/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC. * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). * Rewritten for Linux by Brian Behlendorf . * LLNL-CODE-403049. * Copyright (c) 2012, 2016 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include char *zfs_vdev_scheduler = VDEV_SCHEDULER; static void *zfs_vdev_holder = VDEV_HOLDER; /* * Virtual device vector for disks. */ typedef struct dio_request { zio_t *dr_zio; /* Parent ZIO */ atomic_t dr_ref; /* References */ int dr_error; /* Bio error */ int dr_bio_count; /* Count of bio's */ struct bio *dr_bio[0]; /* Attached bio's */ } dio_request_t; #ifdef HAVE_OPEN_BDEV_EXCLUSIVE static fmode_t vdev_bdev_mode(int smode) { fmode_t mode = 0; ASSERT3S(smode & (FREAD | FWRITE), !=, 0); if (smode & FREAD) mode |= FMODE_READ; if (smode & FWRITE) mode |= FMODE_WRITE; return (mode); } #else static int vdev_bdev_mode(int smode) { int mode = 0; ASSERT3S(smode & (FREAD | FWRITE), !=, 0); if ((smode & FREAD) && !(smode & FWRITE)) mode = MS_RDONLY; return (mode); } #endif /* HAVE_OPEN_BDEV_EXCLUSIVE */ static uint64_t bdev_capacity(struct block_device *bdev) { struct hd_struct *part = bdev->bd_part; /* The partition capacity referenced by the block device */ if (part) return (part->nr_sects << 9); /* Otherwise assume the full device capacity */ return (get_capacity(bdev->bd_disk) << 9); } static void vdev_disk_error(zio_t *zio) { #ifdef ZFS_DEBUG printk(KERN_WARNING "ZFS: zio error=%d type=%d offset=%llu size=%llu " "flags=%x\n", zio->io_error, zio->io_type, (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size, zio->io_flags); #endif } /* * Use the Linux 'noop' elevator for zfs managed block devices. This * strikes the ideal balance by allowing the zfs elevator to do all * request ordering and prioritization. While allowing the Linux * elevator to do the maximum front/back merging allowed by the * physical device. This yields the largest possible requests for * the device with the lowest total overhead. */ static void vdev_elevator_switch(vdev_t *v, char *elevator) { vdev_disk_t *vd = v->vdev_tsd; struct request_queue *q; char *device; int error; for (int c = 0; c < v->vdev_children; c++) vdev_elevator_switch(v->vdev_child[c], elevator); if (!v->vdev_ops->vdev_op_leaf || vd->vd_bdev == NULL) return; q = bdev_get_queue(vd->vd_bdev); device = vd->vd_bdev->bd_disk->disk_name; /* * Skip devices which are not whole disks (partitions). * Device-mapper devices are excepted since they may be whole * disks despite the vdev_wholedisk flag, in which case we can * and should switch the elevator. If the device-mapper device * does not have an elevator (i.e. dm-raid, dm-crypt, etc.) the * "Skip devices without schedulers" check below will fail. */ if (!v->vdev_wholedisk && strncmp(device, "dm-", 3) != 0) return; /* Skip devices without schedulers (loop, ram, dm, etc) */ if (!q->elevator || !blk_queue_stackable(q)) return; /* Leave existing scheduler when set to "none" */ if ((strncmp(elevator, "none", 4) == 0) && (strlen(elevator) == 4)) return; #ifdef HAVE_ELEVATOR_CHANGE error = elevator_change(q, elevator); #else /* * For pre-2.6.36 kernels elevator_change() is not available. * Therefore we fall back to using a usermodehelper to echo the * elevator into sysfs; This requires /bin/echo and sysfs to be * mounted which may not be true early in the boot process. */ #define SET_SCHEDULER_CMD \ "exec 0/sys/block/%s/queue/scheduler " \ " 2>/dev/null; " \ "echo %s" char *argv[] = { "/bin/sh", "-c", NULL, NULL }; char *envp[] = { NULL }; argv[2] = kmem_asprintf(SET_SCHEDULER_CMD, device, elevator); error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC); strfree(argv[2]); #endif /* HAVE_ELEVATOR_CHANGE */ if (error) printk(KERN_NOTICE "ZFS: Unable to set \"%s\" scheduler" " for %s (%s): %d\n", elevator, v->vdev_path, device, error); } /* * Expanding a whole disk vdev involves invoking BLKRRPART on the * whole disk device. This poses a problem, because BLKRRPART will * return EBUSY if one of the disk's partitions is open. That's why * we have to do it here, just before opening the data partition. * Unfortunately, BLKRRPART works by dropping all partitions and * recreating them, which means that for a short time window, all * /dev/sdxN device files disappear (until udev recreates them). * This means two things: * - When we open the data partition just after a BLKRRPART, we * can't do it using the normal device file path because of the * obvious race condition with udev. Instead, we use reliable * kernel APIs to get a handle to the new partition device from * the whole disk device. * - Because vdev_disk_open() initially needs to find the device * using its path, multiple vdev_disk_open() invocations in * short succession on the same disk with BLKRRPARTs in the * middle have a high probability of failure (because of the * race condition with udev). A typical situation where this * might happen is when the zpool userspace tool does a * TRYIMPORT immediately followed by an IMPORT. For this * reason, we only invoke BLKRRPART in the module when strictly * necessary (zpool online -e case), and rely on userspace to * do it when possible. */ static struct block_device * vdev_disk_rrpart(const char *path, int mode, vdev_disk_t *vd) { #if defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK) struct block_device *bdev, *result = ERR_PTR(-ENXIO); struct gendisk *disk; int error, partno; bdev = vdev_bdev_open(path, vdev_bdev_mode(mode), zfs_vdev_holder); if (IS_ERR(bdev)) return (bdev); disk = get_gendisk(bdev->bd_dev, &partno); vdev_bdev_close(bdev, vdev_bdev_mode(mode)); if (disk) { bdev = bdget(disk_devt(disk)); if (bdev) { error = blkdev_get(bdev, vdev_bdev_mode(mode), vd); if (error == 0) error = ioctl_by_bdev(bdev, BLKRRPART, 0); vdev_bdev_close(bdev, vdev_bdev_mode(mode)); } bdev = bdget_disk(disk, partno); if (bdev) { error = blkdev_get(bdev, vdev_bdev_mode(mode) | FMODE_EXCL, vd); if (error == 0) result = bdev; } put_disk(disk); } return (result); #else return (ERR_PTR(-EOPNOTSUPP)); #endif /* defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK) */ } static int vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize, uint64_t *ashift) { struct block_device *bdev = ERR_PTR(-ENXIO); vdev_disk_t *vd; int count = 0, mode, block_size; /* Must have a pathname and it must be absolute. */ if (v->vdev_path == NULL || v->vdev_path[0] != '/') { v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; vdev_dbgmsg(v, "vdev_disk_open: invalid " "vdev_path '%s'", v->vdev_path); return (SET_ERROR(EINVAL)); } /* * Reopen the device if it's not currently open. Otherwise, * just update the physical size of the device. */ if (v->vdev_tsd != NULL) { ASSERT(v->vdev_reopening); vd = v->vdev_tsd; goto skip_open; } vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP); if (vd == NULL) return (SET_ERROR(ENOMEM)); /* * Devices are always opened by the path provided at configuration * time. This means that if the provided path is a udev by-id path * then drives may be recabled without an issue. If the provided * path is a udev by-path path, then the physical location information * will be preserved. This can be critical for more complicated * configurations where drives are located in specific physical * locations to maximize the systems tolerence to component failure. * Alternatively, you can provide your own udev rule to flexibly map * the drives as you see fit. It is not advised that you use the * /dev/[hd]d devices which may be reordered due to probing order. * Devices in the wrong locations will be detected by the higher * level vdev validation. * * The specified paths may be briefly removed and recreated in * response to udev events. This should be exceptionally unlikely * because the zpool command makes every effort to verify these paths * have already settled prior to reaching this point. Therefore, * a ENOENT failure at this point is highly likely to be transient * and it is reasonable to sleep and retry before giving up. In * practice delays have been observed to be on the order of 100ms. */ mode = spa_mode(v->vdev_spa); if (v->vdev_wholedisk && v->vdev_expanding) bdev = vdev_disk_rrpart(v->vdev_path, mode, vd); while (IS_ERR(bdev) && count < 50) { bdev = vdev_bdev_open(v->vdev_path, vdev_bdev_mode(mode), zfs_vdev_holder); if (unlikely(PTR_ERR(bdev) == -ENOENT)) { msleep(10); count++; } else if (IS_ERR(bdev)) { break; } } if (IS_ERR(bdev)) { dprintf("failed open v->vdev_path=%s, error=%d count=%d\n", v->vdev_path, -PTR_ERR(bdev), count); kmem_free(vd, sizeof (vdev_disk_t)); return (SET_ERROR(-PTR_ERR(bdev))); } v->vdev_tsd = vd; vd->vd_bdev = bdev; skip_open: /* Determine the physical block size */ block_size = vdev_bdev_block_size(vd->vd_bdev); /* Clear the nowritecache bit, causes vdev_reopen() to try again. */ v->vdev_nowritecache = B_FALSE; /* Inform the ZIO pipeline that we are non-rotational */ v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(vd->vd_bdev)); /* Physical volume size in bytes */ *psize = bdev_capacity(vd->vd_bdev); /* TODO: report possible expansion size */ *max_psize = *psize; /* Based on the minimum sector size set the block size */ *ashift = highbit64(MAX(block_size, SPA_MINBLOCKSIZE)) - 1; /* Try to set the io scheduler elevator algorithm */ (void) vdev_elevator_switch(v, zfs_vdev_scheduler); return (0); } static void vdev_disk_close(vdev_t *v) { vdev_disk_t *vd = v->vdev_tsd; if (v->vdev_reopening || vd == NULL) return; if (vd->vd_bdev != NULL) vdev_bdev_close(vd->vd_bdev, vdev_bdev_mode(spa_mode(v->vdev_spa))); kmem_free(vd, sizeof (vdev_disk_t)); v->vdev_tsd = NULL; } static dio_request_t * vdev_disk_dio_alloc(int bio_count) { dio_request_t *dr; int i; dr = kmem_zalloc(sizeof (dio_request_t) + sizeof (struct bio *) * bio_count, KM_SLEEP); if (dr) { atomic_set(&dr->dr_ref, 0); dr->dr_bio_count = bio_count; dr->dr_error = 0; for (i = 0; i < dr->dr_bio_count; i++) dr->dr_bio[i] = NULL; } return (dr); } static void vdev_disk_dio_free(dio_request_t *dr) { int i; for (i = 0; i < dr->dr_bio_count; i++) if (dr->dr_bio[i]) bio_put(dr->dr_bio[i]); kmem_free(dr, sizeof (dio_request_t) + sizeof (struct bio *) * dr->dr_bio_count); } static void vdev_disk_dio_get(dio_request_t *dr) { atomic_inc(&dr->dr_ref); } static int vdev_disk_dio_put(dio_request_t *dr) { int rc = atomic_dec_return(&dr->dr_ref); /* * Free the dio_request when the last reference is dropped and * ensure zio_interpret is called only once with the correct zio */ if (rc == 0) { zio_t *zio = dr->dr_zio; int error = dr->dr_error; vdev_disk_dio_free(dr); if (zio) { zio->io_error = error; ASSERT3S(zio->io_error, >=, 0); if (zio->io_error) vdev_disk_error(zio); zio_delay_interrupt(zio); } } return (rc); } BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error) { dio_request_t *dr = bio->bi_private; int rc; if (dr->dr_error == 0) { #ifdef HAVE_1ARG_BIO_END_IO_T dr->dr_error = BIO_END_IO_ERROR(bio); #else if (error) dr->dr_error = -(error); else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) dr->dr_error = EIO; #endif } /* Drop reference acquired by __vdev_disk_physio */ rc = vdev_disk_dio_put(dr); } static unsigned int bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size) { unsigned int offset, size, i; struct page *page; offset = offset_in_page(bio_ptr); for (i = 0; i < bio->bi_max_vecs; i++) { size = PAGE_SIZE - offset; if (bio_size <= 0) break; if (size > bio_size) size = bio_size; if (is_vmalloc_addr(bio_ptr)) page = vmalloc_to_page(bio_ptr); else page = virt_to_page(bio_ptr); /* * Some network related block device uses tcp_sendpage, which * doesn't behave well when using 0-count page, this is a * safety net to catch them. */ ASSERT3S(page_count(page), >, 0); if (bio_add_page(bio, page, size, offset) != size) break; bio_ptr += size; bio_size -= size; offset = 0; } return (bio_size); } static unsigned int bio_map_abd_off(struct bio *bio, abd_t *abd, unsigned int size, size_t off) { if (abd_is_linear(abd)) return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, size)); return (abd_scatter_bio_map_off(bio, abd, size, off)); } static inline void vdev_submit_bio_impl(struct bio *bio) { #ifdef HAVE_1ARG_SUBMIT_BIO submit_bio(bio); #else submit_bio(0, bio); #endif } #ifndef HAVE_BIO_SET_DEV static inline void bio_set_dev(struct bio *bio, struct block_device *bdev) { bio->bi_bdev = bdev; } #endif /* !HAVE_BIO_SET_DEV */ static inline void vdev_submit_bio(struct bio *bio) { #ifdef HAVE_CURRENT_BIO_TAIL struct bio **bio_tail = current->bio_tail; current->bio_tail = NULL; vdev_submit_bio_impl(bio); current->bio_tail = bio_tail; #else struct bio_list *bio_list = current->bio_list; current->bio_list = NULL; vdev_submit_bio_impl(bio); current->bio_list = bio_list; #endif } static int __vdev_disk_physio(struct block_device *bdev, zio_t *zio, size_t io_size, uint64_t io_offset, int rw, int flags) { dio_request_t *dr; uint64_t abd_offset; uint64_t bio_offset; int bio_size, bio_count = 16; int i = 0, error = 0; #if defined(HAVE_BLK_QUEUE_HAVE_BLK_PLUG) struct blk_plug plug; #endif ASSERT(zio != NULL); ASSERT3U(io_offset + io_size, <=, bdev->bd_inode->i_size); retry: dr = vdev_disk_dio_alloc(bio_count); if (dr == NULL) return (SET_ERROR(ENOMEM)); if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD))) bio_set_flags_failfast(bdev, &flags); dr->dr_zio = zio; /* * When the IO size exceeds the maximum bio size for the request * queue we are forced to break the IO in multiple bio's and wait * for them all to complete. Ideally, all pool users will set * their volume block size to match the maximum request size and * the common case will be one bio per vdev IO request. */ abd_offset = 0; bio_offset = io_offset; bio_size = io_size; for (i = 0; i <= dr->dr_bio_count; i++) { /* Finished constructing bio's for given buffer */ if (bio_size <= 0) break; /* * By default only 'bio_count' bio's per dio are allowed. * However, if we find ourselves in a situation where more * are needed we allocate a larger dio and warn the user. */ if (dr->dr_bio_count == i) { vdev_disk_dio_free(dr); bio_count *= 2; goto retry; } /* bio_alloc() with __GFP_WAIT never returns NULL */ dr->dr_bio[i] = bio_alloc(GFP_NOIO, MIN(abd_nr_pages_off(zio->io_abd, bio_size, abd_offset), BIO_MAX_PAGES)); if (unlikely(dr->dr_bio[i] == NULL)) { vdev_disk_dio_free(dr); return (SET_ERROR(ENOMEM)); } /* Matching put called by vdev_disk_physio_completion */ vdev_disk_dio_get(dr); bio_set_dev(dr->dr_bio[i], bdev); BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9; dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion; dr->dr_bio[i]->bi_private = dr; bio_set_op_attrs(dr->dr_bio[i], rw, flags); /* Remaining size is returned to become the new size */ bio_size = bio_map_abd_off(dr->dr_bio[i], zio->io_abd, bio_size, abd_offset); /* Advance in buffer and construct another bio if needed */ abd_offset += BIO_BI_SIZE(dr->dr_bio[i]); bio_offset += BIO_BI_SIZE(dr->dr_bio[i]); } /* Extra reference to protect dio_request during vdev_submit_bio */ vdev_disk_dio_get(dr); #if defined(HAVE_BLK_QUEUE_HAVE_BLK_PLUG) if (dr->dr_bio_count > 1) blk_start_plug(&plug); #endif /* Submit all bio's associated with this dio */ for (i = 0; i < dr->dr_bio_count; i++) if (dr->dr_bio[i]) vdev_submit_bio(dr->dr_bio[i]); #if defined(HAVE_BLK_QUEUE_HAVE_BLK_PLUG) if (dr->dr_bio_count > 1) blk_finish_plug(&plug); #endif (void) vdev_disk_dio_put(dr); return (error); } BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error) { zio_t *zio = bio->bi_private; #ifdef HAVE_1ARG_BIO_END_IO_T zio->io_error = BIO_END_IO_ERROR(bio); #else zio->io_error = -error; #endif if (zio->io_error && (zio->io_error == EOPNOTSUPP)) zio->io_vd->vdev_nowritecache = B_TRUE; bio_put(bio); ASSERT3S(zio->io_error, >=, 0); if (zio->io_error) vdev_disk_error(zio); zio_interrupt(zio); } static int vdev_disk_io_flush(struct block_device *bdev, zio_t *zio) { struct request_queue *q; struct bio *bio; q = bdev_get_queue(bdev); if (!q) return (SET_ERROR(ENXIO)); bio = bio_alloc(GFP_NOIO, 0); /* bio_alloc() with __GFP_WAIT never returns NULL */ if (unlikely(bio == NULL)) return (SET_ERROR(ENOMEM)); bio->bi_end_io = vdev_disk_io_flush_completion; bio->bi_private = zio; bio_set_dev(bio, bdev); bio_set_flush(bio); vdev_submit_bio(bio); invalidate_bdev(bdev); return (0); } static void vdev_disk_io_start(zio_t *zio) { vdev_t *v = zio->io_vd; vdev_disk_t *vd = v->vdev_tsd; int rw, flags, error; switch (zio->io_type) { case ZIO_TYPE_IOCTL: if (!vdev_readable(v)) { zio->io_error = SET_ERROR(ENXIO); zio_interrupt(zio); return; } switch (zio->io_cmd) { case DKIOCFLUSHWRITECACHE: if (zfs_nocacheflush) break; if (v->vdev_nowritecache) { zio->io_error = SET_ERROR(ENOTSUP); break; } error = vdev_disk_io_flush(vd->vd_bdev, zio); if (error == 0) return; zio->io_error = error; break; default: zio->io_error = SET_ERROR(ENOTSUP); } zio_execute(zio); return; case ZIO_TYPE_WRITE: rw = WRITE; #if defined(HAVE_BLK_QUEUE_HAVE_BIO_RW_UNPLUG) flags = (1 << BIO_RW_UNPLUG); #elif defined(REQ_UNPLUG) flags = REQ_UNPLUG; #else flags = 0; #endif break; case ZIO_TYPE_READ: rw = READ; #if defined(HAVE_BLK_QUEUE_HAVE_BIO_RW_UNPLUG) flags = (1 << BIO_RW_UNPLUG); #elif defined(REQ_UNPLUG) flags = REQ_UNPLUG; #else flags = 0; #endif break; default: zio->io_error = SET_ERROR(ENOTSUP); zio_interrupt(zio); return; } zio->io_target_timestamp = zio_handle_io_delay(zio); error = __vdev_disk_physio(vd->vd_bdev, zio, zio->io_size, zio->io_offset, rw, flags); if (error) { zio->io_error = error; zio_interrupt(zio); return; } } static void vdev_disk_io_done(zio_t *zio) { /* * If the device returned EIO, we revalidate the media. If it is * determined the media has changed this triggers the asynchronous * removal of the device from the configuration. */ if (zio->io_error == EIO) { vdev_t *v = zio->io_vd; vdev_disk_t *vd = v->vdev_tsd; if (check_disk_change(vd->vd_bdev)) { vdev_bdev_invalidate(vd->vd_bdev); v->vdev_remove_wanted = B_TRUE; spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE); } } } static void vdev_disk_hold(vdev_t *vd) { ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER)); /* We must have a pathname, and it must be absolute. */ if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') return; /* * Only prefetch path and devid info if the device has * never been opened. */ if (vd->vdev_tsd != NULL) return; /* XXX: Implement me as a vnode lookup for the device */ vd->vdev_name_vp = NULL; vd->vdev_devid_vp = NULL; } static void vdev_disk_rele(vdev_t *vd) { ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER)); /* XXX: Implement me as a vnode rele for the device */ } static int param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp) { spa_t *spa = NULL; char *p; if (val == NULL) return (SET_ERROR(-EINVAL)); if ((p = strchr(val, '\n')) != NULL) *p = '\0'; mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) { if (spa_state(spa) != POOL_STATE_ACTIVE || !spa_writeable(spa) || spa_suspended(spa)) continue; spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); vdev_elevator_switch(spa->spa_root_vdev, (char *)val); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); } mutex_exit(&spa_namespace_lock); return (param_set_charp(val, kp)); } vdev_ops_t vdev_disk_ops = { vdev_disk_open, vdev_disk_close, vdev_default_asize, vdev_disk_io_start, vdev_disk_io_done, NULL, NULL, vdev_disk_hold, vdev_disk_rele, NULL, VDEV_TYPE_DISK, /* name of this vdev type */ B_TRUE /* leaf vdev */ }; module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler, param_get_charp, &zfs_vdev_scheduler, 0644); MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");