/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2017 by Lawrence Livermore National Security, LLC. */ #include #include #include #include #include #include #include #include #include /* * Multi-Modifier Protection (MMP) attempts to prevent a user from importing * or opening a pool on more than one host at a time. In particular, it * prevents "zpool import -f" on a host from succeeding while the pool is * already imported on another host. There are many other ways in which a * device could be used by two hosts for different purposes at the same time * resulting in pool damage. This implementation does not attempt to detect * those cases. * * MMP operates by ensuring there are frequent visible changes on disk (a * "heartbeat") at all times. And by altering the import process to check * for these changes and failing the import when they are detected. This * functionality is enabled by setting the 'multihost' pool property to on. * * Uberblocks written by the txg_sync thread always go into the first * (N-MMP_BLOCKS_PER_LABEL) slots, the remaining slots are reserved for MMP. * They are used to hold uberblocks which are exactly the same as the last * synced uberblock except that the ub_timestamp is frequently updated. * Like all other uberblocks, the slot is written with an embedded checksum, * and slots with invalid checksums are ignored. This provides the * "heartbeat", with no risk of overwriting good uberblocks that must be * preserved, e.g. previous txgs and associated block pointers. * * Two optional fields are added to uberblock structure: ub_mmp_magic and * ub_mmp_delay. The magic field allows zfs to tell whether ub_mmp_delay is * valid. The delay field is a decaying average of the amount of time between * completion of successive MMP writes, in nanoseconds. It is used to predict * how long the import must wait to detect activity in the pool, before * concluding it is not in use. * * During import an activity test may now be performed to determine if * the pool is in use. The activity test is typically required if the * ZPOOL_CONFIG_HOSTID does not match the system hostid, the pool state is * POOL_STATE_ACTIVE, and the pool is not a root pool. * * The activity test finds the "best" uberblock (highest txg & timestamp), * waits some time, and then finds the "best" uberblock again. If the txg * and timestamp in both "best" uberblocks do not match, the pool is in use * by another host and the import fails. Since the granularity of the * timestamp is in seconds this activity test must take a bare minimum of one * second. In order to assure the accuracy of the activity test, the default * values result in an activity test duration of 10x the mmp write interval. * * The "zpool import" activity test can be expected to take a minimum time of * zfs_multihost_import_intervals * zfs_multihost_interval milliseconds. If the * "best" uberblock has a valid ub_mmp_delay field, then the duration of the * test may take longer if MMP writes were occurring less frequently than * expected. Additionally, the duration is then extended by a random 25% to * attempt to to detect simultaneous imports. For example, if both partner * hosts are rebooted at the same time and automatically attempt to import the * pool. */ /* * Used to control the frequency of mmp writes which are performed when the * 'multihost' pool property is on. This is one factor used to determine the * length of the activity check during import. * * The mmp write period is zfs_multihost_interval / leaf-vdevs milliseconds. * This means that on average an mmp write will be issued for each leaf vdev * every zfs_multihost_interval milliseconds. In practice, the observed period * can vary with the I/O load and this observed value is the delay which is * stored in the uberblock. The minimum allowed value is 100 ms. */ ulong_t zfs_multihost_interval = MMP_DEFAULT_INTERVAL; /* * Used to control the duration of the activity test on import. Smaller values * of zfs_multihost_import_intervals will reduce the import time but increase * the risk of failing to detect an active pool. The total activity check time * is never allowed to drop below one second. A value of 0 is ignored and * treated as if it was set to 1. */ uint_t zfs_multihost_import_intervals = MMP_DEFAULT_IMPORT_INTERVALS; /* * Controls the behavior of the pool when mmp write failures are detected. * * When zfs_multihost_fail_intervals = 0 then mmp write failures are ignored. * The failures will still be reported to the ZED which depending on its * configuration may take action such as suspending the pool or taking a * device offline. * * When zfs_multihost_fail_intervals > 0 then sequential mmp write failures will * cause the pool to be suspended. This occurs when * zfs_multihost_fail_intervals * zfs_multihost_interval milliseconds have * passed since the last successful mmp write. This guarantees the activity * test will see mmp writes if the * pool is imported. */ uint_t zfs_multihost_fail_intervals = MMP_DEFAULT_FAIL_INTERVALS; char *mmp_tag = "mmp_write_uberblock"; static void mmp_thread(void *arg); void mmp_init(spa_t *spa) { mmp_thread_t *mmp = &spa->spa_mmp; mutex_init(&mmp->mmp_thread_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&mmp->mmp_thread_cv, NULL, CV_DEFAULT, NULL); mutex_init(&mmp->mmp_io_lock, NULL, MUTEX_DEFAULT, NULL); mmp->mmp_kstat_id = 1; } void mmp_fini(spa_t *spa) { mmp_thread_t *mmp = &spa->spa_mmp; mutex_destroy(&mmp->mmp_thread_lock); cv_destroy(&mmp->mmp_thread_cv); mutex_destroy(&mmp->mmp_io_lock); } static void mmp_thread_enter(mmp_thread_t *mmp, callb_cpr_t *cpr) { CALLB_CPR_INIT(cpr, &mmp->mmp_thread_lock, callb_generic_cpr, FTAG); mutex_enter(&mmp->mmp_thread_lock); } static void mmp_thread_exit(mmp_thread_t *mmp, kthread_t **mpp, callb_cpr_t *cpr) { ASSERT(*mpp != NULL); *mpp = NULL; cv_broadcast(&mmp->mmp_thread_cv); CALLB_CPR_EXIT(cpr); /* drops &mmp->mmp_thread_lock */ thread_exit(); } void mmp_thread_start(spa_t *spa) { mmp_thread_t *mmp = &spa->spa_mmp; if (spa_writeable(spa)) { mutex_enter(&mmp->mmp_thread_lock); if (!mmp->mmp_thread) { dprintf("mmp_thread_start pool %s\n", spa->spa_name); mmp->mmp_thread = thread_create(NULL, 0, mmp_thread, spa, 0, &p0, TS_RUN, defclsyspri); } mutex_exit(&mmp->mmp_thread_lock); } } void mmp_thread_stop(spa_t *spa) { mmp_thread_t *mmp = &spa->spa_mmp; mutex_enter(&mmp->mmp_thread_lock); mmp->mmp_thread_exiting = 1; cv_broadcast(&mmp->mmp_thread_cv); while (mmp->mmp_thread) { cv_wait(&mmp->mmp_thread_cv, &mmp->mmp_thread_lock); } mutex_exit(&mmp->mmp_thread_lock); ASSERT(mmp->mmp_thread == NULL); mmp->mmp_thread_exiting = 0; } typedef enum mmp_vdev_state_flag { MMP_FAIL_NOT_WRITABLE = (1 << 0), MMP_FAIL_WRITE_PENDING = (1 << 1), } mmp_vdev_state_flag_t; static vdev_t * mmp_random_leaf_impl(vdev_t *vd, int *fail_mask) { int child_idx; if (vd->vdev_ops->vdev_op_leaf) { vdev_t *ret; if (!vdev_writeable(vd)) { *fail_mask |= MMP_FAIL_NOT_WRITABLE; ret = NULL; } else if (vd->vdev_mmp_pending != 0) { *fail_mask |= MMP_FAIL_WRITE_PENDING; ret = NULL; } else { ret = vd; } return (ret); } if (vd->vdev_children == 0) return (NULL); child_idx = spa_get_random(vd->vdev_children); for (int offset = vd->vdev_children; offset > 0; offset--) { vdev_t *leaf; vdev_t *child = vd->vdev_child[(child_idx + offset) % vd->vdev_children]; leaf = mmp_random_leaf_impl(child, fail_mask); if (leaf) return (leaf); } return (NULL); } /* * Find a leaf vdev to write an MMP block to. It must not have an outstanding * mmp write (if so a new write will also likely block). If there is no usable * leaf in the tree rooted at in_vd, a nonzero error value is returned, and * *out_vd is unchanged. * * The error value returned is a bit field. * * MMP_FAIL_WRITE_PENDING * If set, one or more leaf vdevs are writeable, but have an MMP write which has * not yet completed. * * MMP_FAIL_NOT_WRITABLE * If set, one or more vdevs are not writeable. The children of those vdevs * were not examined. * * Assuming in_vd points to a tree, a random subtree will be chosen to start. * That subtree, and successive ones, will be walked until a usable leaf has * been found, or all subtrees have been examined (except that the children of * un-writeable vdevs are not examined). * * If the leaf vdevs in the tree are healthy, the distribution of returned leaf * vdevs will be even. If there are unhealthy leaves, the following leaves * (child_index % index_children) will be chosen more often. */ static int mmp_random_leaf(vdev_t *in_vd, vdev_t **out_vd) { int error_mask = 0; vdev_t *vd = mmp_random_leaf_impl(in_vd, &error_mask); if (error_mask == 0) *out_vd = vd; return (error_mask); } /* * MMP writes are issued on a fixed schedule, but may complete at variable, * much longer, intervals. The mmp_delay captures long periods between * successful writes for any reason, including disk latency, scheduling delays, * etc. * * The mmp_delay is usually calculated as a decaying average, but if the latest * delay is higher we do not average it, so that we do not hide sudden spikes * which the importing host must wait for. * * If writes are occurring frequently, such as due to a high rate of txg syncs, * the mmp_delay could become very small. Since those short delays depend on * activity we cannot count on, we never allow mmp_delay to get lower than rate * expected if only mmp_thread writes occur. * * If an mmp write was skipped or fails, and we have already waited longer than * mmp_delay, we need to update it so the next write reflects the longer delay. * * Do not set mmp_delay if the multihost property is not on, so as not to * trigger an activity check on import. */ static void mmp_delay_update(spa_t *spa, boolean_t write_completed) { mmp_thread_t *mts = &spa->spa_mmp; hrtime_t delay = gethrtime() - mts->mmp_last_write; ASSERT(MUTEX_HELD(&mts->mmp_io_lock)); if (spa_multihost(spa) == B_FALSE) { mts->mmp_delay = 0; return; } if (delay > mts->mmp_delay) mts->mmp_delay = delay; if (write_completed == B_FALSE) return; mts->mmp_last_write = gethrtime(); /* * strictly less than, in case delay was changed above. */ if (delay < mts->mmp_delay) { hrtime_t min_delay = MSEC2NSEC(zfs_multihost_interval) / MAX(1, vdev_count_leaves(spa)); mts->mmp_delay = MAX(((delay + mts->mmp_delay * 127) / 128), min_delay); } } static void mmp_write_done(zio_t *zio) { spa_t *spa = zio->io_spa; vdev_t *vd = zio->io_vd; mmp_thread_t *mts = zio->io_private; mutex_enter(&mts->mmp_io_lock); uint64_t mmp_kstat_id = vd->vdev_mmp_kstat_id; hrtime_t mmp_write_duration = gethrtime() - vd->vdev_mmp_pending; mmp_delay_update(spa, (zio->io_error == 0)); vd->vdev_mmp_pending = 0; vd->vdev_mmp_kstat_id = 0; mutex_exit(&mts->mmp_io_lock); spa_config_exit(spa, SCL_STATE, mmp_tag); spa_mmp_history_set(spa, mmp_kstat_id, zio->io_error, mmp_write_duration); abd_free(zio->io_abd); } /* * When the uberblock on-disk is updated by a spa_sync, * creating a new "best" uberblock, update the one stored * in the mmp thread state, used for mmp writes. */ void mmp_update_uberblock(spa_t *spa, uberblock_t *ub) { mmp_thread_t *mmp = &spa->spa_mmp; mutex_enter(&mmp->mmp_io_lock); mmp->mmp_ub = *ub; mmp->mmp_ub.ub_timestamp = gethrestime_sec(); mmp_delay_update(spa, B_TRUE); mutex_exit(&mmp->mmp_io_lock); } /* * Choose a random vdev, label, and MMP block, and write over it * with a copy of the last-synced uberblock, whose timestamp * has been updated to reflect that the pool is in use. */ static void mmp_write_uberblock(spa_t *spa) { int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; mmp_thread_t *mmp = &spa->spa_mmp; uberblock_t *ub; vdev_t *vd = NULL; int label, error; uint64_t offset; hrtime_t lock_acquire_time = gethrtime(); spa_config_enter(spa, SCL_STATE, mmp_tag, RW_READER); lock_acquire_time = gethrtime() - lock_acquire_time; if (lock_acquire_time > (MSEC2NSEC(MMP_MIN_INTERVAL) / 10)) zfs_dbgmsg("SCL_STATE acquisition took %llu ns\n", (u_longlong_t)lock_acquire_time); error = mmp_random_leaf(spa->spa_root_vdev, &vd); mutex_enter(&mmp->mmp_io_lock); /* * spa_mmp_history has two types of entries: * Issued MMP write: records time issued, error status, etc. * Skipped MMP write: an MMP write could not be issued because no * suitable leaf vdev was available. See comment above struct * spa_mmp_history for details. */ if (error) { mmp_delay_update(spa, B_FALSE); if (mmp->mmp_skip_error == error) { spa_mmp_history_set_skip(spa, mmp->mmp_kstat_id - 1); } else { mmp->mmp_skip_error = error; spa_mmp_history_add(spa, mmp->mmp_ub.ub_txg, gethrestime_sec(), mmp->mmp_delay, NULL, 0, mmp->mmp_kstat_id++, error); } mutex_exit(&mmp->mmp_io_lock); spa_config_exit(spa, SCL_STATE, FTAG); return; } mmp->mmp_skip_error = 0; if (mmp->mmp_zio_root == NULL) mmp->mmp_zio_root = zio_root(spa, NULL, NULL, flags | ZIO_FLAG_GODFATHER); ub = &mmp->mmp_ub; ub->ub_timestamp = gethrestime_sec(); ub->ub_mmp_magic = MMP_MAGIC; ub->ub_mmp_delay = mmp->mmp_delay; vd->vdev_mmp_pending = gethrtime(); vd->vdev_mmp_kstat_id = mmp->mmp_kstat_id; zio_t *zio = zio_null(mmp->mmp_zio_root, spa, NULL, NULL, NULL, flags); abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); mmp->mmp_kstat_id++; mutex_exit(&mmp->mmp_io_lock); offset = VDEV_UBERBLOCK_OFFSET(vd, VDEV_UBERBLOCK_COUNT(vd) - MMP_BLOCKS_PER_LABEL + spa_get_random(MMP_BLOCKS_PER_LABEL)); label = spa_get_random(VDEV_LABELS); vdev_label_write(zio, vd, label, ub_abd, offset, VDEV_UBERBLOCK_SIZE(vd), mmp_write_done, mmp, flags | ZIO_FLAG_DONT_PROPAGATE); (void) spa_mmp_history_add(spa, ub->ub_txg, ub->ub_timestamp, ub->ub_mmp_delay, vd, label, vd->vdev_mmp_kstat_id, 0); zio_nowait(zio); } static void mmp_thread(void *arg) { spa_t *spa = (spa_t *)arg; mmp_thread_t *mmp = &spa->spa_mmp; boolean_t last_spa_suspended = spa_suspended(spa); boolean_t last_spa_multihost = spa_multihost(spa); callb_cpr_t cpr; hrtime_t max_fail_ns = zfs_multihost_fail_intervals * MSEC2NSEC(MAX(zfs_multihost_interval, MMP_MIN_INTERVAL)); mmp_thread_enter(mmp, &cpr); /* * The mmp_write_done() function calculates mmp_delay based on the * prior value of mmp_delay and the elapsed time since the last write. * For the first mmp write, there is no "last write", so we start * with fake, but reasonable, default non-zero values. */ mmp->mmp_delay = MSEC2NSEC(MAX(zfs_multihost_interval, MMP_MIN_INTERVAL)) / MAX(vdev_count_leaves(spa), 1); mmp->mmp_last_write = gethrtime() - mmp->mmp_delay; while (!mmp->mmp_thread_exiting) { uint64_t mmp_fail_intervals = zfs_multihost_fail_intervals; uint64_t mmp_interval = MSEC2NSEC( MAX(zfs_multihost_interval, MMP_MIN_INTERVAL)); boolean_t suspended = spa_suspended(spa); boolean_t multihost = spa_multihost(spa); hrtime_t next_time; if (multihost) next_time = gethrtime() + mmp_interval / MAX(vdev_count_leaves(spa), 1); else next_time = gethrtime() + MSEC2NSEC(MMP_DEFAULT_INTERVAL); /* * MMP off => on, or suspended => !suspended: * No writes occurred recently. Update mmp_last_write to give * us some time to try. */ if ((!last_spa_multihost && multihost) || (last_spa_suspended && !suspended)) { mutex_enter(&mmp->mmp_io_lock); mmp->mmp_last_write = gethrtime(); mutex_exit(&mmp->mmp_io_lock); } /* * MMP on => off: * mmp_delay == 0 tells importing node to skip activity check. */ if (last_spa_multihost && !multihost) { mutex_enter(&mmp->mmp_io_lock); mmp->mmp_delay = 0; mutex_exit(&mmp->mmp_io_lock); } last_spa_multihost = multihost; last_spa_suspended = suspended; /* * Smooth max_fail_ns when its factors are decreased, because * making (max_fail_ns < mmp_interval) results in the pool being * immediately suspended before writes can occur at the new * higher frequency. */ if ((mmp_interval * mmp_fail_intervals) < max_fail_ns) { max_fail_ns = ((31 * max_fail_ns) + (mmp_interval * mmp_fail_intervals)) / 32; } else { max_fail_ns = mmp_interval * mmp_fail_intervals; } /* * Suspend the pool if no MMP write has succeeded in over * mmp_interval * mmp_fail_intervals nanoseconds. */ if (!suspended && mmp_fail_intervals && multihost && (gethrtime() - mmp->mmp_last_write) > max_fail_ns) { cmn_err(CE_WARN, "MMP writes to pool '%s' have not " "succeeded in over %llus; suspending pool", spa_name(spa), NSEC2SEC(gethrtime() - mmp->mmp_last_write)); zio_suspend(spa, NULL, ZIO_SUSPEND_MMP); } if (multihost && !suspended) mmp_write_uberblock(spa); CALLB_CPR_SAFE_BEGIN(&cpr); (void) cv_timedwait_sig_hires(&mmp->mmp_thread_cv, &mmp->mmp_thread_lock, next_time, USEC2NSEC(1), CALLOUT_FLAG_ABSOLUTE); CALLB_CPR_SAFE_END(&cpr, &mmp->mmp_thread_lock); } /* Outstanding writes are allowed to complete. */ if (mmp->mmp_zio_root) zio_wait(mmp->mmp_zio_root); mmp->mmp_zio_root = NULL; mmp_thread_exit(mmp, &mmp->mmp_thread, &cpr); } /* * Signal the MMP thread to wake it, when it is sleeping on * its cv. Used when some module parameter has changed and * we want the thread to know about it. * Only signal if the pool is active and mmp thread is * running, otherwise there is no thread to wake. */ static void mmp_signal_thread(spa_t *spa) { mmp_thread_t *mmp = &spa->spa_mmp; mutex_enter(&mmp->mmp_thread_lock); if (mmp->mmp_thread) cv_broadcast(&mmp->mmp_thread_cv); mutex_exit(&mmp->mmp_thread_lock); } void mmp_signal_all_threads(void) { spa_t *spa = NULL; mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa))) { if (spa->spa_state == POOL_STATE_ACTIVE) mmp_signal_thread(spa); } mutex_exit(&spa_namespace_lock); } #if defined(_KERNEL) #include static int param_set_multihost_interval(const char *val, zfs_kernel_param_t *kp) { int ret; ret = param_set_ulong(val, kp); if (ret < 0) return (ret); if (spa_mode_global != 0) mmp_signal_all_threads(); return (ret); } /* BEGIN CSTYLED */ module_param(zfs_multihost_fail_intervals, uint, 0644); MODULE_PARM_DESC(zfs_multihost_fail_intervals, "Max allowed period without a successful mmp write"); module_param_call(zfs_multihost_interval, param_set_multihost_interval, param_get_ulong, &zfs_multihost_interval, 0644); MODULE_PARM_DESC(zfs_multihost_interval, "Milliseconds between mmp writes to each leaf"); module_param(zfs_multihost_import_intervals, uint, 0644); MODULE_PARM_DESC(zfs_multihost_import_intervals, "Number of zfs_multihost_interval periods to wait for activity"); /* END CSTYLED */ #endif