/*****************************************************************************\ * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. * Copyright (C) 2007 The Regents of the University of California. * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). * Written by Brian Behlendorf . * UCRL-CODE-235197 * * This file is part of the SPL, Solaris Porting Layer. * For details, see . * * The SPL is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * The SPL is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with the SPL. If not, see . ***************************************************************************** * Solaris Porting LAyer Tests (SPLAT) Test Control Interface. * * The 'splat' (Solaris Porting LAyer Tests) module is designed as a * framework which runs various in kernel regression tests to validate * the SPL primitives honor the Solaris ABI. * * The splat module is constructed of various splat_* source files each * of which contain regression tests for a particular subsystem. For * example, the splat_kmem.c file contains all the tests for validating * the kmem interfaces have been implemented correctly. When the splat * module is loaded splat_*_init() will be called for each subsystems * tests. It is the responsibility of splat_*_init() to register all * the tests for this subsystem using the splat_test_init(). * Similarly splat_*_fini() is called when the splat module is removed * and is responsible for unregistering its tests via the splat_test_fini. * Once a test is registered it can then be run with an ioctl() * call which specifies the subsystem and test to be run. The provided * splat command line tool can be used to display all available * subsystems and tests. It can also be used to run the full suite * of regression tests or particular tests. \*****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include "splat-internal.h" static struct list_head splat_module_list; static spinlock_t splat_module_lock; static int splat_open(struct inode *inode, struct file *file) { splat_info_t *info; info = (splat_info_t *)kmalloc(sizeof(*info), GFP_KERNEL); if (info == NULL) return -ENOMEM; mutex_init(&info->info_lock, SPLAT_NAME, MUTEX_DEFAULT, NULL); info->info_size = SPLAT_INFO_BUFFER_SIZE; info->info_buffer = (char *)vmalloc(SPLAT_INFO_BUFFER_SIZE); if (info->info_buffer == NULL) { kfree(info); return -ENOMEM; } memset(info->info_buffer, 0, info->info_size); info->info_head = info->info_buffer; file->private_data = (void *)info; splat_print(file, "%s\n", spl_version); return 0; } static int splat_release(struct inode *inode, struct file *file) { splat_info_t *info = (splat_info_t *)file->private_data; ASSERT(info); ASSERT(info->info_buffer); mutex_destroy(&info->info_lock); vfree(info->info_buffer); kfree(info); return 0; } static int splat_buffer_clear(struct file *file, splat_cfg_t *kcfg, unsigned long arg) { splat_info_t *info = (splat_info_t *)file->private_data; ASSERT(info); ASSERT(info->info_buffer); mutex_enter(&info->info_lock); memset(info->info_buffer, 0, info->info_size); info->info_head = info->info_buffer; mutex_exit(&info->info_lock); return 0; } static int splat_buffer_size(struct file *file, splat_cfg_t *kcfg, unsigned long arg) { splat_info_t *info = (splat_info_t *)file->private_data; char *buf; int min, size, rc = 0; ASSERT(info); ASSERT(info->info_buffer); mutex_enter(&info->info_lock); if (kcfg->cfg_arg1 > 0) { size = kcfg->cfg_arg1; buf = (char *)vmalloc(size); if (buf == NULL) { rc = -ENOMEM; goto out; } /* Zero fill and truncate contents when coping buffer */ min = ((size < info->info_size) ? size : info->info_size); memset(buf, 0, size); memcpy(buf, info->info_buffer, min); vfree(info->info_buffer); info->info_size = size; info->info_buffer = buf; info->info_head = info->info_buffer; } kcfg->cfg_rc1 = info->info_size; if (copy_to_user((struct splat_cfg_t __user *)arg, kcfg, sizeof(*kcfg))) rc = -EFAULT; out: mutex_exit(&info->info_lock); return rc; } static splat_subsystem_t * splat_subsystem_find(int id) { splat_subsystem_t *sub; spin_lock(&splat_module_lock); list_for_each_entry(sub, &splat_module_list, subsystem_list) { if (id == sub->desc.id) { spin_unlock(&splat_module_lock); return sub; } } spin_unlock(&splat_module_lock); return NULL; } static int splat_subsystem_count(splat_cfg_t *kcfg, unsigned long arg) { splat_subsystem_t *sub; int i = 0; spin_lock(&splat_module_lock); list_for_each_entry(sub, &splat_module_list, subsystem_list) i++; spin_unlock(&splat_module_lock); kcfg->cfg_rc1 = i; if (copy_to_user((struct splat_cfg_t __user *)arg, kcfg, sizeof(*kcfg))) return -EFAULT; return 0; } static int splat_subsystem_list(splat_cfg_t *kcfg, unsigned long arg) { splat_subsystem_t *sub; splat_cfg_t *tmp; int size, i = 0; /* Structure will be sized large enough for N subsystem entries * which is passed in by the caller. On exit the number of * entries filled in with valid subsystems will be stored in * cfg_rc1. If the caller does not provide enough entries * for all subsystems we will truncate the list to avoid overrun. */ size = sizeof(*tmp) + kcfg->cfg_data.splat_subsystems.size * sizeof(splat_user_t); tmp = kmalloc(size, GFP_KERNEL); if (tmp == NULL) return -ENOMEM; /* Local 'tmp' is used as the structure copied back to user space */ memset(tmp, 0, size); memcpy(tmp, kcfg, sizeof(*kcfg)); spin_lock(&splat_module_lock); list_for_each_entry(sub, &splat_module_list, subsystem_list) { strncpy(tmp->cfg_data.splat_subsystems.descs[i].name, sub->desc.name, SPLAT_NAME_SIZE); strncpy(tmp->cfg_data.splat_subsystems.descs[i].desc, sub->desc.desc, SPLAT_DESC_SIZE); tmp->cfg_data.splat_subsystems.descs[i].id = sub->desc.id; /* Truncate list if we are about to overrun alloc'ed memory */ if ((i++) == kcfg->cfg_data.splat_subsystems.size) break; } spin_unlock(&splat_module_lock); tmp->cfg_rc1 = i; if (copy_to_user((struct splat_cfg_t __user *)arg, tmp, size)) { kfree(tmp); return -EFAULT; } kfree(tmp); return 0; } static int splat_test_count(splat_cfg_t *kcfg, unsigned long arg) { splat_subsystem_t *sub; splat_test_t *test; int i = 0; /* Subsystem ID passed as arg1 */ sub = splat_subsystem_find(kcfg->cfg_arg1); if (sub == NULL) return -EINVAL; spin_lock(&(sub->test_lock)); list_for_each_entry(test, &(sub->test_list), test_list) i++; spin_unlock(&(sub->test_lock)); kcfg->cfg_rc1 = i; if (copy_to_user((struct splat_cfg_t __user *)arg, kcfg, sizeof(*kcfg))) return -EFAULT; return 0; } static int splat_test_list(splat_cfg_t *kcfg, unsigned long arg) { splat_subsystem_t *sub; splat_test_t *test; splat_cfg_t *tmp; int size, i = 0; /* Subsystem ID passed as arg1 */ sub = splat_subsystem_find(kcfg->cfg_arg1); if (sub == NULL) return -EINVAL; /* Structure will be sized large enough for N test entries * which is passed in by the caller. On exit the number of * entries filled in with valid tests will be stored in * cfg_rc1. If the caller does not provide enough entries * for all tests we will truncate the list to avoid overrun. */ size = sizeof(*tmp)+kcfg->cfg_data.splat_tests.size*sizeof(splat_user_t); tmp = kmalloc(size, GFP_KERNEL); if (tmp == NULL) return -ENOMEM; /* Local 'tmp' is used as the structure copied back to user space */ memset(tmp, 0, size); memcpy(tmp, kcfg, sizeof(*kcfg)); spin_lock(&(sub->test_lock)); list_for_each_entry(test, &(sub->test_list), test_list) { strncpy(tmp->cfg_data.splat_tests.descs[i].name, test->desc.name, SPLAT_NAME_SIZE); strncpy(tmp->cfg_data.splat_tests.descs[i].desc, test->desc.desc, SPLAT_DESC_SIZE); tmp->cfg_data.splat_tests.descs[i].id = test->desc.id; /* Truncate list if we are about to overrun alloc'ed memory */ if ((i++) == kcfg->cfg_data.splat_tests.size) break; } spin_unlock(&(sub->test_lock)); tmp->cfg_rc1 = i; if (copy_to_user((struct splat_cfg_t __user *)arg, tmp, size)) { kfree(tmp); return -EFAULT; } kfree(tmp); return 0; } static int splat_validate(struct file *file, splat_subsystem_t *sub, int cmd, void *arg) { splat_test_t *test; spin_lock(&(sub->test_lock)); list_for_each_entry(test, &(sub->test_list), test_list) { if (test->desc.id == cmd) { spin_unlock(&(sub->test_lock)); return test->test(file, arg); } } spin_unlock(&(sub->test_lock)); return -EINVAL; } static int splat_ioctl_cfg(struct file *file, unsigned int cmd, unsigned long arg) { splat_cfg_t kcfg; int rc = 0; /* User and kernel space agree about arg size */ if (_IOC_SIZE(cmd) != sizeof(kcfg)) return -EBADMSG; if (copy_from_user(&kcfg, (splat_cfg_t *)arg, sizeof(kcfg))) return -EFAULT; if (kcfg.cfg_magic != SPLAT_CFG_MAGIC) { splat_print(file, "Bad config magic 0x%x != 0x%x\n", kcfg.cfg_magic, SPLAT_CFG_MAGIC); return -EINVAL; } switch (kcfg.cfg_cmd) { case SPLAT_CFG_BUFFER_CLEAR: /* cfg_arg1 - Unused * cfg_rc1 - Unused */ rc = splat_buffer_clear(file, &kcfg, arg); break; case SPLAT_CFG_BUFFER_SIZE: /* cfg_arg1 - 0 - query size; >0 resize * cfg_rc1 - Set to current buffer size */ rc = splat_buffer_size(file, &kcfg, arg); break; case SPLAT_CFG_SUBSYSTEM_COUNT: /* cfg_arg1 - Unused * cfg_rc1 - Set to number of subsystems */ rc = splat_subsystem_count(&kcfg, arg); break; case SPLAT_CFG_SUBSYSTEM_LIST: /* cfg_arg1 - Unused * cfg_rc1 - Set to number of subsystems * cfg_data.splat_subsystems - Set with subsystems */ rc = splat_subsystem_list(&kcfg, arg); break; case SPLAT_CFG_TEST_COUNT: /* cfg_arg1 - Set to a target subsystem * cfg_rc1 - Set to number of tests */ rc = splat_test_count(&kcfg, arg); break; case SPLAT_CFG_TEST_LIST: /* cfg_arg1 - Set to a target subsystem * cfg_rc1 - Set to number of tests * cfg_data.splat_subsystems - Populated with tests */ rc = splat_test_list(&kcfg, arg); break; default: splat_print(file, "Bad config command %d\n", kcfg.cfg_cmd); rc = -EINVAL; break; } return rc; } static int splat_ioctl_cmd(struct file *file, unsigned int cmd, unsigned long arg) { splat_subsystem_t *sub; splat_cmd_t kcmd; int rc = -EINVAL; void *data = NULL; /* User and kernel space agree about arg size */ if (_IOC_SIZE(cmd) != sizeof(kcmd)) return -EBADMSG; if (copy_from_user(&kcmd, (splat_cfg_t *)arg, sizeof(kcmd))) return -EFAULT; if (kcmd.cmd_magic != SPLAT_CMD_MAGIC) { splat_print(file, "Bad command magic 0x%x != 0x%x\n", kcmd.cmd_magic, SPLAT_CFG_MAGIC); return -EINVAL; } /* Allocate memory for any opaque data the caller needed to pass on */ if (kcmd.cmd_data_size > 0) { data = (void *)kmalloc(kcmd.cmd_data_size, GFP_KERNEL); if (data == NULL) return -ENOMEM; if (copy_from_user(data, (void *)(arg + offsetof(splat_cmd_t, cmd_data_str)), kcmd.cmd_data_size)) { kfree(data); return -EFAULT; } } sub = splat_subsystem_find(kcmd.cmd_subsystem); if (sub != NULL) rc = splat_validate(file, sub, kcmd.cmd_test, data); else rc = -EINVAL; if (data != NULL) kfree(data); return rc; } static long splat_unlocked_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { int rc = 0; /* Ignore tty ioctls */ if ((cmd & 0xffffff00) == ((int)'T') << 8) return -ENOTTY; switch (cmd) { case SPLAT_CFG: rc = splat_ioctl_cfg(file, cmd, arg); break; case SPLAT_CMD: rc = splat_ioctl_cmd(file, cmd, arg); break; default: splat_print(file, "Bad ioctl command %d\n", cmd); rc = -EINVAL; break; } return rc; } #ifdef CONFIG_COMPAT /* Compatibility handler for ioctls from 32-bit ELF binaries */ static long splat_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return splat_unlocked_ioctl(file, cmd, arg); } #endif /* CONFIG_COMPAT */ /* I'm not sure why you would want to write in to this buffer from * user space since its principle use is to pass test status info * back to the user space, but I don't see any reason to prevent it. */ static ssize_t splat_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { splat_info_t *info = (splat_info_t *)file->private_data; int rc = 0; ASSERT(info); ASSERT(info->info_buffer); mutex_enter(&info->info_lock); /* Write beyond EOF */ if (*ppos >= info->info_size) { rc = -EFBIG; goto out; } /* Resize count if beyond EOF */ if (*ppos + count > info->info_size) count = info->info_size - *ppos; if (copy_from_user(info->info_buffer, buf, count)) { rc = -EFAULT; goto out; } *ppos += count; rc = count; out: mutex_exit(&info->info_lock); return rc; } static ssize_t splat_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { splat_info_t *info = (splat_info_t *)file->private_data; int rc = 0; ASSERT(info); ASSERT(info->info_buffer); mutex_enter(&info->info_lock); /* Read beyond EOF */ if (*ppos >= info->info_size) goto out; /* Resize count if beyond EOF */ if (*ppos + count > info->info_size) count = info->info_size - *ppos; if (copy_to_user(buf, info->info_buffer + *ppos, count)) { rc = -EFAULT; goto out; } *ppos += count; rc = count; out: mutex_exit(&info->info_lock); return rc; } static loff_t splat_seek(struct file *file, loff_t offset, int origin) { splat_info_t *info = (splat_info_t *)file->private_data; int rc = -EINVAL; ASSERT(info); ASSERT(info->info_buffer); mutex_enter(&info->info_lock); switch (origin) { case 0: /* SEEK_SET - No-op just do it */ break; case 1: /* SEEK_CUR - Seek from current */ offset = file->f_pos + offset; break; case 2: /* SEEK_END - Seek from end */ offset = info->info_size + offset; break; } if (offset >= 0) { file->f_pos = offset; file->f_version = 0; rc = offset; } mutex_exit(&info->info_lock); return rc; } static struct file_operations splat_fops = { .owner = THIS_MODULE, .open = splat_open, .release = splat_release, .unlocked_ioctl = splat_unlocked_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = splat_compat_ioctl, #endif .read = splat_read, .write = splat_write, .llseek = splat_seek, }; static struct miscdevice splat_misc = { .minor = MISC_DYNAMIC_MINOR, .name = SPLAT_NAME, .fops = &splat_fops, }; static void splat_subsystem_init(const char *name, splat_subsystem_t *(*init)(void)) { splat_subsystem_t *sub; sub = init(); if (sub == NULL) { printk(KERN_ERR "splat: Error initializing: %s\n", name); return; } spin_lock(&splat_module_lock); list_add_tail(&sub->subsystem_list, &splat_module_list); spin_unlock(&splat_module_lock); } static void splat_subsystem_fini(const char *name, int (*id_func)(void), void (*fini)(splat_subsystem_t *)) { splat_subsystem_t *sub, *tmp; int id, flag = 0; id = id_func(); spin_lock(&splat_module_lock); list_for_each_entry_safe(sub, tmp, &splat_module_list, subsystem_list) { if (sub->desc.id == id) { list_del_init(&sub->subsystem_list); flag = 1; break; } } spin_unlock(&splat_module_lock); if (flag == 0) printk(KERN_ERR "splat: Error finalizing: %s\n", name); else fini(sub); } #define SPLAT_SUBSYSTEM_INIT(type) \ splat_subsystem_init(#type, splat_##type##_init) #define SPLAT_SUBSYSTEM_FINI(type) \ splat_subsystem_fini(#type, splat_##type##_id, splat_##type##_fini) void splat_test_init(splat_subsystem_t *sub, const char *name, const char *desc, unsigned int tid, splat_test_func_t func) { splat_test_t *test; test = kmalloc(sizeof (splat_test_t), GFP_KERNEL); if (test == NULL) { printk(KERN_ERR "splat: Error initializing: %s/%u\n", name, tid); return; } memset(test, 0, sizeof (splat_test_t)); strncpy(test->desc.name, name, SPLAT_NAME_SIZE-1); strncpy(test->desc.desc, desc, SPLAT_DESC_SIZE-1); test->desc.id = tid; test->test = func; INIT_LIST_HEAD(&test->test_list); spin_lock(&sub->test_lock); list_add_tail(&test->test_list, &sub->test_list); spin_unlock(&sub->test_lock); } void splat_test_fini(splat_subsystem_t *sub, unsigned int tid) { splat_test_t *test, *tmp; int flag = 0; spin_lock(&sub->test_lock); list_for_each_entry_safe(test, tmp, &sub->test_list, test_list) { if (test->desc.id == tid) { list_del_init(&test->test_list); kfree(test); flag = 1; break; } } spin_unlock(&sub->test_lock); if (flag == 0) printk(KERN_ERR "splat: Error finalizing: %u\n", tid); } static int __init splat_init(void) { int error; spin_lock_init(&splat_module_lock); INIT_LIST_HEAD(&splat_module_list); SPLAT_SUBSYSTEM_INIT(kmem); SPLAT_SUBSYSTEM_INIT(taskq); SPLAT_SUBSYSTEM_INIT(krng); SPLAT_SUBSYSTEM_INIT(mutex); SPLAT_SUBSYSTEM_INIT(condvar); SPLAT_SUBSYSTEM_INIT(thread); SPLAT_SUBSYSTEM_INIT(rwlock); SPLAT_SUBSYSTEM_INIT(time); SPLAT_SUBSYSTEM_INIT(vnode); SPLAT_SUBSYSTEM_INIT(kobj); SPLAT_SUBSYSTEM_INIT(atomic); SPLAT_SUBSYSTEM_INIT(list); SPLAT_SUBSYSTEM_INIT(generic); SPLAT_SUBSYSTEM_INIT(cred); SPLAT_SUBSYSTEM_INIT(zlib); SPLAT_SUBSYSTEM_INIT(linux); error = misc_register(&splat_misc); if (error) { printk(KERN_INFO "SPLAT: misc_register() failed %d\n", error); } else { printk(KERN_INFO "SPLAT: Loaded module v%s-%s%s\n", SPL_META_VERSION, SPL_META_RELEASE, SPL_DEBUG_STR); } return (error); } static void __exit splat_fini(void) { misc_deregister(&splat_misc); SPLAT_SUBSYSTEM_FINI(linux); SPLAT_SUBSYSTEM_FINI(zlib); SPLAT_SUBSYSTEM_FINI(cred); SPLAT_SUBSYSTEM_FINI(generic); SPLAT_SUBSYSTEM_FINI(list); SPLAT_SUBSYSTEM_FINI(atomic); SPLAT_SUBSYSTEM_FINI(kobj); SPLAT_SUBSYSTEM_FINI(vnode); SPLAT_SUBSYSTEM_FINI(time); SPLAT_SUBSYSTEM_FINI(rwlock); SPLAT_SUBSYSTEM_FINI(thread); SPLAT_SUBSYSTEM_FINI(condvar); SPLAT_SUBSYSTEM_FINI(mutex); SPLAT_SUBSYSTEM_FINI(krng); SPLAT_SUBSYSTEM_FINI(taskq); SPLAT_SUBSYSTEM_FINI(kmem); ASSERT(list_empty(&splat_module_list)); printk(KERN_INFO "SPLAT: Unloaded module v%s-%s%s\n", SPL_META_VERSION, SPL_META_RELEASE, SPL_DEBUG_STR); } module_init(splat_init); module_exit(splat_fini); MODULE_DESCRIPTION("Solaris Porting LAyer Tests"); MODULE_AUTHOR(SPL_META_AUTHOR); MODULE_LICENSE(SPL_META_LICENSE); MODULE_VERSION(SPL_META_VERSION "-" SPL_META_RELEASE);