/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2020 by Delphix. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2020 Oxide Computer Company */ #include #include #include #include #include #include #include #include #include #include #include static void dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx) { dmu_buf_impl_t *db; int txgoff = tx->tx_txg & TXG_MASK; int nblkptr = dn->dn_phys->dn_nblkptr; int old_toplvl = dn->dn_phys->dn_nlevels - 1; int new_level = dn->dn_next_nlevels[txgoff]; int i; rw_enter(&dn->dn_struct_rwlock, RW_WRITER); /* this dnode can't be paged out because it's dirty */ ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE); ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0); db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG); ASSERT(db != NULL); dn->dn_phys->dn_nlevels = new_level; dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset, (u_longlong_t)dn->dn_object, dn->dn_phys->dn_nlevels); /* * Lock ordering requires that we hold the children's db_mutexes (by * calling dbuf_find()) before holding the parent's db_rwlock. The lock * order is imposed by dbuf_read's steps of "grab the lock to protect * db_parent, get db_parent, hold db_parent's db_rwlock". */ dmu_buf_impl_t *children[DN_MAX_NBLKPTR]; ASSERT3U(nblkptr, <=, DN_MAX_NBLKPTR); for (i = 0; i < nblkptr; i++) { children[i] = dbuf_find(dn->dn_objset, dn->dn_object, old_toplvl, i, NULL); } /* transfer dnode's block pointers to new indirect block */ (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT); if (dn->dn_dbuf != NULL) rw_enter(&dn->dn_dbuf->db_rwlock, RW_WRITER); rw_enter(&db->db_rwlock, RW_WRITER); ASSERT(db->db.db_data); ASSERT(arc_released(db->db_buf)); ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size); memcpy(db->db.db_data, dn->dn_phys->dn_blkptr, sizeof (blkptr_t) * nblkptr); arc_buf_freeze(db->db_buf); /* set dbuf's parent pointers to new indirect buf */ for (i = 0; i < nblkptr; i++) { dmu_buf_impl_t *child = children[i]; if (child == NULL) continue; #ifdef ZFS_DEBUG DB_DNODE_ENTER(child); ASSERT3P(DB_DNODE(child), ==, dn); DB_DNODE_EXIT(child); #endif /* DEBUG */ if (child->db_parent && child->db_parent != dn->dn_dbuf) { ASSERT(child->db_parent->db_level == db->db_level); ASSERT(child->db_blkptr != &dn->dn_phys->dn_blkptr[child->db_blkid]); mutex_exit(&child->db_mtx); continue; } ASSERT(child->db_parent == NULL || child->db_parent == dn->dn_dbuf); child->db_parent = db; dbuf_add_ref(db, child); if (db->db.db_data) child->db_blkptr = (blkptr_t *)db->db.db_data + i; else child->db_blkptr = NULL; dprintf_dbuf_bp(child, child->db_blkptr, "changed db_blkptr to new indirect %s", ""); mutex_exit(&child->db_mtx); } memset(dn->dn_phys->dn_blkptr, 0, sizeof (blkptr_t) * nblkptr); rw_exit(&db->db_rwlock); if (dn->dn_dbuf != NULL) rw_exit(&dn->dn_dbuf->db_rwlock); dbuf_rele(db, FTAG); rw_exit(&dn->dn_struct_rwlock); } static void free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx) { dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; uint64_t bytesfreed = 0; dprintf("ds=%p obj=%llx num=%d\n", ds, (u_longlong_t)dn->dn_object, num); for (int i = 0; i < num; i++, bp++) { if (BP_IS_HOLE(bp)) continue; bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE); ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys)); /* * Save some useful information on the holes being * punched, including logical size, type, and indirection * level. Retaining birth time enables detection of when * holes are punched for reducing the number of free * records transmitted during a zfs send. */ uint64_t lsize = BP_GET_LSIZE(bp); dmu_object_type_t type = BP_GET_TYPE(bp); uint64_t lvl = BP_GET_LEVEL(bp); memset(bp, 0, sizeof (blkptr_t)); if (spa_feature_is_active(dn->dn_objset->os_spa, SPA_FEATURE_HOLE_BIRTH)) { BP_SET_LSIZE(bp, lsize); BP_SET_TYPE(bp, type); BP_SET_LEVEL(bp, lvl); BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0); } } dnode_diduse_space(dn, -bytesfreed); } #ifdef ZFS_DEBUG static void free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx) { uint64_t off, num, i, j; unsigned int epbs; int err; uint64_t txg = tx->tx_txg; dnode_t *dn; DB_DNODE_ENTER(db); dn = DB_DNODE(db); epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; off = start - (db->db_blkid << epbs); num = end - start + 1; ASSERT3U(dn->dn_phys->dn_indblkshift, >=, SPA_BLKPTRSHIFT); ASSERT3U(end + 1, >=, start); ASSERT3U(start, >=, (db->db_blkid << epbs)); ASSERT3U(db->db_level, >, 0); ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT); ASSERT(db->db_blkptr != NULL); for (i = off; i < off+num; i++) { uint64_t *buf; dmu_buf_impl_t *child; dbuf_dirty_record_t *dr; ASSERT(db->db_level == 1); rw_enter(&dn->dn_struct_rwlock, RW_READER); err = dbuf_hold_impl(dn, db->db_level - 1, (db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child); rw_exit(&dn->dn_struct_rwlock); if (err == ENOENT) continue; ASSERT(err == 0); ASSERT(child->db_level == 0); dr = dbuf_find_dirty_eq(child, txg); /* data_old better be zeroed */ if (dr) { buf = dr->dt.dl.dr_data->b_data; for (j = 0; j < child->db.db_size >> 3; j++) { if (buf[j] != 0) { panic("freed data not zero: " "child=%p i=%llu off=%llu " "num=%llu\n", (void *)child, (u_longlong_t)i, (u_longlong_t)off, (u_longlong_t)num); } } } /* * db_data better be zeroed unless it's dirty in a * future txg. */ mutex_enter(&child->db_mtx); buf = child->db.db_data; if (buf != NULL && child->db_state != DB_FILL && list_is_empty(&child->db_dirty_records)) { for (j = 0; j < child->db.db_size >> 3; j++) { if (buf[j] != 0) { panic("freed data not zero: " "child=%p i=%llu off=%llu " "num=%llu\n", (void *)child, (u_longlong_t)i, (u_longlong_t)off, (u_longlong_t)num); } } } mutex_exit(&child->db_mtx); dbuf_rele(child, FTAG); } DB_DNODE_EXIT(db); } #endif /* * We don't usually free the indirect blocks here. If in one txg we have a * free_range and a write to the same indirect block, it's important that we * preserve the hole's birth times. Therefore, we don't free any any indirect * blocks in free_children(). If an indirect block happens to turn into all * holes, it will be freed by dbuf_write_children_ready, which happens at a * point in the syncing process where we know for certain the contents of the * indirect block. * * However, if we're freeing a dnode, its space accounting must go to zero * before we actually try to free the dnode, or we will trip an assertion. In * addition, we know the case described above cannot occur, because the dnode is * being freed. Therefore, we free the indirect blocks immediately in that * case. */ static void free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks, boolean_t free_indirects, dmu_tx_t *tx) { dnode_t *dn; blkptr_t *bp; dmu_buf_impl_t *subdb; uint64_t start, end, dbstart, dbend; unsigned int epbs, shift, i; /* * There is a small possibility that this block will not be cached: * 1 - if level > 1 and there are no children with level <= 1 * 2 - if this block was evicted since we read it from * dmu_tx_hold_free(). */ if (db->db_state != DB_CACHED) (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); /* * If we modify this indirect block, and we are not freeing the * dnode (!free_indirects), then this indirect block needs to get * written to disk by dbuf_write(). If it is dirty, we know it will * be written (otherwise, we would have incorrect on-disk state * because the space would be freed but still referenced by the BP * in this indirect block). Therefore we VERIFY that it is * dirty. * * Our VERIFY covers some cases that do not actually have to be * dirty, but the open-context code happens to dirty. E.g. if the * blocks we are freeing are all holes, because in that case, we * are only freeing part of this indirect block, so it is an * ancestor of the first or last block to be freed. The first and * last L1 indirect blocks are always dirtied by dnode_free_range(). */ db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0); dmu_buf_unlock_parent(db, dblt, FTAG); dbuf_release_bp(db); bp = db->db.db_data; DB_DNODE_ENTER(db); dn = DB_DNODE(db); epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT3U(epbs, <, 31); shift = (db->db_level - 1) * epbs; dbstart = db->db_blkid << epbs; start = blkid >> shift; if (dbstart < start) { bp += start - dbstart; } else { start = dbstart; } dbend = ((db->db_blkid + 1) << epbs) - 1; end = (blkid + nblks - 1) >> shift; if (dbend <= end) end = dbend; ASSERT3U(start, <=, end); if (db->db_level == 1) { FREE_VERIFY(db, start, end, tx); rw_enter(&db->db_rwlock, RW_WRITER); free_blocks(dn, bp, end - start + 1, tx); rw_exit(&db->db_rwlock); } else { for (uint64_t id = start; id <= end; id++, bp++) { if (BP_IS_HOLE(bp)) continue; rw_enter(&dn->dn_struct_rwlock, RW_READER); VERIFY0(dbuf_hold_impl(dn, db->db_level - 1, id, TRUE, FALSE, FTAG, &subdb)); rw_exit(&dn->dn_struct_rwlock); ASSERT3P(bp, ==, subdb->db_blkptr); free_children(subdb, blkid, nblks, free_indirects, tx); dbuf_rele(subdb, FTAG); } } if (free_indirects) { rw_enter(&db->db_rwlock, RW_WRITER); for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) ASSERT(BP_IS_HOLE(bp)); memset(db->db.db_data, 0, db->db.db_size); free_blocks(dn, db->db_blkptr, 1, tx); rw_exit(&db->db_rwlock); } DB_DNODE_EXIT(db); arc_buf_freeze(db->db_buf); } /* * Traverse the indicated range of the provided file * and "free" all the blocks contained there. */ static void dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks, boolean_t free_indirects, dmu_tx_t *tx) { blkptr_t *bp = dn->dn_phys->dn_blkptr; int dnlevel = dn->dn_phys->dn_nlevels; boolean_t trunc = B_FALSE; if (blkid > dn->dn_phys->dn_maxblkid) return; ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX); if (blkid + nblks > dn->dn_phys->dn_maxblkid) { nblks = dn->dn_phys->dn_maxblkid - blkid + 1; trunc = B_TRUE; } /* There are no indirect blocks in the object */ if (dnlevel == 1) { if (blkid >= dn->dn_phys->dn_nblkptr) { /* this range was never made persistent */ return; } ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr); free_blocks(dn, bp + blkid, nblks, tx); } else { int shift = (dnlevel - 1) * (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT); int start = blkid >> shift; int end = (blkid + nblks - 1) >> shift; dmu_buf_impl_t *db; ASSERT(start < dn->dn_phys->dn_nblkptr); bp += start; for (int i = start; i <= end; i++, bp++) { if (BP_IS_HOLE(bp)) continue; rw_enter(&dn->dn_struct_rwlock, RW_READER); VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i, TRUE, FALSE, FTAG, &db)); rw_exit(&dn->dn_struct_rwlock); free_children(db, blkid, nblks, free_indirects, tx); dbuf_rele(db, FTAG); } } /* * Do not truncate the maxblkid if we are performing a raw * receive. The raw receive sets the maxblkid manually and * must not be overridden. Usually, the last DRR_FREE record * will be at the maxblkid, because the source system sets * the maxblkid when truncating. However, if the last block * was freed by overwriting with zeros and being compressed * away to a hole, the source system will generate a DRR_FREE * record while leaving the maxblkid after the end of that * record. In this case we need to leave the maxblkid as * indicated in the DRR_OBJECT record, so that it matches the * source system, ensuring that the cryptographic hashes will * match. */ if (trunc && !dn->dn_objset->os_raw_receive) { uint64_t off __maybe_unused; dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1; off = (dn->dn_phys->dn_maxblkid + 1) * (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT); ASSERT(off < dn->dn_phys->dn_maxblkid || dn->dn_phys->dn_maxblkid == 0 || dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0); } } typedef struct dnode_sync_free_range_arg { dnode_t *dsfra_dnode; dmu_tx_t *dsfra_tx; boolean_t dsfra_free_indirects; } dnode_sync_free_range_arg_t; static void dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks) { dnode_sync_free_range_arg_t *dsfra = arg; dnode_t *dn = dsfra->dsfra_dnode; mutex_exit(&dn->dn_mtx); dnode_sync_free_range_impl(dn, blkid, nblks, dsfra->dsfra_free_indirects, dsfra->dsfra_tx); mutex_enter(&dn->dn_mtx); } /* * Try to kick all the dnode's dbufs out of the cache... */ void dnode_evict_dbufs(dnode_t *dn) { dmu_buf_impl_t *db_marker; dmu_buf_impl_t *db, *db_next; db_marker = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); mutex_enter(&dn->dn_dbufs_mtx); for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) { #ifdef ZFS_DEBUG DB_DNODE_ENTER(db); ASSERT3P(DB_DNODE(db), ==, dn); DB_DNODE_EXIT(db); #endif /* DEBUG */ mutex_enter(&db->db_mtx); if (db->db_state != DB_EVICTING && zfs_refcount_is_zero(&db->db_holds)) { db_marker->db_level = db->db_level; db_marker->db_blkid = db->db_blkid; db_marker->db_state = DB_SEARCH; avl_insert_here(&dn->dn_dbufs, db_marker, db, AVL_BEFORE); /* * We need to use the "marker" dbuf rather than * simply getting the next dbuf, because * dbuf_destroy() may actually remove multiple dbufs. * It can call itself recursively on the parent dbuf, * which may also be removed from dn_dbufs. The code * flow would look like: * * dbuf_destroy(): * dnode_rele_and_unlock(parent_dbuf, evicting=TRUE): * if (!cacheable || pending_evict) * dbuf_destroy() */ dbuf_destroy(db); db_next = AVL_NEXT(&dn->dn_dbufs, db_marker); avl_remove(&dn->dn_dbufs, db_marker); } else { db->db_pending_evict = TRUE; mutex_exit(&db->db_mtx); db_next = AVL_NEXT(&dn->dn_dbufs, db); } } mutex_exit(&dn->dn_dbufs_mtx); kmem_free(db_marker, sizeof (dmu_buf_impl_t)); dnode_evict_bonus(dn); } void dnode_evict_bonus(dnode_t *dn) { rw_enter(&dn->dn_struct_rwlock, RW_WRITER); if (dn->dn_bonus != NULL) { if (zfs_refcount_is_zero(&dn->dn_bonus->db_holds)) { mutex_enter(&dn->dn_bonus->db_mtx); dbuf_destroy(dn->dn_bonus); dn->dn_bonus = NULL; } else { dn->dn_bonus->db_pending_evict = TRUE; } } rw_exit(&dn->dn_struct_rwlock); } static void dnode_undirty_dbufs(list_t *list) { dbuf_dirty_record_t *dr; while ((dr = list_head(list))) { dmu_buf_impl_t *db = dr->dr_dbuf; uint64_t txg = dr->dr_txg; if (db->db_level != 0) dnode_undirty_dbufs(&dr->dt.di.dr_children); mutex_enter(&db->db_mtx); /* XXX - use dbuf_undirty()? */ list_remove(list, dr); ASSERT(list_head(&db->db_dirty_records) == dr); list_remove_head(&db->db_dirty_records); ASSERT(list_is_empty(&db->db_dirty_records)); db->db_dirtycnt -= 1; if (db->db_level == 0) { ASSERT(db->db_blkid == DMU_BONUS_BLKID || dr->dt.dl.dr_data == db->db_buf); dbuf_unoverride(dr); } else { mutex_destroy(&dr->dt.di.dr_mtx); list_destroy(&dr->dt.di.dr_children); } kmem_free(dr, sizeof (dbuf_dirty_record_t)); dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE); } } static void dnode_sync_free(dnode_t *dn, dmu_tx_t *tx) { int txgoff = tx->tx_txg & TXG_MASK; ASSERT(dmu_tx_is_syncing(tx)); /* * Our contents should have been freed in dnode_sync() by the * free range record inserted by the caller of dnode_free(). */ ASSERT0(DN_USED_BYTES(dn->dn_phys)); ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr)); dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]); dnode_evict_dbufs(dn); /* * XXX - It would be nice to assert this, but we may still * have residual holds from async evictions from the arc... * * zfs_obj_to_path() also depends on this being * commented out. * * ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 1); */ /* Undirty next bits */ dn->dn_next_nlevels[txgoff] = 0; dn->dn_next_indblkshift[txgoff] = 0; dn->dn_next_blksz[txgoff] = 0; dn->dn_next_maxblkid[txgoff] = 0; /* ASSERT(blkptrs are zero); */ ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE); ASSERT(dn->dn_type != DMU_OT_NONE); ASSERT(dn->dn_free_txg > 0); if (dn->dn_allocated_txg != dn->dn_free_txg) dmu_buf_will_dirty(&dn->dn_dbuf->db, tx); memset(dn->dn_phys, 0, sizeof (dnode_phys_t) * dn->dn_num_slots); dnode_free_interior_slots(dn); mutex_enter(&dn->dn_mtx); dn->dn_type = DMU_OT_NONE; dn->dn_maxblkid = 0; dn->dn_allocated_txg = 0; dn->dn_free_txg = 0; dn->dn_have_spill = B_FALSE; dn->dn_num_slots = 1; mutex_exit(&dn->dn_mtx); ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg); /* * Now that we've released our hold, the dnode may * be evicted, so we mustn't access it. */ } /* * Write out the dnode's dirty buffers. */ void dnode_sync(dnode_t *dn, dmu_tx_t *tx) { objset_t *os = dn->dn_objset; dnode_phys_t *dnp = dn->dn_phys; int txgoff = tx->tx_txg & TXG_MASK; list_t *list = &dn->dn_dirty_records[txgoff]; static const dnode_phys_t zerodn __maybe_unused = { 0 }; boolean_t kill_spill = B_FALSE; ASSERT(dmu_tx_is_syncing(tx)); ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg); ASSERT(dnp->dn_type != DMU_OT_NONE || memcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0); DNODE_VERIFY(dn); ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf)); /* * Do user accounting if it is enabled and this is not * an encrypted receive. */ if (dmu_objset_userused_enabled(os) && !DMU_OBJECT_IS_SPECIAL(dn->dn_object) && (!os->os_encrypted || !dmu_objset_is_receiving(os))) { mutex_enter(&dn->dn_mtx); dn->dn_oldused = DN_USED_BYTES(dn->dn_phys); dn->dn_oldflags = dn->dn_phys->dn_flags; dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED; if (dmu_objset_userobjused_enabled(dn->dn_objset)) dn->dn_phys->dn_flags |= DNODE_FLAG_USEROBJUSED_ACCOUNTED; mutex_exit(&dn->dn_mtx); dmu_objset_userquota_get_ids(dn, B_FALSE, tx); } else if (!(os->os_encrypted && dmu_objset_is_receiving(os))) { /* * Once we account for it, we should always account for it, * except for the case of a raw receive. We will not be able * to account for it until the receiving dataset has been * mounted. */ ASSERT(!(dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED)); ASSERT(!(dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED)); } mutex_enter(&dn->dn_mtx); if (dn->dn_allocated_txg == tx->tx_txg) { /* The dnode is newly allocated or reallocated */ if (dnp->dn_type == DMU_OT_NONE) { /* this is a first alloc, not a realloc */ dnp->dn_nlevels = 1; dnp->dn_nblkptr = dn->dn_nblkptr; } dnp->dn_type = dn->dn_type; dnp->dn_bonustype = dn->dn_bonustype; dnp->dn_bonuslen = dn->dn_bonuslen; } dnp->dn_extra_slots = dn->dn_num_slots - 1; ASSERT(dnp->dn_nlevels > 1 || BP_IS_HOLE(&dnp->dn_blkptr[0]) || BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) || BP_GET_LSIZE(&dnp->dn_blkptr[0]) == dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); ASSERT(dnp->dn_nlevels < 2 || BP_IS_HOLE(&dnp->dn_blkptr[0]) || BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift); if (dn->dn_next_type[txgoff] != 0) { dnp->dn_type = dn->dn_type; dn->dn_next_type[txgoff] = 0; } if (dn->dn_next_blksz[txgoff] != 0) { ASSERT(P2PHASE(dn->dn_next_blksz[txgoff], SPA_MINBLOCKSIZE) == 0); ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) || dn->dn_maxblkid == 0 || list_head(list) != NULL || dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT == dnp->dn_datablkszsec || !range_tree_is_empty(dn->dn_free_ranges[txgoff])); dnp->dn_datablkszsec = dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT; dn->dn_next_blksz[txgoff] = 0; } if (dn->dn_next_bonuslen[txgoff] != 0) { if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN) dnp->dn_bonuslen = 0; else dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff]; ASSERT(dnp->dn_bonuslen <= DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1)); dn->dn_next_bonuslen[txgoff] = 0; } if (dn->dn_next_bonustype[txgoff] != 0) { ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff])); dnp->dn_bonustype = dn->dn_next_bonustype[txgoff]; dn->dn_next_bonustype[txgoff] = 0; } boolean_t freeing_dnode = dn->dn_free_txg > 0 && dn->dn_free_txg <= tx->tx_txg; /* * Remove the spill block if we have been explicitly asked to * remove it, or if the object is being removed. */ if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) { if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) kill_spill = B_TRUE; dn->dn_rm_spillblk[txgoff] = 0; } if (dn->dn_next_indblkshift[txgoff] != 0) { ASSERT(dnp->dn_nlevels == 1); dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff]; dn->dn_next_indblkshift[txgoff] = 0; } /* * Just take the live (open-context) values for checksum and compress. * Strictly speaking it's a future leak, but nothing bad happens if we * start using the new checksum or compress algorithm a little early. */ dnp->dn_checksum = dn->dn_checksum; dnp->dn_compress = dn->dn_compress; mutex_exit(&dn->dn_mtx); if (kill_spill) { free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx); mutex_enter(&dn->dn_mtx); dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR; mutex_exit(&dn->dn_mtx); } /* process all the "freed" ranges in the file */ if (dn->dn_free_ranges[txgoff] != NULL) { dnode_sync_free_range_arg_t dsfra; dsfra.dsfra_dnode = dn; dsfra.dsfra_tx = tx; dsfra.dsfra_free_indirects = freeing_dnode; mutex_enter(&dn->dn_mtx); if (freeing_dnode) { ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff], 0, dn->dn_maxblkid + 1)); } /* * Because dnode_sync_free_range() must drop dn_mtx during its * processing, using it as a callback to range_tree_vacate() is * not safe. No other operations (besides destroy) are allowed * once range_tree_vacate() has begun, and dropping dn_mtx * would leave a window open for another thread to observe that * invalid (and unsafe) state. */ range_tree_walk(dn->dn_free_ranges[txgoff], dnode_sync_free_range, &dsfra); range_tree_vacate(dn->dn_free_ranges[txgoff], NULL, NULL); range_tree_destroy(dn->dn_free_ranges[txgoff]); dn->dn_free_ranges[txgoff] = NULL; mutex_exit(&dn->dn_mtx); } if (freeing_dnode) { dn->dn_objset->os_freed_dnodes++; dnode_sync_free(dn, tx); return; } if (dn->dn_num_slots > DNODE_MIN_SLOTS) { dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; mutex_enter(&ds->ds_lock); ds->ds_feature_activation[SPA_FEATURE_LARGE_DNODE] = (void *)B_TRUE; mutex_exit(&ds->ds_lock); } if (dn->dn_next_nlevels[txgoff]) { dnode_increase_indirection(dn, tx); dn->dn_next_nlevels[txgoff] = 0; } /* * This must be done after dnode_sync_free_range() * and dnode_increase_indirection(). See dnode_new_blkid() * for an explanation of the high bit being set. */ if (dn->dn_next_maxblkid[txgoff]) { mutex_enter(&dn->dn_mtx); dnp->dn_maxblkid = dn->dn_next_maxblkid[txgoff] & ~DMU_NEXT_MAXBLKID_SET; dn->dn_next_maxblkid[txgoff] = 0; mutex_exit(&dn->dn_mtx); } if (dn->dn_next_nblkptr[txgoff]) { /* this should only happen on a realloc */ ASSERT(dn->dn_allocated_txg == tx->tx_txg); if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) { /* zero the new blkptrs we are gaining */ memset(dnp->dn_blkptr + dnp->dn_nblkptr, 0, sizeof (blkptr_t) * (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr)); #ifdef ZFS_DEBUG } else { int i; ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr); /* the blkptrs we are losing better be unallocated */ for (i = 0; i < dnp->dn_nblkptr; i++) { if (i >= dn->dn_next_nblkptr[txgoff]) ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i])); } #endif } mutex_enter(&dn->dn_mtx); dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff]; dn->dn_next_nblkptr[txgoff] = 0; mutex_exit(&dn->dn_mtx); } dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx); if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { ASSERT3P(list_head(list), ==, NULL); dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg); } ASSERT3U(dnp->dn_bonuslen, <=, DN_MAX_BONUS_LEN(dnp)); /* * Although we have dropped our reference to the dnode, it * can't be evicted until its written, and we haven't yet * initiated the IO for the dnode's dbuf. Additionally, the caller * has already added a reference to the dnode because it's on the * os_synced_dnodes list. */ }