/* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright 2013 Saso Kiselkov. All rights reserved. */ /* * The basic framework for this code came from the reference * implementation for MD5. That implementation is Copyright (C) * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. * * License to copy and use this software is granted provided that it * is identified as the "RSA Data Security, Inc. MD5 Message-Digest * Algorithm" in all material mentioning or referencing this software * or this function. * * License is also granted to make and use derivative works provided * that such works are identified as "derived from the RSA Data * Security, Inc. MD5 Message-Digest Algorithm" in all material * mentioning or referencing the derived work. * * RSA Data Security, Inc. makes no representations concerning either * the merchantability of this software or the suitability of this * software for any particular purpose. It is provided "as is" * without express or implied warranty of any kind. * * These notices must be retained in any copies of any part of this * documentation and/or software. * * NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2 * standard, available at * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf * Not as fast as one would like -- further optimizations are encouraged * and appreciated. */ #include <sys/zfs_context.h> #define _SHA2_IMPL #include <sys/sha2.h> #include <sha2/sha2_consts.h> #define _RESTRICT_KYWD #ifdef _ZFS_LITTLE_ENDIAN #include <sys/byteorder.h> #define HAVE_HTONL #endif #include <sys/isa_defs.h> /* for _ILP32 */ static void Encode(uint8_t *, uint32_t *, size_t); static void Encode64(uint8_t *, uint64_t *, size_t); /* userspace only supports the generic version */ #if defined(__amd64) && defined(_KERNEL) #define SHA512Transform(ctx, in) SHA512TransformBlocks((ctx), (in), 1) #define SHA256Transform(ctx, in) SHA256TransformBlocks((ctx), (in), 1) void SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num); void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num); #else static void SHA256Transform(SHA2_CTX *, const uint8_t *); static void SHA512Transform(SHA2_CTX *, const uint8_t *); #endif /* __amd64 && _KERNEL */ static uint8_t PADDING[128] = { 0x80, /* all zeros */ }; /* * The low-level checksum routines use a lot of stack space. On systems where * small stacks are enforced (like 32-bit kernel builds), insert compiler memory * barriers to reduce stack frame size. This can reduce the SHA512Transform() * stack frame usage from 3k to <1k on ARM32, for example. */ #if defined(_ILP32) || defined(__powerpc) /* small stack */ #define SMALL_STACK_MEMORY_BARRIER asm volatile("": : :"memory"); #else #define SMALL_STACK_MEMORY_BARRIER #endif /* Ch and Maj are the basic SHA2 functions. */ #define Ch(b, c, d) (((b) & (c)) ^ ((~b) & (d))) #define Maj(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d))) /* Rotates x right n bits. */ #define ROTR(x, n) \ (((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n)))) /* Shift x right n bits */ #define SHR(x, n) ((x) >> (n)) /* SHA256 Functions */ #define BIGSIGMA0_256(x) (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22)) #define BIGSIGMA1_256(x) (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25)) #define SIGMA0_256(x) (ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3)) #define SIGMA1_256(x) (ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10)) #define SHA256ROUND(a, b, c, d, e, f, g, h, i, w) \ T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w; \ d += T1; \ T2 = BIGSIGMA0_256(a) + Maj(a, b, c); \ h = T1 + T2 /* SHA384/512 Functions */ #define BIGSIGMA0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39)) #define BIGSIGMA1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41)) #define SIGMA0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7)) #define SIGMA1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6)) #define SHA512ROUND(a, b, c, d, e, f, g, h, i, w) \ T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w; \ d += T1; \ T2 = BIGSIGMA0(a) + Maj(a, b, c); \ h = T1 + T2; \ SMALL_STACK_MEMORY_BARRIER; /* * sparc optimization: * * on the sparc, we can load big endian 32-bit data easily. note that * special care must be taken to ensure the address is 32-bit aligned. * in the interest of speed, we don't check to make sure, since * careful programming can guarantee this for us. */ #if defined(_ZFS_BIG_ENDIAN) #define LOAD_BIG_32(addr) (*(uint32_t *)(addr)) #define LOAD_BIG_64(addr) (*(uint64_t *)(addr)) #elif defined(HAVE_HTONL) #define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr))) #define LOAD_BIG_64(addr) htonll(*((uint64_t *)(addr))) #else /* little endian -- will work on big endian, but slowly */ #define LOAD_BIG_32(addr) \ (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3]) #define LOAD_BIG_64(addr) \ (((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) | \ ((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) | \ ((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) | \ ((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7]) #endif /* _BIG_ENDIAN */ #if !defined(__amd64) || !defined(_KERNEL) /* SHA256 Transform */ static void SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk) { uint32_t a = ctx->state.s32[0]; uint32_t b = ctx->state.s32[1]; uint32_t c = ctx->state.s32[2]; uint32_t d = ctx->state.s32[3]; uint32_t e = ctx->state.s32[4]; uint32_t f = ctx->state.s32[5]; uint32_t g = ctx->state.s32[6]; uint32_t h = ctx->state.s32[7]; uint32_t w0, w1, w2, w3, w4, w5, w6, w7; uint32_t w8, w9, w10, w11, w12, w13, w14, w15; uint32_t T1, T2; #if defined(__sparc) static const uint32_t sha256_consts[] = { SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2, SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5, SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8, SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11, SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14, SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17, SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20, SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23, SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26, SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29, SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32, SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35, SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38, SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41, SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44, SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47, SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50, SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53, SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56, SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59, SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62, SHA256_CONST_63 }; #endif /* __sparc */ if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */ bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); blk = (uint8_t *)ctx->buf_un.buf32; } /* LINTED E_BAD_PTR_CAST_ALIGN */ w0 = LOAD_BIG_32(blk + 4 * 0); SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0); /* LINTED E_BAD_PTR_CAST_ALIGN */ w1 = LOAD_BIG_32(blk + 4 * 1); SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1); /* LINTED E_BAD_PTR_CAST_ALIGN */ w2 = LOAD_BIG_32(blk + 4 * 2); SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2); /* LINTED E_BAD_PTR_CAST_ALIGN */ w3 = LOAD_BIG_32(blk + 4 * 3); SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3); /* LINTED E_BAD_PTR_CAST_ALIGN */ w4 = LOAD_BIG_32(blk + 4 * 4); SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4); /* LINTED E_BAD_PTR_CAST_ALIGN */ w5 = LOAD_BIG_32(blk + 4 * 5); SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5); /* LINTED E_BAD_PTR_CAST_ALIGN */ w6 = LOAD_BIG_32(blk + 4 * 6); SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6); /* LINTED E_BAD_PTR_CAST_ALIGN */ w7 = LOAD_BIG_32(blk + 4 * 7); SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7); /* LINTED E_BAD_PTR_CAST_ALIGN */ w8 = LOAD_BIG_32(blk + 4 * 8); SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8); /* LINTED E_BAD_PTR_CAST_ALIGN */ w9 = LOAD_BIG_32(blk + 4 * 9); SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9); /* LINTED E_BAD_PTR_CAST_ALIGN */ w10 = LOAD_BIG_32(blk + 4 * 10); SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10); /* LINTED E_BAD_PTR_CAST_ALIGN */ w11 = LOAD_BIG_32(blk + 4 * 11); SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11); /* LINTED E_BAD_PTR_CAST_ALIGN */ w12 = LOAD_BIG_32(blk + 4 * 12); SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12); /* LINTED E_BAD_PTR_CAST_ALIGN */ w13 = LOAD_BIG_32(blk + 4 * 13); SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13); /* LINTED E_BAD_PTR_CAST_ALIGN */ w14 = LOAD_BIG_32(blk + 4 * 14); SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14); /* LINTED E_BAD_PTR_CAST_ALIGN */ w15 = LOAD_BIG_32(blk + 4 * 15); SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15); w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0); w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1); w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2); w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3); w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4); w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5); w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6); w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7); w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8); w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9); w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10); w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11); w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12); w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13); w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14); w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15); w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0); w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1); w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2); w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3); w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4); w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5); w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6); w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7); w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8); w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9); w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10); w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11); w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12); w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13); w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14); w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15); w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0); w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1); w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2); w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3); w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4); w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5); w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6); w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7); w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8); w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9); w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10); w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11); w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12); w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13); w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14); w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15); ctx->state.s32[0] += a; ctx->state.s32[1] += b; ctx->state.s32[2] += c; ctx->state.s32[3] += d; ctx->state.s32[4] += e; ctx->state.s32[5] += f; ctx->state.s32[6] += g; ctx->state.s32[7] += h; } /* SHA384 and SHA512 Transform */ static void SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk) { uint64_t a = ctx->state.s64[0]; uint64_t b = ctx->state.s64[1]; uint64_t c = ctx->state.s64[2]; uint64_t d = ctx->state.s64[3]; uint64_t e = ctx->state.s64[4]; uint64_t f = ctx->state.s64[5]; uint64_t g = ctx->state.s64[6]; uint64_t h = ctx->state.s64[7]; uint64_t w0, w1, w2, w3, w4, w5, w6, w7; uint64_t w8, w9, w10, w11, w12, w13, w14, w15; uint64_t T1, T2; #if defined(__sparc) static const uint64_t sha512_consts[] = { SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2, SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5, SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8, SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11, SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14, SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17, SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20, SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23, SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26, SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29, SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32, SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35, SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38, SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41, SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44, SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47, SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50, SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53, SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56, SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59, SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62, SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65, SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68, SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71, SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74, SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77, SHA512_CONST_78, SHA512_CONST_79 }; #endif /* __sparc */ if ((uintptr_t)blk & 0x7) { /* not 8-byte aligned? */ bcopy(blk, ctx->buf_un.buf64, sizeof (ctx->buf_un.buf64)); blk = (uint8_t *)ctx->buf_un.buf64; } /* LINTED E_BAD_PTR_CAST_ALIGN */ w0 = LOAD_BIG_64(blk + 8 * 0); SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0); /* LINTED E_BAD_PTR_CAST_ALIGN */ w1 = LOAD_BIG_64(blk + 8 * 1); SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1); /* LINTED E_BAD_PTR_CAST_ALIGN */ w2 = LOAD_BIG_64(blk + 8 * 2); SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2); /* LINTED E_BAD_PTR_CAST_ALIGN */ w3 = LOAD_BIG_64(blk + 8 * 3); SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3); /* LINTED E_BAD_PTR_CAST_ALIGN */ w4 = LOAD_BIG_64(blk + 8 * 4); SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4); /* LINTED E_BAD_PTR_CAST_ALIGN */ w5 = LOAD_BIG_64(blk + 8 * 5); SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5); /* LINTED E_BAD_PTR_CAST_ALIGN */ w6 = LOAD_BIG_64(blk + 8 * 6); SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6); /* LINTED E_BAD_PTR_CAST_ALIGN */ w7 = LOAD_BIG_64(blk + 8 * 7); SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7); /* LINTED E_BAD_PTR_CAST_ALIGN */ w8 = LOAD_BIG_64(blk + 8 * 8); SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8); /* LINTED E_BAD_PTR_CAST_ALIGN */ w9 = LOAD_BIG_64(blk + 8 * 9); SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9); /* LINTED E_BAD_PTR_CAST_ALIGN */ w10 = LOAD_BIG_64(blk + 8 * 10); SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10); /* LINTED E_BAD_PTR_CAST_ALIGN */ w11 = LOAD_BIG_64(blk + 8 * 11); SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11); /* LINTED E_BAD_PTR_CAST_ALIGN */ w12 = LOAD_BIG_64(blk + 8 * 12); SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12); /* LINTED E_BAD_PTR_CAST_ALIGN */ w13 = LOAD_BIG_64(blk + 8 * 13); SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13); /* LINTED E_BAD_PTR_CAST_ALIGN */ w14 = LOAD_BIG_64(blk + 8 * 14); SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14); /* LINTED E_BAD_PTR_CAST_ALIGN */ w15 = LOAD_BIG_64(blk + 8 * 15); SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15); w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0); w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1); w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2); w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3); w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4); w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5); w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6); w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7); w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8); w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9); w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10); w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11); w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12); w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13); w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14); w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15); w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0); w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1); w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2); w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3); w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4); w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5); w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6); w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7); w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8); w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9); w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10); w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11); w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12); w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13); w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14); w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15); w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0); w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1); w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2); w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3); w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4); w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5); w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6); w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7); w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8); w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9); w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10); w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11); w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12); w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13); w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14); w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15); w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0); w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1); w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2); w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3); w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4); w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5); w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6); w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7); w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8); w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9); w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10); w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11); w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12); w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13); w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14); w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15); ctx->state.s64[0] += a; ctx->state.s64[1] += b; ctx->state.s64[2] += c; ctx->state.s64[3] += d; ctx->state.s64[4] += e; ctx->state.s64[5] += f; ctx->state.s64[6] += g; ctx->state.s64[7] += h; } #endif /* !__amd64 || !_KERNEL */ /* * Encode() * * purpose: to convert a list of numbers from little endian to big endian * input: uint8_t * : place to store the converted big endian numbers * uint32_t * : place to get numbers to convert from * size_t : the length of the input in bytes * output: void */ static void Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input, size_t len) { size_t i, j; #if defined(__sparc) if (IS_P2ALIGNED(output, sizeof (uint32_t))) { for (i = 0, j = 0; j < len; i++, j += 4) { /* LINTED E_BAD_PTR_CAST_ALIGN */ *((uint32_t *)(output + j)) = input[i]; } } else { #endif /* little endian -- will work on big endian, but slowly */ for (i = 0, j = 0; j < len; i++, j += 4) { output[j] = (input[i] >> 24) & 0xff; output[j + 1] = (input[i] >> 16) & 0xff; output[j + 2] = (input[i] >> 8) & 0xff; output[j + 3] = input[i] & 0xff; } #if defined(__sparc) } #endif } static void Encode64(uint8_t *_RESTRICT_KYWD output, uint64_t *_RESTRICT_KYWD input, size_t len) { size_t i, j; #if defined(__sparc) if (IS_P2ALIGNED(output, sizeof (uint64_t))) { for (i = 0, j = 0; j < len; i++, j += 8) { /* LINTED E_BAD_PTR_CAST_ALIGN */ *((uint64_t *)(output + j)) = input[i]; } } else { #endif /* little endian -- will work on big endian, but slowly */ for (i = 0, j = 0; j < len; i++, j += 8) { output[j] = (input[i] >> 56) & 0xff; output[j + 1] = (input[i] >> 48) & 0xff; output[j + 2] = (input[i] >> 40) & 0xff; output[j + 3] = (input[i] >> 32) & 0xff; output[j + 4] = (input[i] >> 24) & 0xff; output[j + 5] = (input[i] >> 16) & 0xff; output[j + 6] = (input[i] >> 8) & 0xff; output[j + 7] = input[i] & 0xff; } #if defined(__sparc) } #endif } void SHA2Init(uint64_t mech, SHA2_CTX *ctx) { switch (mech) { case SHA256_MECH_INFO_TYPE: case SHA256_HMAC_MECH_INFO_TYPE: case SHA256_HMAC_GEN_MECH_INFO_TYPE: ctx->state.s32[0] = 0x6a09e667U; ctx->state.s32[1] = 0xbb67ae85U; ctx->state.s32[2] = 0x3c6ef372U; ctx->state.s32[3] = 0xa54ff53aU; ctx->state.s32[4] = 0x510e527fU; ctx->state.s32[5] = 0x9b05688cU; ctx->state.s32[6] = 0x1f83d9abU; ctx->state.s32[7] = 0x5be0cd19U; break; case SHA384_MECH_INFO_TYPE: case SHA384_HMAC_MECH_INFO_TYPE: case SHA384_HMAC_GEN_MECH_INFO_TYPE: ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL; ctx->state.s64[1] = 0x629a292a367cd507ULL; ctx->state.s64[2] = 0x9159015a3070dd17ULL; ctx->state.s64[3] = 0x152fecd8f70e5939ULL; ctx->state.s64[4] = 0x67332667ffc00b31ULL; ctx->state.s64[5] = 0x8eb44a8768581511ULL; ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL; ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL; break; case SHA512_MECH_INFO_TYPE: case SHA512_HMAC_MECH_INFO_TYPE: case SHA512_HMAC_GEN_MECH_INFO_TYPE: ctx->state.s64[0] = 0x6a09e667f3bcc908ULL; ctx->state.s64[1] = 0xbb67ae8584caa73bULL; ctx->state.s64[2] = 0x3c6ef372fe94f82bULL; ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL; ctx->state.s64[4] = 0x510e527fade682d1ULL; ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL; ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL; ctx->state.s64[7] = 0x5be0cd19137e2179ULL; break; case SHA512_224_MECH_INFO_TYPE: ctx->state.s64[0] = 0x8C3D37C819544DA2ULL; ctx->state.s64[1] = 0x73E1996689DCD4D6ULL; ctx->state.s64[2] = 0x1DFAB7AE32FF9C82ULL; ctx->state.s64[3] = 0x679DD514582F9FCFULL; ctx->state.s64[4] = 0x0F6D2B697BD44DA8ULL; ctx->state.s64[5] = 0x77E36F7304C48942ULL; ctx->state.s64[6] = 0x3F9D85A86A1D36C8ULL; ctx->state.s64[7] = 0x1112E6AD91D692A1ULL; break; case SHA512_256_MECH_INFO_TYPE: ctx->state.s64[0] = 0x22312194FC2BF72CULL; ctx->state.s64[1] = 0x9F555FA3C84C64C2ULL; ctx->state.s64[2] = 0x2393B86B6F53B151ULL; ctx->state.s64[3] = 0x963877195940EABDULL; ctx->state.s64[4] = 0x96283EE2A88EFFE3ULL; ctx->state.s64[5] = 0xBE5E1E2553863992ULL; ctx->state.s64[6] = 0x2B0199FC2C85B8AAULL; ctx->state.s64[7] = 0x0EB72DDC81C52CA2ULL; break; #ifdef _KERNEL default: cmn_err(CE_PANIC, "sha2_init: failed to find a supported algorithm: 0x%x", (uint32_t)mech); #endif /* _KERNEL */ } ctx->algotype = (uint32_t)mech; ctx->count.c64[0] = ctx->count.c64[1] = 0; } #ifndef _KERNEL // #pragma inline(SHA256Init, SHA384Init, SHA512Init) void SHA256Init(SHA256_CTX *ctx) { SHA2Init(SHA256, ctx); } void SHA384Init(SHA384_CTX *ctx) { SHA2Init(SHA384, ctx); } void SHA512Init(SHA512_CTX *ctx) { SHA2Init(SHA512, ctx); } #endif /* _KERNEL */ /* * SHA2Update() * * purpose: continues an sha2 digest operation, using the message block * to update the context. * input: SHA2_CTX * : the context to update * void * : the message block * size_t : the length of the message block, in bytes * output: void */ void SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len) { uint32_t i, buf_index, buf_len, buf_limit; const uint8_t *input = inptr; uint32_t algotype = ctx->algotype; /* check for noop */ if (input_len == 0) return; if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { buf_limit = 64; /* compute number of bytes mod 64 */ buf_index = (ctx->count.c32[1] >> 3) & 0x3F; /* update number of bits */ if ((ctx->count.c32[1] += (input_len << 3)) < (input_len << 3)) ctx->count.c32[0]++; ctx->count.c32[0] += (input_len >> 29); } else { buf_limit = 128; /* compute number of bytes mod 128 */ buf_index = (ctx->count.c64[1] >> 3) & 0x7F; /* update number of bits */ if ((ctx->count.c64[1] += (input_len << 3)) < (input_len << 3)) ctx->count.c64[0]++; ctx->count.c64[0] += (input_len >> 29); } buf_len = buf_limit - buf_index; /* transform as many times as possible */ i = 0; if (input_len >= buf_len) { /* * general optimization: * * only do initial bcopy() and SHA2Transform() if * buf_index != 0. if buf_index == 0, we're just * wasting our time doing the bcopy() since there * wasn't any data left over from a previous call to * SHA2Update(). */ if (buf_index) { bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) SHA256Transform(ctx, ctx->buf_un.buf8); else SHA512Transform(ctx, ctx->buf_un.buf8); i = buf_len; } #if !defined(__amd64) || !defined(_KERNEL) if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { for (; i + buf_limit - 1 < input_len; i += buf_limit) { SHA256Transform(ctx, &input[i]); } } else { for (; i + buf_limit - 1 < input_len; i += buf_limit) { SHA512Transform(ctx, &input[i]); } } #else uint32_t block_count; if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { block_count = (input_len - i) >> 6; if (block_count > 0) { SHA256TransformBlocks(ctx, &input[i], block_count); i += block_count << 6; } } else { block_count = (input_len - i) >> 7; if (block_count > 0) { SHA512TransformBlocks(ctx, &input[i], block_count); i += block_count << 7; } } #endif /* !__amd64 || !_KERNEL */ /* * general optimization: * * if i and input_len are the same, return now instead * of calling bcopy(), since the bcopy() in this case * will be an expensive noop. */ if (input_len == i) return; buf_index = 0; } /* buffer remaining input */ bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); } /* * SHA2Final() * * purpose: ends an sha2 digest operation, finalizing the message digest and * zeroing the context. * input: uchar_t * : a buffer to store the digest * : The function actually uses void* because many * : callers pass things other than uchar_t here. * SHA2_CTX * : the context to finalize, save, and zero * output: void */ void SHA2Final(void *digest, SHA2_CTX *ctx) { uint8_t bitcount_be[sizeof (ctx->count.c32)]; uint8_t bitcount_be64[sizeof (ctx->count.c64)]; uint32_t index; uint32_t algotype = ctx->algotype; if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { index = (ctx->count.c32[1] >> 3) & 0x3f; Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be)); SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); SHA2Update(ctx, bitcount_be, sizeof (bitcount_be)); Encode(digest, ctx->state.s32, sizeof (ctx->state.s32)); } else { index = (ctx->count.c64[1] >> 3) & 0x7f; Encode64(bitcount_be64, ctx->count.c64, sizeof (bitcount_be64)); SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index); SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64)); if (algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) { ctx->state.s64[6] = ctx->state.s64[7] = 0; Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 6); } else if (algotype == SHA512_224_MECH_INFO_TYPE) { uint8_t last[sizeof (uint64_t)]; /* * Since SHA-512/224 doesn't align well to 64-bit * boundaries, we must do the encoding in three steps: * 1) encode the three 64-bit words that fit neatly * 2) encode the last 64-bit word to a temp buffer * 3) chop out the lower 32-bits from the temp buffer * and append them to the digest */ Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 3); Encode64(last, &ctx->state.s64[3], sizeof (uint64_t)); bcopy(last, (uint8_t *)digest + 24, 4); } else if (algotype == SHA512_256_MECH_INFO_TYPE) { Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 4); } else { Encode64(digest, ctx->state.s64, sizeof (ctx->state.s64)); } } /* zeroize sensitive information */ bzero(ctx, sizeof (*ctx)); } #ifdef _KERNEL EXPORT_SYMBOL(SHA2Init); EXPORT_SYMBOL(SHA2Update); EXPORT_SYMBOL(SHA2Final); #endif