/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2018 by Delphix. All rights reserved. * Copyright (c) 2023, Klara Inc. */ #include #include #include #include #include #include #include #include static unsigned int ddt_zap_default_bs = 15; static unsigned int ddt_zap_default_ibs = 15; #define DDT_ZAP_COMPRESS_BYTEORDER_MASK 0x80 #define DDT_ZAP_COMPRESS_FUNCTION_MASK 0x7f #define DDT_KEY_WORDS (sizeof (ddt_key_t) / sizeof (uint64_t)) static size_t ddt_zap_compress(const void *src, uchar_t *dst, size_t s_len, size_t d_len) { uchar_t *version = dst++; int cpfunc = ZIO_COMPRESS_ZLE; zio_compress_info_t *ci = &zio_compress_table[cpfunc]; size_t c_len; ASSERT3U(d_len, >=, s_len + 1); /* no compression plus version byte */ c_len = ci->ci_compress((void *)src, dst, s_len, d_len - 1, ci->ci_level); if (c_len == s_len) { cpfunc = ZIO_COMPRESS_OFF; memcpy(dst, src, s_len); } *version = cpfunc; if (ZFS_HOST_BYTEORDER) *version |= DDT_ZAP_COMPRESS_BYTEORDER_MASK; return (c_len + 1); } static void ddt_zap_decompress(uchar_t *src, void *dst, size_t s_len, size_t d_len) { uchar_t version = *src++; int cpfunc = version & DDT_ZAP_COMPRESS_FUNCTION_MASK; zio_compress_info_t *ci = &zio_compress_table[cpfunc]; if (ci->ci_decompress != NULL) (void) ci->ci_decompress(src, dst, s_len, d_len, ci->ci_level); else memcpy(dst, src, d_len); if (((version & DDT_ZAP_COMPRESS_BYTEORDER_MASK) != 0) != (ZFS_HOST_BYTEORDER != 0)) byteswap_uint64_array(dst, d_len); } static int ddt_zap_create(objset_t *os, uint64_t *objectp, dmu_tx_t *tx, boolean_t prehash) { zap_flags_t flags = ZAP_FLAG_HASH64 | ZAP_FLAG_UINT64_KEY; if (prehash) flags |= ZAP_FLAG_PRE_HASHED_KEY; *objectp = zap_create_flags(os, 0, flags, DMU_OT_DDT_ZAP, ddt_zap_default_bs, ddt_zap_default_ibs, DMU_OT_NONE, 0, tx); if (*objectp == 0) return (SET_ERROR(ENOTSUP)); return (0); } static int ddt_zap_destroy(objset_t *os, uint64_t object, dmu_tx_t *tx) { return (zap_destroy(os, object, tx)); } static int ddt_zap_lookup(objset_t *os, uint64_t object, const ddt_key_t *ddk, void *phys, size_t psize) { uchar_t *cbuf; uint64_t one, csize; int error; error = zap_length_uint64(os, object, (uint64_t *)ddk, DDT_KEY_WORDS, &one, &csize); if (error) return (error); ASSERT3U(one, ==, 1); ASSERT3U(csize, <=, psize + 1); cbuf = kmem_alloc(csize, KM_SLEEP); error = zap_lookup_uint64(os, object, (uint64_t *)ddk, DDT_KEY_WORDS, 1, csize, cbuf); if (error == 0) ddt_zap_decompress(cbuf, phys, csize, psize); kmem_free(cbuf, csize); return (error); } static int ddt_zap_contains(objset_t *os, uint64_t object, const ddt_key_t *ddk) { return (zap_length_uint64(os, object, (uint64_t *)ddk, DDT_KEY_WORDS, NULL, NULL)); } static void ddt_zap_prefetch(objset_t *os, uint64_t object, const ddt_key_t *ddk) { (void) zap_prefetch_uint64(os, object, (uint64_t *)ddk, DDT_KEY_WORDS); } static void ddt_zap_prefetch_all(objset_t *os, uint64_t object) { (void) zap_prefetch_object(os, object); } static int ddt_zap_update(objset_t *os, uint64_t object, const ddt_key_t *ddk, const void *phys, size_t psize, dmu_tx_t *tx) { const size_t cbuf_size = psize + 1; uchar_t *cbuf = kmem_alloc(cbuf_size, KM_SLEEP); uint64_t csize = ddt_zap_compress(phys, cbuf, psize, cbuf_size); int error = zap_update_uint64(os, object, (uint64_t *)ddk, DDT_KEY_WORDS, 1, csize, cbuf, tx); kmem_free(cbuf, cbuf_size); return (error); } static int ddt_zap_remove(objset_t *os, uint64_t object, const ddt_key_t *ddk, dmu_tx_t *tx) { return (zap_remove_uint64(os, object, (uint64_t *)ddk, DDT_KEY_WORDS, tx)); } static int ddt_zap_walk(objset_t *os, uint64_t object, uint64_t *walk, ddt_key_t *ddk, void *phys, size_t psize) { zap_cursor_t zc; zap_attribute_t za; int error; if (*walk == 0) { /* * We don't want to prefetch the entire ZAP object, because * it can be enormous. Also the primary use of DDT iteration * is for scrubbing, in which case we will be issuing many * scrub I/Os for each ZAP block that we read in, so * reading the ZAP is unlikely to be the bottleneck. */ zap_cursor_init_noprefetch(&zc, os, object); } else { zap_cursor_init_serialized(&zc, os, object, *walk); } if ((error = zap_cursor_retrieve(&zc, &za)) == 0) { uint64_t csize = za.za_num_integers; ASSERT3U(za.za_integer_length, ==, 1); ASSERT3U(csize, <=, psize + 1); uchar_t *cbuf = kmem_alloc(csize, KM_SLEEP); error = zap_lookup_uint64(os, object, (uint64_t *)za.za_name, DDT_KEY_WORDS, 1, csize, cbuf); ASSERT0(error); if (error == 0) { ddt_zap_decompress(cbuf, phys, csize, psize); *ddk = *(ddt_key_t *)za.za_name; } kmem_free(cbuf, csize); zap_cursor_advance(&zc); *walk = zap_cursor_serialize(&zc); } zap_cursor_fini(&zc); return (error); } static int ddt_zap_count(objset_t *os, uint64_t object, uint64_t *count) { return (zap_count(os, object, count)); } const ddt_ops_t ddt_zap_ops = { "zap", ddt_zap_create, ddt_zap_destroy, ddt_zap_lookup, ddt_zap_contains, ddt_zap_prefetch, ddt_zap_prefetch_all, ddt_zap_update, ddt_zap_remove, ddt_zap_walk, ddt_zap_count, }; /* BEGIN CSTYLED */ ZFS_MODULE_PARAM(zfs_dedup, , ddt_zap_default_bs, UINT, ZMOD_RW, "DDT ZAP leaf blockshift"); ZFS_MODULE_PARAM(zfs_dedup, , ddt_zap_default_ibs, UINT, ZMOD_RW, "DDT ZAP indirect blockshift"); /* END CSTYLED */