/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2023 Alexander Stetsenko * Copyright (c) 2023, Klara Inc. */ /* * This file contains the top half of the zfs directory structure * implementation. The bottom half is in zap_leaf.c. * * The zdir is an extendable hash data structure. There is a table of * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are * each a constant size and hold a variable number of directory entries. * The buckets (aka "leaf nodes") are implemented in zap_leaf.c. * * The pointer table holds a power of 2 number of pointers. * (1<zd_data->zd_phys->zd_prefix_len). The bucket pointed to * by the pointer at index i in the table holds entries whose hash value * has a zd_prefix_len - bit prefix */ #include #include #include #include #include #include #include #include #include /* * If zap_iterate_prefetch is set, we will prefetch the entire ZAP object * (all leaf blocks) when we start iterating over it. * * For zap_cursor_init(), the callers all intend to iterate through all the * entries. There are a few cases where an error (typically i/o error) could * cause it to bail out early. * * For zap_cursor_init_serialized(), there are callers that do the iteration * outside of ZFS. Typically they would iterate over everything, but we * don't have control of that. E.g. zfs_ioc_snapshot_list_next(), * zcp_snapshots_iter(), and other iterators over things in the MOS - these * are called by /sbin/zfs and channel programs. The other example is * zfs_readdir() which iterates over directory entries for the getdents() * syscall. /sbin/ls iterates to the end (unless it receives a signal), but * userland doesn't have to. * * Given that the ZAP entries aren't returned in a specific order, the only * legitimate use cases for partial iteration would be: * * 1. Pagination: e.g. you only want to display 100 entries at a time, so you * get the first 100 and then wait for the user to hit "next page", which * they may never do). * * 2. You want to know if there are more than X entries, without relying on * the zfs-specific implementation of the directory's st_size (which is * the number of entries). */ static int zap_iterate_prefetch = B_TRUE; /* * Enable ZAP shrinking. When enabled, empty sibling leaf blocks will be * collapsed into a single block. */ int zap_shrink_enabled = B_TRUE; int fzap_default_block_shift = 14; /* 16k blocksize */ static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks); static int zap_shrink(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx); void fzap_byteswap(void *vbuf, size_t size) { uint64_t block_type = *(uint64_t *)vbuf; if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF)) zap_leaf_byteswap(vbuf, size); else { /* it's a ptrtbl block */ byteswap_uint64_array(vbuf, size); } } void fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags) { ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); zap->zap_ismicro = FALSE; zap->zap_dbu.dbu_evict_func_sync = zap_evict_sync; zap->zap_dbu.dbu_evict_func_async = NULL; mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 0); zap->zap_f.zap_block_shift = highbit64(zap->zap_dbuf->db_size) - 1; zap_phys_t *zp = zap_f_phys(zap); /* * explicitly zero it since it might be coming from an * initialized microzap */ memset(zap->zap_dbuf->db_data, 0, zap->zap_dbuf->db_size); zp->zap_block_type = ZBT_HEADER; zp->zap_magic = ZAP_MAGIC; zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap); zp->zap_freeblk = 2; /* block 1 will be the first leaf */ zp->zap_num_leafs = 1; zp->zap_num_entries = 0; zp->zap_salt = zap->zap_salt; zp->zap_normflags = zap->zap_normflags; zp->zap_flags = flags; /* block 1 will be the first leaf */ for (int i = 0; i < (1<zap_ptrtbl.zt_shift); i++) ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1; /* * set up block 1 - the first leaf */ dmu_buf_t *db; VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode, 1<l_dbuf = db; zap_leaf_init(l, zp->zap_normflags != 0); kmem_free(l, sizeof (zap_leaf_t)); dmu_buf_rele(db, FTAG); } static int zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx) { if (RW_WRITE_HELD(&zap->zap_rwlock)) return (1); if (rw_tryupgrade(&zap->zap_rwlock)) { dmu_buf_will_dirty(zap->zap_dbuf, tx); return (1); } return (0); } /* * Generic routines for dealing with the pointer & cookie tables. */ static int zap_table_grow(zap_t *zap, zap_table_phys_t *tbl, void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n), dmu_tx_t *tx) { uint64_t newblk; int bs = FZAP_BLOCK_SHIFT(zap); int hepb = 1<<(bs-4); /* hepb = half the number of entries in a block */ ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); ASSERT(tbl->zt_blk != 0); ASSERT(tbl->zt_numblks > 0); if (tbl->zt_nextblk != 0) { newblk = tbl->zt_nextblk; } else { newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2); tbl->zt_nextblk = newblk; ASSERT0(tbl->zt_blks_copied); dmu_prefetch_by_dnode(zap->zap_dnode, 0, tbl->zt_blk << bs, tbl->zt_numblks << bs, ZIO_PRIORITY_SYNC_READ); } /* * Copy the ptrtbl from the old to new location. */ uint64_t b = tbl->zt_blks_copied; dmu_buf_t *db_old; int err = dmu_buf_hold_by_dnode(zap->zap_dnode, (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH); if (err != 0) return (err); /* first half of entries in old[b] go to new[2*b+0] */ dmu_buf_t *db_new; VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode, (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); dmu_buf_will_dirty(db_new, tx); transfer_func(db_old->db_data, db_new->db_data, hepb); dmu_buf_rele(db_new, FTAG); /* second half of entries in old[b] go to new[2*b+1] */ VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode, (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); dmu_buf_will_dirty(db_new, tx); transfer_func((uint64_t *)db_old->db_data + hepb, db_new->db_data, hepb); dmu_buf_rele(db_new, FTAG); dmu_buf_rele(db_old, FTAG); tbl->zt_blks_copied++; dprintf("copied block %llu of %llu\n", (u_longlong_t)tbl->zt_blks_copied, (u_longlong_t)tbl->zt_numblks); if (tbl->zt_blks_copied == tbl->zt_numblks) { (void) dmu_free_range(zap->zap_objset, zap->zap_object, tbl->zt_blk << bs, tbl->zt_numblks << bs, tx); tbl->zt_blk = newblk; tbl->zt_numblks *= 2; tbl->zt_shift++; tbl->zt_nextblk = 0; tbl->zt_blks_copied = 0; dprintf("finished; numblocks now %llu (%uk entries)\n", (u_longlong_t)tbl->zt_numblks, 1<<(tbl->zt_shift-10)); } return (0); } static int zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val, dmu_tx_t *tx) { int bs = FZAP_BLOCK_SHIFT(zap); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT(tbl->zt_blk != 0); dprintf("storing %llx at index %llx\n", (u_longlong_t)val, (u_longlong_t)idx); uint64_t blk = idx >> (bs-3); uint64_t off = idx & ((1<<(bs-3))-1); dmu_buf_t *db; int err = dmu_buf_hold_by_dnode(zap->zap_dnode, (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); if (err != 0) return (err); dmu_buf_will_dirty(db, tx); if (tbl->zt_nextblk != 0) { uint64_t idx2 = idx * 2; uint64_t blk2 = idx2 >> (bs-3); uint64_t off2 = idx2 & ((1<<(bs-3))-1); dmu_buf_t *db2; err = dmu_buf_hold_by_dnode(zap->zap_dnode, (tbl->zt_nextblk + blk2) << bs, FTAG, &db2, DMU_READ_NO_PREFETCH); if (err != 0) { dmu_buf_rele(db, FTAG); return (err); } dmu_buf_will_dirty(db2, tx); ((uint64_t *)db2->db_data)[off2] = val; ((uint64_t *)db2->db_data)[off2+1] = val; dmu_buf_rele(db2, FTAG); } ((uint64_t *)db->db_data)[off] = val; dmu_buf_rele(db, FTAG); return (0); } static int zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp) { int bs = FZAP_BLOCK_SHIFT(zap); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); uint64_t blk = idx >> (bs-3); uint64_t off = idx & ((1<<(bs-3))-1); dmu_buf_t *db; int err = dmu_buf_hold_by_dnode(zap->zap_dnode, (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); if (err != 0) return (err); *valp = ((uint64_t *)db->db_data)[off]; dmu_buf_rele(db, FTAG); if (tbl->zt_nextblk != 0) { /* * read the nextblk for the sake of i/o error checking, * so that zap_table_load() will catch errors for * zap_table_store. */ blk = (idx*2) >> (bs-3); err = dmu_buf_hold_by_dnode(zap->zap_dnode, (tbl->zt_nextblk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); if (err == 0) dmu_buf_rele(db, FTAG); } return (err); } /* * Routines for growing the ptrtbl. */ static void zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n) { for (int i = 0; i < n; i++) { uint64_t lb = src[i]; dst[2 * i + 0] = lb; dst[2 * i + 1] = lb; } } static int zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx) { /* * The pointer table should never use more hash bits than we * have (otherwise we'd be using useless zero bits to index it). * If we are within 2 bits of running out, stop growing, since * this is already an aberrant condition. */ if (zap_f_phys(zap)->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2) return (SET_ERROR(ENOSPC)); if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { /* * We are outgrowing the "embedded" ptrtbl (the one * stored in the header block). Give it its own entire * block, which will double the size of the ptrtbl. */ ASSERT3U(zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==, ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); ASSERT0(zap_f_phys(zap)->zap_ptrtbl.zt_blk); uint64_t newblk = zap_allocate_blocks(zap, 1); dmu_buf_t *db_new; int err = dmu_buf_hold_by_dnode(zap->zap_dnode, newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new, DMU_READ_NO_PREFETCH); if (err != 0) return (err); dmu_buf_will_dirty(db_new, tx); zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); dmu_buf_rele(db_new, FTAG); zap_f_phys(zap)->zap_ptrtbl.zt_blk = newblk; zap_f_phys(zap)->zap_ptrtbl.zt_numblks = 1; zap_f_phys(zap)->zap_ptrtbl.zt_shift++; ASSERT3U(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==, zap_f_phys(zap)->zap_ptrtbl.zt_numblks << (FZAP_BLOCK_SHIFT(zap)-3)); return (0); } else { return (zap_table_grow(zap, &zap_f_phys(zap)->zap_ptrtbl, zap_ptrtbl_transfer, tx)); } } static void zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx) { dmu_buf_will_dirty(zap->zap_dbuf, tx); mutex_enter(&zap->zap_f.zap_num_entries_mtx); ASSERT(delta > 0 || zap_f_phys(zap)->zap_num_entries >= -delta); zap_f_phys(zap)->zap_num_entries += delta; mutex_exit(&zap->zap_f.zap_num_entries_mtx); } static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks) { ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); uint64_t newblk = zap_f_phys(zap)->zap_freeblk; zap_f_phys(zap)->zap_freeblk += nblocks; return (newblk); } static void zap_leaf_evict_sync(void *dbu) { zap_leaf_t *l = dbu; rw_destroy(&l->l_rwlock); kmem_free(l, sizeof (zap_leaf_t)); } static zap_leaf_t * zap_create_leaf(zap_t *zap, dmu_tx_t *tx) { zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); rw_init(&l->l_rwlock, NULL, RW_NOLOCKDEP, NULL); rw_enter(&l->l_rwlock, RW_WRITER); l->l_blkid = zap_allocate_blocks(zap, 1); l->l_dbuf = NULL; VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode, l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf, DMU_READ_NO_PREFETCH)); dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf); VERIFY3P(NULL, ==, dmu_buf_set_user(l->l_dbuf, &l->l_dbu)); dmu_buf_will_dirty(l->l_dbuf, tx); zap_leaf_init(l, zap->zap_normflags != 0); zap_f_phys(zap)->zap_num_leafs++; return (l); } int fzap_count(zap_t *zap, uint64_t *count) { ASSERT(!zap->zap_ismicro); mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */ *count = zap_f_phys(zap)->zap_num_entries; mutex_exit(&zap->zap_f.zap_num_entries_mtx); return (0); } /* * Routines for obtaining zap_leaf_t's */ void zap_put_leaf(zap_leaf_t *l) { rw_exit(&l->l_rwlock); dmu_buf_rele(l->l_dbuf, NULL); } static zap_leaf_t * zap_open_leaf(uint64_t blkid, dmu_buf_t *db) { ASSERT(blkid != 0); zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL); rw_enter(&l->l_rwlock, RW_WRITER); l->l_blkid = blkid; l->l_bs = highbit64(db->db_size) - 1; l->l_dbuf = db; dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf); zap_leaf_t *winner = dmu_buf_set_user(db, &l->l_dbu); rw_exit(&l->l_rwlock); if (winner != NULL) { /* someone else set it first */ zap_leaf_evict_sync(&l->l_dbu); l = winner; } /* * lhr_pad was previously used for the next leaf in the leaf * chain. There should be no chained leafs (as we have removed * support for them). */ ASSERT0(zap_leaf_phys(l)->l_hdr.lh_pad1); /* * There should be more hash entries than there can be * chunks to put in the hash table */ ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3); /* The chunks should begin at the end of the hash table */ ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, (zap_leaf_chunk_t *) &zap_leaf_phys(l)->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]); /* The chunks should end at the end of the block */ ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) - (uintptr_t)zap_leaf_phys(l), ==, l->l_dbuf->db_size); return (l); } static int zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp) { dmu_buf_t *db; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); /* * If system crashed just after dmu_free_long_range in zfs_rmnode, we * would be left with an empty xattr dir in delete queue. blkid=0 * would be passed in when doing zfs_purgedir. If that's the case we * should just return immediately. The underlying objects should * already be freed, so this should be perfectly fine. */ if (blkid == 0) return (SET_ERROR(ENOENT)); int bs = FZAP_BLOCK_SHIFT(zap); int err = dmu_buf_hold_by_dnode(zap->zap_dnode, blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH); if (err != 0) return (err); ASSERT3U(db->db_object, ==, zap->zap_object); ASSERT3U(db->db_offset, ==, blkid << bs); ASSERT3U(db->db_size, ==, 1 << bs); ASSERT(blkid != 0); zap_leaf_t *l = dmu_buf_get_user(db); if (l == NULL) l = zap_open_leaf(blkid, db); rw_enter(&l->l_rwlock, lt); /* * Must lock before dirtying, otherwise zap_leaf_phys(l) could change, * causing ASSERT below to fail. */ if (lt == RW_WRITER) dmu_buf_will_dirty(db, tx); ASSERT3U(l->l_blkid, ==, blkid); ASSERT3P(l->l_dbuf, ==, db); ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_block_type, ==, ZBT_LEAF); ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); *lp = l; return (0); } static int zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp) { ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { ASSERT3U(idx, <, (1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift)); *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); return (0); } else { return (zap_table_load(zap, &zap_f_phys(zap)->zap_ptrtbl, idx, valp)); } } static int zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx) { ASSERT(tx != NULL); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); if (zap_f_phys(zap)->zap_ptrtbl.zt_blk == 0) { ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk; return (0); } else { return (zap_table_store(zap, &zap_f_phys(zap)->zap_ptrtbl, idx, blk, tx)); } } static int zap_set_idx_range_to_blk(zap_t *zap, uint64_t idx, uint64_t nptrs, uint64_t blk, dmu_tx_t *tx) { int bs = FZAP_BLOCK_SHIFT(zap); int epb = bs >> 3; /* entries per block */ int err = 0; ASSERT(tx != NULL); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); /* * Check for i/o errors */ for (int i = 0; i < nptrs; i += epb) { uint64_t blk; err = zap_idx_to_blk(zap, idx + i, &blk); if (err != 0) { return (err); } } for (int i = 0; i < nptrs; i++) { err = zap_set_idx_to_blk(zap, idx + i, blk, tx); ASSERT0(err); /* we checked for i/o errors above */ if (err != 0) break; } return (err); } #define ZAP_PREFIX_HASH(pref, pref_len) ((pref) << (64 - (pref_len))) /* * Each leaf has single range of entries (block pointers) in the ZAP ptrtbl. * If two leaves are siblings, their ranges are adjecent and contain the same * number of entries. In order to find out if a leaf has a sibling, we need to * check the range corresponding to the sibling leaf. There is no need to check * all entries in the range, we only need to check the frist and the last one. */ static uint64_t check_sibling_ptrtbl_range(zap_t *zap, uint64_t prefix, uint64_t prefix_len) { ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); uint64_t h = ZAP_PREFIX_HASH(prefix, prefix_len); uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift); uint64_t pref_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift - prefix_len; uint64_t nptrs = (1 << pref_diff); uint64_t first; uint64_t last; ASSERT3U(idx+nptrs, <=, (1UL << zap_f_phys(zap)->zap_ptrtbl.zt_shift)); if (zap_idx_to_blk(zap, idx, &first) != 0) return (0); if (zap_idx_to_blk(zap, idx + nptrs - 1, &last) != 0) return (0); if (first != last) return (0); return (first); } static int zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp) { uint64_t blk; ASSERT(zap->zap_dbuf == NULL || zap_f_phys(zap) == zap->zap_dbuf->db_data); /* Reality check for corrupt zap objects (leaf or header). */ if ((zap_f_phys(zap)->zap_block_type != ZBT_LEAF && zap_f_phys(zap)->zap_block_type != ZBT_HEADER) || zap_f_phys(zap)->zap_magic != ZAP_MAGIC) { return (SET_ERROR(EIO)); } uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift); int err = zap_idx_to_blk(zap, idx, &blk); if (err != 0) return (err); err = zap_get_leaf_byblk(zap, blk, tx, lt, lp); ASSERT(err || ZAP_HASH_IDX(h, zap_leaf_phys(*lp)->l_hdr.lh_prefix_len) == zap_leaf_phys(*lp)->l_hdr.lh_prefix); return (err); } static int zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l, const void *tag, dmu_tx_t *tx, zap_leaf_t **lp) { zap_t *zap = zn->zn_zap; uint64_t hash = zn->zn_hash; int err; int old_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len; ASSERT3U(old_prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, zap_leaf_phys(l)->l_hdr.lh_prefix); if (zap_tryupgradedir(zap, tx) == 0 || old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) { /* We failed to upgrade, or need to grow the pointer table */ objset_t *os = zap->zap_objset; uint64_t object = zap->zap_object; zap_put_leaf(l); zap_unlockdir(zap, tag); err = zap_lockdir(os, object, tx, RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap); zap = zn->zn_zap; if (err != 0) return (err); ASSERT(!zap->zap_ismicro); while (old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) { err = zap_grow_ptrtbl(zap, tx); if (err != 0) return (err); } err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l); if (err != 0) return (err); if (zap_leaf_phys(l)->l_hdr.lh_prefix_len != old_prefix_len) { /* it split while our locks were down */ *lp = l; return (0); } } ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); ASSERT3U(old_prefix_len, <, zap_f_phys(zap)->zap_ptrtbl.zt_shift); ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, zap_leaf_phys(l)->l_hdr.lh_prefix); int prefix_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift - (old_prefix_len + 1); uint64_t sibling = (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff; /* check for i/o errors before doing zap_leaf_split */ for (int i = 0; i < (1ULL << prefix_diff); i++) { uint64_t blk; err = zap_idx_to_blk(zap, sibling + i, &blk); if (err != 0) return (err); ASSERT3U(blk, ==, l->l_blkid); } zap_leaf_t *nl = zap_create_leaf(zap, tx); zap_leaf_split(l, nl, zap->zap_normflags != 0); /* set sibling pointers */ for (int i = 0; i < (1ULL << prefix_diff); i++) { err = zap_set_idx_to_blk(zap, sibling + i, nl->l_blkid, tx); ASSERT0(err); /* we checked for i/o errors above */ } ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_prefix_len, >, 0); if (hash & (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) { /* we want the sibling */ zap_put_leaf(l); *lp = nl; } else { zap_put_leaf(nl); *lp = l; } return (0); } static void zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l, const void *tag, dmu_tx_t *tx) { zap_t *zap = zn->zn_zap; int shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift; int leaffull = (zap_leaf_phys(l)->l_hdr.lh_prefix_len == shift && zap_leaf_phys(l)->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER); zap_put_leaf(l); if (leaffull || zap_f_phys(zap)->zap_ptrtbl.zt_nextblk) { /* * We are in the middle of growing the pointer table, or * this leaf will soon make us grow it. */ if (zap_tryupgradedir(zap, tx) == 0) { objset_t *os = zap->zap_objset; uint64_t zapobj = zap->zap_object; zap_unlockdir(zap, tag); int err = zap_lockdir(os, zapobj, tx, RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap); zap = zn->zn_zap; if (err != 0) return; } /* could have finished growing while our locks were down */ if (zap_f_phys(zap)->zap_ptrtbl.zt_shift == shift) (void) zap_grow_ptrtbl(zap, tx); } } static int fzap_checkname(zap_name_t *zn) { if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN) return (SET_ERROR(ENAMETOOLONG)); return (0); } static int fzap_checksize(uint64_t integer_size, uint64_t num_integers) { /* Only integer sizes supported by C */ switch (integer_size) { case 1: case 2: case 4: case 8: break; default: return (SET_ERROR(EINVAL)); } if (integer_size * num_integers > ZAP_MAXVALUELEN) return (SET_ERROR(E2BIG)); return (0); } static int fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers) { int err = fzap_checkname(zn); if (err != 0) return (err); return (fzap_checksize(integer_size, num_integers)); } /* * Routines for manipulating attributes. */ int fzap_lookup(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, void *buf, char *realname, int rn_len, boolean_t *ncp) { zap_leaf_t *l; zap_entry_handle_t zeh; int err = fzap_checkname(zn); if (err != 0) return (err); err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err == 0) { if ((err = fzap_checksize(integer_size, num_integers)) != 0) { zap_put_leaf(l); return (err); } err = zap_entry_read(&zeh, integer_size, num_integers, buf); (void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname); if (ncp) { *ncp = zap_entry_normalization_conflict(&zeh, zn, NULL, zn->zn_zap); } } zap_put_leaf(l); return (err); } int fzap_add_cd(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, const void *val, uint32_t cd, const void *tag, dmu_tx_t *tx) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; zap_t *zap = zn->zn_zap; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT(!zap->zap_ismicro); ASSERT(fzap_check(zn, integer_size, num_integers) == 0); err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); if (err != 0) return (err); retry: err = zap_leaf_lookup(l, zn, &zeh); if (err == 0) { err = SET_ERROR(EEXIST); goto out; } if (err != ENOENT) goto out; err = zap_entry_create(l, zn, cd, integer_size, num_integers, val, &zeh); if (err == 0) { zap_increment_num_entries(zap, 1, tx); } else if (err == EAGAIN) { err = zap_expand_leaf(zn, l, tag, tx, &l); zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ if (err == 0) { goto retry; } else if (err == ENOSPC) { /* * If we failed to expand the leaf, then bailout * as there is no point trying * zap_put_leaf_maybe_grow_ptrtbl(). */ return (err); } } out: if (zap != NULL) zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx); return (err); } int fzap_add(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, const void *val, const void *tag, dmu_tx_t *tx) { int err = fzap_check(zn, integer_size, num_integers); if (err != 0) return (err); return (fzap_add_cd(zn, integer_size, num_integers, val, ZAP_NEED_CD, tag, tx)); } int fzap_update(zap_name_t *zn, int integer_size, uint64_t num_integers, const void *val, const void *tag, dmu_tx_t *tx) { zap_leaf_t *l; int err; boolean_t create; zap_entry_handle_t zeh; zap_t *zap = zn->zn_zap; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); err = fzap_check(zn, integer_size, num_integers); if (err != 0) return (err); err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); if (err != 0) return (err); retry: err = zap_leaf_lookup(l, zn, &zeh); create = (err == ENOENT); ASSERT(err == 0 || err == ENOENT); if (create) { err = zap_entry_create(l, zn, ZAP_NEED_CD, integer_size, num_integers, val, &zeh); if (err == 0) zap_increment_num_entries(zap, 1, tx); } else { err = zap_entry_update(&zeh, integer_size, num_integers, val); } if (err == EAGAIN) { err = zap_expand_leaf(zn, l, tag, tx, &l); zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ if (err == 0) goto retry; } if (zap != NULL) zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx); return (err); } int fzap_length(zap_name_t *zn, uint64_t *integer_size, uint64_t *num_integers) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err != 0) goto out; if (integer_size != NULL) *integer_size = zeh.zeh_integer_size; if (num_integers != NULL) *num_integers = zeh.zeh_num_integers; out: zap_put_leaf(l); return (err); } int fzap_remove(zap_name_t *zn, dmu_tx_t *tx) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err == 0) { zap_entry_remove(&zeh); zap_increment_num_entries(zn->zn_zap, -1, tx); if (zap_leaf_phys(l)->l_hdr.lh_nentries == 0 && zap_shrink_enabled) return (zap_shrink(zn, l, tx)); } zap_put_leaf(l); return (err); } void fzap_prefetch(zap_name_t *zn) { uint64_t blk; zap_t *zap = zn->zn_zap; uint64_t idx = ZAP_HASH_IDX(zn->zn_hash, zap_f_phys(zap)->zap_ptrtbl.zt_shift); if (zap_idx_to_blk(zap, idx, &blk) != 0) return; int bs = FZAP_BLOCK_SHIFT(zap); dmu_prefetch_by_dnode(zap->zap_dnode, 0, blk << bs, 1 << bs, ZIO_PRIORITY_SYNC_READ); } /* * Helper functions for consumers. */ uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj, const char *name, dmu_tx_t *tx) { return (zap_create_link_dnsize(os, ot, parent_obj, name, 0, tx)); } uint64_t zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj, const char *name, int dnodesize, dmu_tx_t *tx) { uint64_t new_obj; new_obj = zap_create_dnsize(os, ot, DMU_OT_NONE, 0, dnodesize, tx); VERIFY(new_obj != 0); VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj, tx)); return (new_obj); } int zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask, char *name) { zap_cursor_t zc; int err; if (mask == 0) mask = -1ULL; zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); for (zap_cursor_init(&zc, os, zapobj); (err = zap_cursor_retrieve(&zc, za)) == 0; zap_cursor_advance(&zc)) { if ((za->za_first_integer & mask) == (value & mask)) { (void) strlcpy(name, za->za_name, MAXNAMELEN); break; } } zap_cursor_fini(&zc); kmem_free(za, sizeof (*za)); return (err); } int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx) { zap_cursor_t zc; int err = 0; zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); for (zap_cursor_init(&zc, os, fromobj); zap_cursor_retrieve(&zc, za) == 0; (void) zap_cursor_advance(&zc)) { if (za->za_integer_length != 8 || za->za_num_integers != 1) { err = SET_ERROR(EINVAL); break; } err = zap_add(os, intoobj, za->za_name, 8, 1, &za->za_first_integer, tx); if (err != 0) break; } zap_cursor_fini(&zc); kmem_free(za, sizeof (*za)); return (err); } int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj, uint64_t value, dmu_tx_t *tx) { zap_cursor_t zc; int err = 0; zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); for (zap_cursor_init(&zc, os, fromobj); zap_cursor_retrieve(&zc, za) == 0; (void) zap_cursor_advance(&zc)) { if (za->za_integer_length != 8 || za->za_num_integers != 1) { err = SET_ERROR(EINVAL); break; } err = zap_add(os, intoobj, za->za_name, 8, 1, &value, tx); if (err != 0) break; } zap_cursor_fini(&zc); kmem_free(za, sizeof (*za)); return (err); } int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx) { zap_cursor_t zc; int err = 0; zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); for (zap_cursor_init(&zc, os, fromobj); zap_cursor_retrieve(&zc, za) == 0; (void) zap_cursor_advance(&zc)) { uint64_t delta = 0; if (za->za_integer_length != 8 || za->za_num_integers != 1) { err = SET_ERROR(EINVAL); break; } err = zap_lookup(os, intoobj, za->za_name, 8, 1, &delta); if (err != 0 && err != ENOENT) break; delta += za->za_first_integer; err = zap_update(os, intoobj, za->za_name, 8, 1, &delta, tx); if (err != 0) break; } zap_cursor_fini(&zc); kmem_free(za, sizeof (*za)); return (err); } int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); return (zap_add(os, obj, name, 8, 1, &value, tx)); } int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); return (zap_remove(os, obj, name, tx)); } int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); return (zap_lookup(os, obj, name, 8, 1, &value)); } int zap_add_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); return (zap_add(os, obj, name, 8, 1, &value, tx)); } int zap_update_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); return (zap_update(os, obj, name, 8, 1, &value, tx)); } int zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); return (zap_lookup(os, obj, name, 8, 1, valuep)); } int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta, dmu_tx_t *tx) { uint64_t value = 0; if (delta == 0) return (0); int err = zap_lookup(os, obj, name, 8, 1, &value); if (err != 0 && err != ENOENT) return (err); value += delta; if (value == 0) err = zap_remove(os, obj, name, tx); else err = zap_update(os, obj, name, 8, 1, &value, tx); return (err); } int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); return (zap_increment(os, obj, name, delta, tx)); } /* * Routines for iterating over the attributes. */ int fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za) { int err = ENOENT; zap_entry_handle_t zeh; zap_leaf_t *l; /* retrieve the next entry at or after zc_hash/zc_cd */ /* if no entry, return ENOENT */ /* * If we are reading from the beginning, we're almost certain to * iterate over the entire ZAP object. If there are multiple leaf * blocks (freeblk > 2), prefetch the whole object (up to * dmu_prefetch_max bytes), so that we read the leaf blocks * concurrently. (Unless noprefetch was requested via * zap_cursor_init_noprefetch()). */ if (zc->zc_hash == 0 && zap_iterate_prefetch && zc->zc_prefetch && zap_f_phys(zap)->zap_freeblk > 2) { dmu_prefetch_by_dnode(zap->zap_dnode, 0, 0, zap_f_phys(zap)->zap_freeblk << FZAP_BLOCK_SHIFT(zap), ZIO_PRIORITY_ASYNC_READ); } if (zc->zc_leaf) { rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); /* * The leaf was either shrunk or split. */ if ((zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_block_type == 0) || (ZAP_HASH_IDX(zc->zc_hash, zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix_len) != zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix)) { zap_put_leaf(zc->zc_leaf); zc->zc_leaf = NULL; } } again: if (zc->zc_leaf == NULL) { err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER, &zc->zc_leaf); if (err != 0) return (err); } l = zc->zc_leaf; err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh); if (err == ENOENT) { if (zap_leaf_phys(l)->l_hdr.lh_prefix_len == 0) { zc->zc_hash = -1ULL; zc->zc_cd = 0; } else { uint64_t nocare = (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len)) - 1; zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1; zc->zc_cd = 0; if (zc->zc_hash == 0) { zc->zc_hash = -1ULL; } else { zap_put_leaf(zc->zc_leaf); zc->zc_leaf = NULL; goto again; } } } if (err == 0) { zc->zc_hash = zeh.zeh_hash; zc->zc_cd = zeh.zeh_cd; za->za_integer_length = zeh.zeh_integer_size; za->za_num_integers = zeh.zeh_num_integers; if (zeh.zeh_num_integers == 0) { za->za_first_integer = 0; } else { err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer); ASSERT(err == 0 || err == EOVERFLOW); } err = zap_entry_read_name(zap, &zeh, sizeof (za->za_name), za->za_name); ASSERT(err == 0); za->za_normalization_conflict = zap_entry_normalization_conflict(&zeh, NULL, za->za_name, zap); } rw_exit(&zc->zc_leaf->l_rwlock); return (err); } static void zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs) { uint64_t lastblk = 0; /* * NB: if a leaf has more pointers than an entire ptrtbl block * can hold, then it'll be accounted for more than once, since * we won't have lastblk. */ for (int i = 0; i < len; i++) { zap_leaf_t *l; if (tbl[i] == lastblk) continue; lastblk = tbl[i]; int err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l); if (err == 0) { zap_leaf_stats(zap, l, zs); zap_put_leaf(l); } } } void fzap_get_stats(zap_t *zap, zap_stats_t *zs) { int bs = FZAP_BLOCK_SHIFT(zap); zs->zs_blocksize = 1ULL << bs; /* * Set zap_phys_t fields */ zs->zs_num_leafs = zap_f_phys(zap)->zap_num_leafs; zs->zs_num_entries = zap_f_phys(zap)->zap_num_entries; zs->zs_num_blocks = zap_f_phys(zap)->zap_freeblk; zs->zs_block_type = zap_f_phys(zap)->zap_block_type; zs->zs_magic = zap_f_phys(zap)->zap_magic; zs->zs_salt = zap_f_phys(zap)->zap_salt; /* * Set zap_ptrtbl fields */ zs->zs_ptrtbl_len = 1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift; zs->zs_ptrtbl_nextblk = zap_f_phys(zap)->zap_ptrtbl.zt_nextblk; zs->zs_ptrtbl_blks_copied = zap_f_phys(zap)->zap_ptrtbl.zt_blks_copied; zs->zs_ptrtbl_zt_blk = zap_f_phys(zap)->zap_ptrtbl.zt_blk; zs->zs_ptrtbl_zt_numblks = zap_f_phys(zap)->zap_ptrtbl.zt_numblks; zs->zs_ptrtbl_zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift; if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { /* the ptrtbl is entirely in the header block. */ zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs); } else { dmu_prefetch_by_dnode(zap->zap_dnode, 0, zap_f_phys(zap)->zap_ptrtbl.zt_blk << bs, zap_f_phys(zap)->zap_ptrtbl.zt_numblks << bs, ZIO_PRIORITY_SYNC_READ); for (int b = 0; b < zap_f_phys(zap)->zap_ptrtbl.zt_numblks; b++) { dmu_buf_t *db; int err; err = dmu_buf_hold_by_dnode(zap->zap_dnode, (zap_f_phys(zap)->zap_ptrtbl.zt_blk + b) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); if (err == 0) { zap_stats_ptrtbl(zap, db->db_data, 1<<(bs-3), zs); dmu_buf_rele(db, FTAG); } } } } /* * Find last allocated block and update freeblk. */ static void zap_trunc(zap_t *zap) { uint64_t nentries; uint64_t lastblk; ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); if (zap_f_phys(zap)->zap_ptrtbl.zt_blk > 0) { /* External ptrtbl */ nentries = (1 << zap_f_phys(zap)->zap_ptrtbl.zt_shift); lastblk = zap_f_phys(zap)->zap_ptrtbl.zt_blk + zap_f_phys(zap)->zap_ptrtbl.zt_numblks - 1; } else { /* Embedded ptrtbl */ nentries = (1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); lastblk = 0; } for (uint64_t idx = 0; idx < nentries; idx++) { uint64_t blk; if (zap_idx_to_blk(zap, idx, &blk) != 0) return; if (blk > lastblk) lastblk = blk; } ASSERT3U(lastblk, <, zap_f_phys(zap)->zap_freeblk); zap_f_phys(zap)->zap_freeblk = lastblk + 1; } /* * ZAP shrinking algorithm. * * We shrink ZAP recuresively removing empty leaves. We can remove an empty leaf * only if it has a sibling. Sibling leaves have the same prefix length and * their prefixes differ only by the least significant (sibling) bit. We require * both siblings to be empty. This eliminates a need to rehash the non-empty * remaining leaf. When we have removed one of two empty sibling, we set ptrtbl * entries of the removed leaf to point out to the remaining leaf. Prefix length * of the remaining leaf is decremented. As a result, it has a new prefix and it * might have a new sibling. So, we repeat the process. * * Steps: * 1. Check if a sibling leaf (sl) exists and it is empty. * 2. Release the leaf (l) if it has the sibling bit (slbit) equal to 1. * 3. Release the sibling (sl) to derefer it again with WRITER lock. * 4. Upgrade zapdir lock to WRITER (once). * 5. Derefer released leaves again. * 6. If it is needed, recheck whether both leaves are still siblings and empty. * 7. Set ptrtbl pointers of the removed leaf (slbit 1) to point out to blkid of * the remaining leaf (slbit 0). * 8. Free disk block of the removed leaf (dmu_free_range). * 9. Decrement prefix_len of the remaining leaf. * 10. Repeat the steps. */ static int zap_shrink(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx) { zap_t *zap = zn->zn_zap; int64_t zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift; uint64_t hash = zn->zn_hash; uint64_t prefix = zap_leaf_phys(l)->l_hdr.lh_prefix; uint64_t prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len; boolean_t trunc = B_FALSE; int err = 0; ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nentries, ==, 0); ASSERT3U(prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT3U(ZAP_HASH_IDX(hash, prefix_len), ==, prefix); boolean_t writer = B_FALSE; /* * To avoid deadlock always deref leaves in the same order - * sibling 0 first, then sibling 1. */ while (prefix_len) { zap_leaf_t *sl; int64_t prefix_diff = zt_shift - prefix_len; uint64_t sl_prefix = prefix ^ 1; uint64_t sl_hash = ZAP_PREFIX_HASH(sl_prefix, prefix_len); int slbit = prefix & 1; ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nentries, ==, 0); /* * Check if there is a sibling by reading ptrtbl ptrs. */ if (check_sibling_ptrtbl_range(zap, sl_prefix, prefix_len) == 0) break; /* * sibling 1, unlock it - we haven't yet dereferenced sibling 0. */ if (slbit == 1) { zap_put_leaf(l); l = NULL; } /* * Dereference sibling leaf and check if it is empty. */ if ((err = zap_deref_leaf(zap, sl_hash, tx, RW_READER, &sl)) != 0) break; ASSERT3U(ZAP_HASH_IDX(sl_hash, prefix_len), ==, sl_prefix); /* * Check if we have a sibling and it is empty. */ if (zap_leaf_phys(sl)->l_hdr.lh_prefix_len != prefix_len || zap_leaf_phys(sl)->l_hdr.lh_nentries != 0) { zap_put_leaf(sl); break; } zap_put_leaf(sl); /* * If there two empty sibling, we have work to do, so * we need to lock ZAP ptrtbl as WRITER. */ if (!writer && (writer = zap_tryupgradedir(zap, tx)) == 0) { /* We failed to upgrade */ if (l != NULL) { zap_put_leaf(l); l = NULL; } /* * Usually, the right way to upgrade from a READER lock * to a WRITER lock is to call zap_unlockdir() and * zap_lockdir(), but we do not have a tag. Instead, * we do it in more sophisticated way. */ rw_exit(&zap->zap_rwlock); rw_enter(&zap->zap_rwlock, RW_WRITER); dmu_buf_will_dirty(zap->zap_dbuf, tx); zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift; writer = B_TRUE; } /* * Here we have WRITER lock for ptrtbl. * Now, we need a WRITER lock for both siblings leaves. * Also, we have to recheck if the leaves are still siblings * and still empty. */ if (l == NULL) { /* sibling 0 */ if ((err = zap_deref_leaf(zap, (slbit ? sl_hash : hash), tx, RW_WRITER, &l)) != 0) break; /* * The leaf isn't empty anymore or * it was shrunk/split while our locks were down. */ if (zap_leaf_phys(l)->l_hdr.lh_nentries != 0 || zap_leaf_phys(l)->l_hdr.lh_prefix_len != prefix_len) break; } /* sibling 1 */ if ((err = zap_deref_leaf(zap, (slbit ? hash : sl_hash), tx, RW_WRITER, &sl)) != 0) break; /* * The leaf isn't empty anymore or * it was shrunk/split while our locks were down. */ if (zap_leaf_phys(sl)->l_hdr.lh_nentries != 0 || zap_leaf_phys(sl)->l_hdr.lh_prefix_len != prefix_len) { zap_put_leaf(sl); break; } /* If we have gotten here, we have a leaf to collapse */ uint64_t idx = (slbit ? prefix : sl_prefix) << prefix_diff; uint64_t nptrs = (1ULL << prefix_diff); uint64_t sl_blkid = sl->l_blkid; /* * Set ptrtbl entries to point out to the slibling 0 blkid */ if ((err = zap_set_idx_range_to_blk(zap, idx, nptrs, l->l_blkid, tx)) != 0) { zap_put_leaf(sl); break; } /* * Free sibling 1 disk block. */ int bs = FZAP_BLOCK_SHIFT(zap); if (sl_blkid == zap_f_phys(zap)->zap_freeblk - 1) trunc = B_TRUE; (void) dmu_free_range(zap->zap_objset, zap->zap_object, sl_blkid << bs, 1 << bs, tx); zap_put_leaf(sl); zap_f_phys(zap)->zap_num_leafs--; /* * Update prefix and prefix_len. */ zap_leaf_phys(l)->l_hdr.lh_prefix >>= 1; zap_leaf_phys(l)->l_hdr.lh_prefix_len--; prefix = zap_leaf_phys(l)->l_hdr.lh_prefix; prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len; } if (trunc) zap_trunc(zap); if (l != NULL) zap_put_leaf(l); return (err); } /* CSTYLED */ ZFS_MODULE_PARAM(zfs, , zap_iterate_prefetch, INT, ZMOD_RW, "When iterating ZAP object, prefetch it"); /* CSTYLED */ ZFS_MODULE_PARAM(zfs, , zap_shrink_enabled, INT, ZMOD_RW, "Enable ZAP shrinking");