to indicate MUSTSUCCEED. */ if (err != 0) break; dnode_dirty_l1(dn, i, tx); } rw_exit(&dn->dn_struct_rwlock); } done: /* * Add this range to the dnode range list. * We will finish up this free operation in the syncing phase. */ mutex_enter(&dn->dn_mtx); { int txgoff = tx->tx_txg & TXG_MASK; if (dn->dn_free_ranges[txgoff] == NULL) { dn->dn_free_ranges[txgoff] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); } range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); } dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", (u_longlong_t)blkid, (u_longlong_t)nblks, (u_longlong_t)tx->tx_txg); mutex_exit(&dn->dn_mtx); dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); dnode_setdirty(dn, tx); } static boolean_t dnode_spill_freed(dnode_t *dn) { int i; mutex_enter(&dn->dn_mtx); for (i = 0; i < TXG_SIZE; i++) { if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) break; } mutex_exit(&dn->dn_mtx); return (i < TXG_SIZE); } /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ uint64_t dnode_block_freed(dnode_t *dn, uint64_t blkid) { void *dp = spa_get_dsl(dn->dn_objset->os_spa); int i; if (blkid == DMU_BONUS_BLKID) return (FALSE); /* * If we're in the process of opening the pool, dp will not be * set yet, but there shouldn't be anything dirty. */ if (dp == NULL) return (FALSE); if (dn->dn_free_txg) return (TRUE); if (blkid == DMU_SPILL_BLKID) return (dnode_spill_freed(dn)); mutex_enter(&dn->dn_mtx); for (i = 0; i < TXG_SIZE; i++) { if (dn->dn_free_ranges[i] != NULL && range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) break; } mutex_exit(&dn->dn_mtx); return (i < TXG_SIZE); } /* call from syncing context when we actually write/free space for this dnode */ void dnode_diduse_space(dnode_t *dn, int64_t delta) { uint64_t space; dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", dn, dn->dn_phys, (u_longlong_t)dn->dn_phys->dn_used, (longlong_t)delta); mutex_enter(&dn->dn_mtx); space = DN_USED_BYTES(dn->dn_phys); if (delta > 0) { ASSERT3U(space + delta, >=, space); /* no overflow */ } else { ASSERT3U(space, >=, -delta); /* no underflow */ } space += delta; if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); ASSERT0(P2PHASE(space, 1<dn_phys->dn_used = space >> DEV_BSHIFT; } else { dn->dn_phys->dn_used = space; dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; } mutex_exit(&dn->dn_mtx); } /* * Scans a block at the indicated "level" looking for a hole or data, * depending on 'flags'. * * If level > 0, then we are scanning an indirect block looking at its * pointers. If level == 0, then we are looking at a block of dnodes. * * If we don't find what we are looking for in the block, we return ESRCH. * Otherwise, return with *offset pointing to the beginning (if searching * forwards) or end (if searching backwards) of the range covered by the * block pointer we matched on (or dnode). * * The basic search algorithm used below by dnode_next_offset() is to * use this function to search up the block tree (widen the search) until * we find something (i.e., we don't return ESRCH) and then search back * down the tree (narrow the search) until we reach our original search * level. */ static int dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, int lvl, uint64_t blkfill, uint64_t txg) { dmu_buf_impl_t *db = NULL; void *data = NULL; uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; uint64_t epb = 1ULL << epbs; uint64_t minfill, maxfill; boolean_t hole; int i, inc, error, span; ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); hole = ((flags & DNODE_FIND_HOLE) != 0); inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; ASSERT(txg == 0 || !hole); if (lvl == dn->dn_phys->dn_nlevels) { error = 0; epb = dn->dn_phys->dn_nblkptr; data = dn->dn_phys->dn_blkptr; } else { uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); if (error) { if (error != ENOENT) return (error); if (hole) return (0); /* * This can only happen when we are searching up * the block tree for data. We don't really need to * adjust the offset, as we will just end up looking * at the pointer to this block in its parent, and its * going to be unallocated, so we will skip over it. */ return (SET_ERROR(ESRCH)); } error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT | DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH); if (error) { dbuf_rele(db, FTAG); return (error); } data = db->db.db_data; rw_enter(&db->db_rwlock, RW_READER); } if (db != NULL && txg != 0 && (db->db_blkptr == NULL || db->db_blkptr->blk_birth <= txg || BP_IS_HOLE(db->db_blkptr))) { /* * This can only happen when we are searching up the tree * and these conditions mean that we need to keep climbing. */ error = SET_ERROR(ESRCH); } else if (lvl == 0) { dnode_phys_t *dnp = data; ASSERT(dn->dn_type == DMU_OT_DNODE); ASSERT(!(flags & DNODE_FIND_BACKWARDS)); for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1); i < blkfill; i += dnp[i].dn_extra_slots + 1) { if ((dnp[i].dn_type == DMU_OT_NONE) == hole) break; } if (i == blkfill) error = SET_ERROR(ESRCH); *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) + (i << DNODE_SHIFT); } else { blkptr_t *bp = data; uint64_t start = *offset; span = (lvl - 1) * epbs + dn->dn_datablkshift; minfill = 0; maxfill = blkfill << ((lvl - 1) * epbs); if (hole) maxfill--; else minfill++; if (span >= 8 * sizeof (*offset)) { /* This only happens on the highest indirection level */ ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1); *offset = 0; } else { *offset = *offset >> span; } for (i = BF64_GET(*offset, 0, epbs); i >= 0 && i < epb; i += inc) { if (BP_GET_FILL(&bp[i]) >= minfill && BP_GET_FILL(&bp[i]) <= maxfill && (hole || bp[i].blk_birth > txg)) break; if (inc > 0 || *offset > 0) *offset += inc; } if (span >= 8 * sizeof (*offset)) { *offset = start; } else { *offset = *offset << span; } if (inc < 0) { /* traversing backwards; position offset at the end */ ASSERT3U(*offset, <=, start); *offset = MIN(*offset + (1ULL << span) - 1, start); } else if (*offset < start) { *offset = start; } if (i < 0 || i >= epb) error = SET_ERROR(ESRCH); } if (db != NULL) { rw_exit(&db->db_rwlock); dbuf_rele(db, FTAG); } return (error); } /* * Find the next hole, data, or sparse region at or after *offset. * The value 'blkfill' tells us how many items we expect to find * in an L0 data block; this value is 1 for normal objects, * DNODES_PER_BLOCK for the meta dnode, and some fraction of * DNODES_PER_BLOCK when searching for sparse regions thereof. * * Examples: * * dnode_next_offset(dn, flags, offset, 1, 1, 0); * Finds the next/previous hole/data in a file. * Used in dmu_offset_next(). * * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); * Finds the next free/allocated dnode an objset's meta-dnode. * Only finds objects that have new contents since txg (ie. * bonus buffer changes and content removal are ignored). * Used in dmu_object_next(). * * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); * Finds the next L2 meta-dnode bp that's at most 1/4 full. * Used in dmu_object_alloc(). */ int dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, int minlvl, uint64_t blkfill, uint64_t txg) { uint64_t initial_offset = *offset; int lvl, maxlvl; int error = 0; if (!(flags & DNODE_FIND_HAVELOCK)) rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_phys->dn_nlevels == 0) { error = SET_ERROR(ESRCH); goto out; } if (dn->dn_datablkshift == 0) { if (*offset < dn->dn_datablksz) { if (flags & DNODE_FIND_HOLE) *offset = dn->dn_datablksz; } else { error = SET_ERROR(ESRCH); } goto out; } maxlvl = dn->dn_phys->dn_nlevels; for (lvl = minlvl; lvl <= maxlvl; lvl++) { error = dnode_next_offset_level(dn, flags, offset, lvl, blkfill, txg); if (error != ESRCH) break; } while (error == 0 && --lvl >= minlvl) { error = dnode_next_offset_level(dn, flags, offset, lvl, blkfill, txg); } /* * There's always a "virtual hole" at the end of the object, even * if all BP's which physically exist are non-holes. */ if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { error = 0; } if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? initial_offset < *offset : initial_offset > *offset)) error = SET_ERROR(ESRCH); out: if (!(flags & DNODE_FIND_HAVELOCK)) rw_exit(&dn->dn_struct_rwlock); return (error); } #if defined(_KERNEL) EXPORT_SYMBOL(dnode_hold); EXPORT_SYMBOL(dnode_rele); EXPORT_SYMBOL(dnode_set_nlevels); EXPORT_SYMBOL(dnode_set_blksz); EXPORT_SYMBOL(dnode_free_range); EXPORT_SYMBOL(dnode_evict_dbufs); EXPORT_SYMBOL(dnode_evict_bonus); #endif