/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include "fs/fs_subr.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_comutil.h" /*ARGSUSED*/ int zfs_sync(struct super_block *sb, int wait, cred_t *cr) { zfs_sb_t *zsb = sb->s_fs_info; /* * Data integrity is job one. We don't want a compromised kernel * writing to the storage pool, so we never sync during panic. */ if (unlikely(oops_in_progress)) return (0); /* * Semantically, the only requirement is that the sync be initiated. * The DMU syncs out txgs frequently, so there's nothing to do. */ if (!wait) return (0); if (zsb != NULL) { /* * Sync a specific filesystem. */ dsl_pool_t *dp; ZFS_ENTER(zsb); dp = dmu_objset_pool(zsb->z_os); /* * If the system is shutting down, then skip any * filesystems which may exist on a suspended pool. */ if (spa_suspended(dp->dp_spa)) { ZFS_EXIT(zsb); return (0); } if (zsb->z_log != NULL) zil_commit(zsb->z_log, 0); ZFS_EXIT(zsb); } else { /* * Sync all ZFS filesystems. This is what happens when you * run sync(1M). Unlike other filesystems, ZFS honors the * request by waiting for all pools to commit all dirty data. */ spa_sync_allpools(); } return (0); } EXPORT_SYMBOL(zfs_sync); boolean_t zfs_is_readonly(zfs_sb_t *zsb) { return (!!(zsb->z_sb->s_flags & MS_RDONLY)); } EXPORT_SYMBOL(zfs_is_readonly); static void atime_changed_cb(void *arg, uint64_t newval) { ((zfs_sb_t *)arg)->z_atime = newval; } static void relatime_changed_cb(void *arg, uint64_t newval) { ((zfs_sb_t *)arg)->z_relatime = newval; } static void xattr_changed_cb(void *arg, uint64_t newval) { zfs_sb_t *zsb = arg; if (newval == ZFS_XATTR_OFF) { zsb->z_flags &= ~ZSB_XATTR; } else { zsb->z_flags |= ZSB_XATTR; if (newval == ZFS_XATTR_SA) zsb->z_xattr_sa = B_TRUE; else zsb->z_xattr_sa = B_FALSE; } } static void acltype_changed_cb(void *arg, uint64_t newval) { zfs_sb_t *zsb = arg; switch (newval) { case ZFS_ACLTYPE_OFF: zsb->z_acl_type = ZFS_ACLTYPE_OFF; zsb->z_sb->s_flags &= ~MS_POSIXACL; break; case ZFS_ACLTYPE_POSIXACL: #ifdef CONFIG_FS_POSIX_ACL zsb->z_acl_type = ZFS_ACLTYPE_POSIXACL; zsb->z_sb->s_flags |= MS_POSIXACL; #else zsb->z_acl_type = ZFS_ACLTYPE_OFF; zsb->z_sb->s_flags &= ~MS_POSIXACL; #endif /* CONFIG_FS_POSIX_ACL */ break; default: break; } } static void blksz_changed_cb(void *arg, uint64_t newval) { zfs_sb_t *zsb = arg; ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zsb->z_os))); ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); ASSERT(ISP2(newval)); zsb->z_max_blksz = newval; } static void readonly_changed_cb(void *arg, uint64_t newval) { zfs_sb_t *zsb = arg; struct super_block *sb = zsb->z_sb; if (sb == NULL) return; if (newval) sb->s_flags |= MS_RDONLY; else sb->s_flags &= ~MS_RDONLY; } static void devices_changed_cb(void *arg, uint64_t newval) { } static void setuid_changed_cb(void *arg, uint64_t newval) { } static void exec_changed_cb(void *arg, uint64_t newval) { } static void nbmand_changed_cb(void *arg, uint64_t newval) { zfs_sb_t *zsb = arg; struct super_block *sb = zsb->z_sb; if (sb == NULL) return; if (newval == TRUE) sb->s_flags |= MS_MANDLOCK; else sb->s_flags &= ~MS_MANDLOCK; } static void snapdir_changed_cb(void *arg, uint64_t newval) { ((zfs_sb_t *)arg)->z_show_ctldir = newval; } static void vscan_changed_cb(void *arg, uint64_t newval) { ((zfs_sb_t *)arg)->z_vscan = newval; } static void acl_inherit_changed_cb(void *arg, uint64_t newval) { ((zfs_sb_t *)arg)->z_acl_inherit = newval; } int zfs_register_callbacks(zfs_sb_t *zsb) { struct dsl_dataset *ds = NULL; objset_t *os = zsb->z_os; boolean_t do_readonly = B_FALSE; int error = 0; if (zfs_is_readonly(zsb) || !spa_writeable(dmu_objset_spa(os))) do_readonly = B_TRUE; /* * Register property callbacks. * * It would probably be fine to just check for i/o error from * the first prop_register(), but I guess I like to go * overboard... */ ds = dmu_objset_ds(os); dsl_pool_config_enter(dmu_objset_pool(os), FTAG); error = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zsb); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zsb); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zsb); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zsb); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zsb); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zsb); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zsb); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zsb); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zsb); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zsb); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, zsb); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zsb); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zsb); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); if (error) goto unregister; if (do_readonly) readonly_changed_cb(zsb, B_TRUE); return (0); unregister: /* * We may attempt to unregister some callbacks that are not * registered, but this is OK; it will simply return ENOMSG, * which we will ignore. */ (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zsb); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zsb); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zsb); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zsb); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zsb); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zsb); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zsb); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zsb); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zsb); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zsb); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, zsb); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zsb); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zsb); return (error); } EXPORT_SYMBOL(zfs_register_callbacks); static int zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, uint64_t *userp, uint64_t *groupp) { /* * Is it a valid type of object to track? */ if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) return (SET_ERROR(ENOENT)); /* * If we have a NULL data pointer * then assume the id's aren't changing and * return EEXIST to the dmu to let it know to * use the same ids */ if (data == NULL) return (SET_ERROR(EEXIST)); if (bonustype == DMU_OT_ZNODE) { znode_phys_t *znp = data; *userp = znp->zp_uid; *groupp = znp->zp_gid; } else { int hdrsize; sa_hdr_phys_t *sap = data; sa_hdr_phys_t sa = *sap; boolean_t swap = B_FALSE; ASSERT(bonustype == DMU_OT_SA); if (sa.sa_magic == 0) { /* * This should only happen for newly created * files that haven't had the znode data filled * in yet. */ *userp = 0; *groupp = 0; return (0); } if (sa.sa_magic == BSWAP_32(SA_MAGIC)) { sa.sa_magic = SA_MAGIC; sa.sa_layout_info = BSWAP_16(sa.sa_layout_info); swap = B_TRUE; } else { VERIFY3U(sa.sa_magic, ==, SA_MAGIC); } hdrsize = sa_hdrsize(&sa); VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t)); *userp = *((uint64_t *)((uintptr_t)data + hdrsize + SA_UID_OFFSET)); *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + SA_GID_OFFSET)); if (swap) { *userp = BSWAP_64(*userp); *groupp = BSWAP_64(*groupp); } } return (0); } static void fuidstr_to_sid(zfs_sb_t *zsb, const char *fuidstr, char *domainbuf, int buflen, uid_t *ridp) { uint64_t fuid; const char *domain; fuid = strtonum(fuidstr, NULL); domain = zfs_fuid_find_by_idx(zsb, FUID_INDEX(fuid)); if (domain) (void) strlcpy(domainbuf, domain, buflen); else domainbuf[0] = '\0'; *ridp = FUID_RID(fuid); } static uint64_t zfs_userquota_prop_to_obj(zfs_sb_t *zsb, zfs_userquota_prop_t type) { switch (type) { case ZFS_PROP_USERUSED: return (DMU_USERUSED_OBJECT); case ZFS_PROP_GROUPUSED: return (DMU_GROUPUSED_OBJECT); case ZFS_PROP_USERQUOTA: return (zsb->z_userquota_obj); case ZFS_PROP_GROUPQUOTA: return (zsb->z_groupquota_obj); default: return (SET_ERROR(ENOTSUP)); } return (0); } int zfs_userspace_many(zfs_sb_t *zsb, zfs_userquota_prop_t type, uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) { int error; zap_cursor_t zc; zap_attribute_t za; zfs_useracct_t *buf = vbuf; uint64_t obj; if (!dmu_objset_userspace_present(zsb->z_os)) return (SET_ERROR(ENOTSUP)); obj = zfs_userquota_prop_to_obj(zsb, type); if (obj == 0) { *bufsizep = 0; return (0); } for (zap_cursor_init_serialized(&zc, zsb->z_os, obj, *cookiep); (error = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > *bufsizep) break; fuidstr_to_sid(zsb, za.za_name, buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); buf->zu_space = za.za_first_integer; buf++; } if (error == ENOENT) error = 0; ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; *cookiep = zap_cursor_serialize(&zc); zap_cursor_fini(&zc); return (error); } EXPORT_SYMBOL(zfs_userspace_many); /* * buf must be big enough (eg, 32 bytes) */ static int id_to_fuidstr(zfs_sb_t *zsb, const char *domain, uid_t rid, char *buf, boolean_t addok) { uint64_t fuid; int domainid = 0; if (domain && domain[0]) { domainid = zfs_fuid_find_by_domain(zsb, domain, NULL, addok); if (domainid == -1) return (SET_ERROR(ENOENT)); } fuid = FUID_ENCODE(domainid, rid); (void) sprintf(buf, "%llx", (longlong_t)fuid); return (0); } int zfs_userspace_one(zfs_sb_t *zsb, zfs_userquota_prop_t type, const char *domain, uint64_t rid, uint64_t *valp) { char buf[32]; int err; uint64_t obj; *valp = 0; if (!dmu_objset_userspace_present(zsb->z_os)) return (SET_ERROR(ENOTSUP)); obj = zfs_userquota_prop_to_obj(zsb, type); if (obj == 0) return (0); err = id_to_fuidstr(zsb, domain, rid, buf, B_FALSE); if (err) return (err); err = zap_lookup(zsb->z_os, obj, buf, 8, 1, valp); if (err == ENOENT) err = 0; return (err); } EXPORT_SYMBOL(zfs_userspace_one); int zfs_set_userquota(zfs_sb_t *zsb, zfs_userquota_prop_t type, const char *domain, uint64_t rid, uint64_t quota) { char buf[32]; int err; dmu_tx_t *tx; uint64_t *objp; boolean_t fuid_dirtied; if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) return (SET_ERROR(EINVAL)); if (zsb->z_version < ZPL_VERSION_USERSPACE) return (SET_ERROR(ENOTSUP)); objp = (type == ZFS_PROP_USERQUOTA) ? &zsb->z_userquota_obj : &zsb->z_groupquota_obj; err = id_to_fuidstr(zsb, domain, rid, buf, B_TRUE); if (err) return (err); fuid_dirtied = zsb->z_fuid_dirty; tx = dmu_tx_create(zsb->z_os); dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); if (*objp == 0) { dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, zfs_userquota_prop_prefixes[type]); } if (fuid_dirtied) zfs_fuid_txhold(zsb, tx); err = dmu_tx_assign(tx, TXG_WAIT); if (err) { dmu_tx_abort(tx); return (err); } mutex_enter(&zsb->z_lock); if (*objp == 0) { *objp = zap_create(zsb->z_os, DMU_OT_USERGROUP_QUOTA, DMU_OT_NONE, 0, tx); VERIFY(0 == zap_add(zsb->z_os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); } mutex_exit(&zsb->z_lock); if (quota == 0) { err = zap_remove(zsb->z_os, *objp, buf, tx); if (err == ENOENT) err = 0; } else { err = zap_update(zsb->z_os, *objp, buf, 8, 1, "a, tx); } ASSERT(err == 0); if (fuid_dirtied) zfs_fuid_sync(zsb, tx); dmu_tx_commit(tx); return (err); } EXPORT_SYMBOL(zfs_set_userquota); boolean_t zfs_fuid_overquota(zfs_sb_t *zsb, boolean_t isgroup, uint64_t fuid) { char buf[32]; uint64_t used, quota, usedobj, quotaobj; int err; usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj; if (quotaobj == 0 || zsb->z_replay) return (B_FALSE); (void) sprintf(buf, "%llx", (longlong_t)fuid); err = zap_lookup(zsb->z_os, quotaobj, buf, 8, 1, "a); if (err != 0) return (B_FALSE); err = zap_lookup(zsb->z_os, usedobj, buf, 8, 1, &used); if (err != 0) return (B_FALSE); return (used >= quota); } EXPORT_SYMBOL(zfs_fuid_overquota); boolean_t zfs_owner_overquota(zfs_sb_t *zsb, znode_t *zp, boolean_t isgroup) { uint64_t fuid; uint64_t quotaobj; quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj; fuid = isgroup ? zp->z_gid : zp->z_uid; if (quotaobj == 0 || zsb->z_replay) return (B_FALSE); return (zfs_fuid_overquota(zsb, isgroup, fuid)); } EXPORT_SYMBOL(zfs_owner_overquota); int zfs_sb_create(const char *osname, zfs_sb_t **zsbp) { objset_t *os; zfs_sb_t *zsb; uint64_t zval; int i, error; uint64_t sa_obj; zsb = kmem_zalloc(sizeof (zfs_sb_t), KM_SLEEP); /* * We claim to always be readonly so we can open snapshots; * other ZPL code will prevent us from writing to snapshots. */ error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zsb, &os); if (error) { kmem_free(zsb, sizeof (zfs_sb_t)); return (error); } /* * Initialize the zfs-specific filesystem structure. * Should probably make this a kmem cache, shuffle fields, * and just bzero up to z_hold_mtx[]. */ zsb->z_sb = NULL; zsb->z_parent = zsb; zsb->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; zsb->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; zsb->z_os = os; error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zsb->z_version); if (error) { goto out; } else if (zsb->z_version > ZPL_VERSION) { error = SET_ERROR(ENOTSUP); goto out; } if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) goto out; zsb->z_norm = (int)zval; if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) goto out; zsb->z_utf8 = (zval != 0); if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) goto out; zsb->z_case = (uint_t)zval; if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &zval)) != 0) goto out; zsb->z_acl_type = (uint_t)zval; /* * Fold case on file systems that are always or sometimes case * insensitive. */ if (zsb->z_case == ZFS_CASE_INSENSITIVE || zsb->z_case == ZFS_CASE_MIXED) zsb->z_norm |= U8_TEXTPREP_TOUPPER; zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os); zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os); if (zsb->z_use_sa) { /* should either have both of these objects or none */ error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); if (error) goto out; error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &zval); if ((error == 0) && (zval == ZFS_XATTR_SA)) zsb->z_xattr_sa = B_TRUE; } else { /* * Pre SA versions file systems should never touch * either the attribute registration or layout objects. */ sa_obj = 0; } error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, &zsb->z_attr_table); if (error) goto out; if (zsb->z_version >= ZPL_VERSION_SA) sa_register_update_callback(os, zfs_sa_upgrade); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &zsb->z_root); if (error) goto out; ASSERT(zsb->z_root != 0); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, &zsb->z_unlinkedobj); if (error) goto out; error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 8, 1, &zsb->z_userquota_obj); if (error && error != ENOENT) goto out; error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 8, 1, &zsb->z_groupquota_obj); if (error && error != ENOENT) goto out; error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, &zsb->z_fuid_obj); if (error && error != ENOENT) goto out; error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, &zsb->z_shares_dir); if (error && error != ENOENT) goto out; mutex_init(&zsb->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zsb->z_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&zsb->z_all_znodes, sizeof (znode_t), offsetof(znode_t, z_link_node)); rrw_init(&zsb->z_teardown_lock, B_FALSE); rw_init(&zsb->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); rw_init(&zsb->z_fuid_lock, NULL, RW_DEFAULT, NULL); zsb->z_hold_mtx = vmem_zalloc(sizeof (kmutex_t) * ZFS_OBJ_MTX_SZ, KM_SLEEP); for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) mutex_init(&zsb->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); avl_create(&zsb->z_ctldir_snaps, snapentry_compare, sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); mutex_init(&zsb->z_ctldir_lock, NULL, MUTEX_DEFAULT, NULL); *zsbp = zsb; return (0); out: dmu_objset_disown(os, zsb); *zsbp = NULL; vmem_free(zsb->z_hold_mtx, sizeof (kmutex_t) * ZFS_OBJ_MTX_SZ); kmem_free(zsb, sizeof (zfs_sb_t)); return (error); } EXPORT_SYMBOL(zfs_sb_create); int zfs_sb_setup(zfs_sb_t *zsb, boolean_t mounting) { int error; error = zfs_register_callbacks(zsb); if (error) return (error); /* * Set the objset user_ptr to track its zsb. */ mutex_enter(&zsb->z_os->os_user_ptr_lock); dmu_objset_set_user(zsb->z_os, zsb); mutex_exit(&zsb->z_os->os_user_ptr_lock); zsb->z_log = zil_open(zsb->z_os, zfs_get_data); /* * If we are not mounting (ie: online recv), then we don't * have to worry about replaying the log as we blocked all * operations out since we closed the ZIL. */ if (mounting) { boolean_t readonly; /* * During replay we remove the read only flag to * allow replays to succeed. */ readonly = zfs_is_readonly(zsb); if (readonly != 0) readonly_changed_cb(zsb, B_FALSE); else zfs_unlinked_drain(zsb); /* * Parse and replay the intent log. * * Because of ziltest, this must be done after * zfs_unlinked_drain(). (Further note: ziltest * doesn't use readonly mounts, where * zfs_unlinked_drain() isn't called.) This is because * ziltest causes spa_sync() to think it's committed, * but actually it is not, so the intent log contains * many txg's worth of changes. * * In particular, if object N is in the unlinked set in * the last txg to actually sync, then it could be * actually freed in a later txg and then reallocated * in a yet later txg. This would write a "create * object N" record to the intent log. Normally, this * would be fine because the spa_sync() would have * written out the fact that object N is free, before * we could write the "create object N" intent log * record. * * But when we are in ziltest mode, we advance the "open * txg" without actually spa_sync()-ing the changes to * disk. So we would see that object N is still * allocated and in the unlinked set, and there is an * intent log record saying to allocate it. */ if (spa_writeable(dmu_objset_spa(zsb->z_os))) { if (zil_replay_disable) { zil_destroy(zsb->z_log, B_FALSE); } else { zsb->z_replay = B_TRUE; zil_replay(zsb->z_os, zsb, zfs_replay_vector); zsb->z_replay = B_FALSE; } } /* restore readonly bit */ if (readonly != 0) readonly_changed_cb(zsb, B_TRUE); } return (0); } EXPORT_SYMBOL(zfs_sb_setup); void zfs_sb_free(zfs_sb_t *zsb) { int i; zfs_fuid_destroy(zsb); mutex_destroy(&zsb->z_znodes_lock); mutex_destroy(&zsb->z_lock); list_destroy(&zsb->z_all_znodes); rrw_destroy(&zsb->z_teardown_lock); rw_destroy(&zsb->z_teardown_inactive_lock); rw_destroy(&zsb->z_fuid_lock); for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) mutex_destroy(&zsb->z_hold_mtx[i]); vmem_free(zsb->z_hold_mtx, sizeof (kmutex_t) * ZFS_OBJ_MTX_SZ); mutex_destroy(&zsb->z_ctldir_lock); avl_destroy(&zsb->z_ctldir_snaps); kmem_free(zsb, sizeof (zfs_sb_t)); } EXPORT_SYMBOL(zfs_sb_free); static void zfs_set_fuid_feature(zfs_sb_t *zsb) { zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os); zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os); } void zfs_unregister_callbacks(zfs_sb_t *zsb) { objset_t *os = zsb->z_os; struct dsl_dataset *ds; /* * Unregister properties. */ if (!dmu_objset_is_snapshot(os)) { ds = dmu_objset_ds(os); VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, zsb) == 0); VERIFY(dsl_prop_unregister(ds, "relatime", relatime_changed_cb, zsb) == 0); VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zsb) == 0); VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zsb) == 0); VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zsb) == 0); VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, zsb) == 0); VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zsb) == 0); VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, zsb) == 0); VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zsb) == 0); VERIFY(dsl_prop_unregister(ds, "acltype", acltype_changed_cb, zsb) == 0); VERIFY(dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, zsb) == 0); VERIFY(dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zsb) == 0); VERIFY(dsl_prop_unregister(ds, "nbmand", nbmand_changed_cb, zsb) == 0); } } EXPORT_SYMBOL(zfs_unregister_callbacks); #ifdef HAVE_MLSLABEL /* * Check that the hex label string is appropriate for the dataset being * mounted into the global_zone proper. * * Return an error if the hex label string is not default or * admin_low/admin_high. For admin_low labels, the corresponding * dataset must be readonly. */ int zfs_check_global_label(const char *dsname, const char *hexsl) { if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) return (0); if (strcasecmp(hexsl, ADMIN_HIGH) == 0) return (0); if (strcasecmp(hexsl, ADMIN_LOW) == 0) { /* must be readonly */ uint64_t rdonly; if (dsl_prop_get_integer(dsname, zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) return (SET_ERROR(EACCES)); return (rdonly ? 0 : EACCES); } return (SET_ERROR(EACCES)); } EXPORT_SYMBOL(zfs_check_global_label); #endif /* HAVE_MLSLABEL */ int zfs_statvfs(struct dentry *dentry, struct kstatfs *statp) { zfs_sb_t *zsb = dentry->d_sb->s_fs_info; uint64_t refdbytes, availbytes, usedobjs, availobjs; uint64_t fsid; uint32_t bshift; ZFS_ENTER(zsb); dmu_objset_space(zsb->z_os, &refdbytes, &availbytes, &usedobjs, &availobjs); fsid = dmu_objset_fsid_guid(zsb->z_os); /* * The underlying storage pool actually uses multiple block * size. Under Solaris frsize (fragment size) is reported as * the smallest block size we support, and bsize (block size) * as the filesystem's maximum block size. Unfortunately, * under Linux the fragment size and block size are often used * interchangeably. Thus we are forced to report both of them * as the filesystem's maximum block size. */ statp->f_frsize = zsb->z_max_blksz; statp->f_bsize = zsb->z_max_blksz; bshift = fls(statp->f_bsize) - 1; /* * The following report "total" blocks of various kinds in * the file system, but reported in terms of f_bsize - the * "preferred" size. */ statp->f_blocks = (refdbytes + availbytes) >> bshift; statp->f_bfree = availbytes >> bshift; statp->f_bavail = statp->f_bfree; /* no root reservation */ /* * statvfs() should really be called statufs(), because it assumes * static metadata. ZFS doesn't preallocate files, so the best * we can do is report the max that could possibly fit in f_files, * and that minus the number actually used in f_ffree. * For f_ffree, report the smaller of the number of object available * and the number of blocks (each object will take at least a block). */ statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT); statp->f_files = statp->f_ffree + usedobjs; statp->f_fsid.val[0] = (uint32_t)fsid; statp->f_fsid.val[1] = (uint32_t)(fsid >> 32); statp->f_type = ZFS_SUPER_MAGIC; statp->f_namelen = ZFS_MAXNAMELEN; /* * We have all of 40 characters to stuff a string here. * Is there anything useful we could/should provide? */ bzero(statp->f_spare, sizeof (statp->f_spare)); ZFS_EXIT(zsb); return (0); } EXPORT_SYMBOL(zfs_statvfs); int zfs_root(zfs_sb_t *zsb, struct inode **ipp) { znode_t *rootzp; int error; ZFS_ENTER(zsb); error = zfs_zget(zsb, zsb->z_root, &rootzp); if (error == 0) *ipp = ZTOI(rootzp); ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_root); /* * The ARC has requested that the filesystem drop entries from the dentry * and inode caches. This can occur when the ARC needs to free meta data * blocks but can't because they are all pinned by entries in these caches. */ int zfs_sb_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects) { zfs_sb_t *zsb = sb->s_fs_info; int error = 0; #if defined(HAVE_SHRINK) || defined(HAVE_SPLIT_SHRINKER_CALLBACK) struct shrinker *shrinker = &sb->s_shrink; struct shrink_control sc = { .nr_to_scan = nr_to_scan, .gfp_mask = GFP_KERNEL, }; #endif ZFS_ENTER(zsb); #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) *objects = (*shrinker->scan_objects)(shrinker, &sc); #elif defined(HAVE_SHRINK) *objects = (*shrinker->shrink)(shrinker, &sc); #else /* * Linux kernels older than 3.1 do not support a per-filesystem * shrinker. Therefore, we must fall back to the only available * interface which is to discard all unused dentries and inodes. * This behavior clearly isn't ideal but it's required so the ARC * may free memory. The performance impact is mitigated by the * fact that the frequently accessed dentry and inode buffers will * still be in the ARC making them relatively cheap to recreate. */ *objects = 0; shrink_dcache_parent(sb->s_root); #endif ZFS_EXIT(zsb); dprintf_ds(zsb->z_os->os_dsl_dataset, "pruning, nr_to_scan=%lu objects=%d error=%d\n", nr_to_scan, *objects, error); return (error); } EXPORT_SYMBOL(zfs_sb_prune); /* * Teardown the zfs_sb_t. * * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' * and 'z_teardown_inactive_lock' held. */ int zfs_sb_teardown(zfs_sb_t *zsb, boolean_t unmounting) { znode_t *zp; /* * If someone has not already unmounted this file system, * drain the iput_taskq to ensure all active references to the * zfs_sb_t have been handled only then can it be safely destroyed. */ if (zsb->z_os) { /* * If we're unmounting we have to wait for the list to * drain completely. * * If we're not unmounting there's no guarantee the list * will drain completely, but iputs run from the taskq * may add the parents of dir-based xattrs to the taskq * so we want to wait for these. * * We can safely read z_nr_znodes without locking because the * VFS has already blocked operations which add to the * z_all_znodes list and thus increment z_nr_znodes. */ int round = 0; while (zsb->z_nr_znodes > 0) { taskq_wait(dsl_pool_iput_taskq(dmu_objset_pool( zsb->z_os))); if (++round > 1 && !unmounting) break; } } rrw_enter(&zsb->z_teardown_lock, RW_WRITER, FTAG); if (!unmounting) { /* * We purge the parent filesystem's super block as the * parent filesystem and all of its snapshots have their * inode's super block set to the parent's filesystem's * super block. Note, 'z_parent' is self referential * for non-snapshots. */ shrink_dcache_sb(zsb->z_parent->z_sb); } /* * Close the zil. NB: Can't close the zil while zfs_inactive * threads are blocked as zil_close can call zfs_inactive. */ if (zsb->z_log) { zil_close(zsb->z_log); zsb->z_log = NULL; } rw_enter(&zsb->z_teardown_inactive_lock, RW_WRITER); /* * If we are not unmounting (ie: online recv) and someone already * unmounted this file system while we were doing the switcheroo, * or a reopen of z_os failed then just bail out now. */ if (!unmounting && (zsb->z_unmounted || zsb->z_os == NULL)) { rw_exit(&zsb->z_teardown_inactive_lock); rrw_exit(&zsb->z_teardown_lock, FTAG); return (SET_ERROR(EIO)); } /* * At this point there are no VFS ops active, and any new VFS ops * will fail with EIO since we have z_teardown_lock for writer (only * relevant for forced unmount). * * Release all holds on dbufs. */ if (!unmounting) { mutex_enter(&zsb->z_znodes_lock); for (zp = list_head(&zsb->z_all_znodes); zp != NULL; zp = list_next(&zsb->z_all_znodes, zp)) { if (zp->z_sa_hdl) zfs_znode_dmu_fini(zp); } mutex_exit(&zsb->z_znodes_lock); } /* * If we are unmounting, set the unmounted flag and let new VFS ops * unblock. zfs_inactive will have the unmounted behavior, and all * other VFS ops will fail with EIO. */ if (unmounting) { zsb->z_unmounted = B_TRUE; rrw_exit(&zsb->z_teardown_lock, FTAG); rw_exit(&zsb->z_teardown_inactive_lock); } /* * z_os will be NULL if there was an error in attempting to reopen * zsb, so just return as the properties had already been * * unregistered and cached data had been evicted before. */ if (zsb->z_os == NULL) return (0); /* * Unregister properties. */ zfs_unregister_callbacks(zsb); /* * Evict cached data */ if (dsl_dataset_is_dirty(dmu_objset_ds(zsb->z_os)) && !zfs_is_readonly(zsb)) txg_wait_synced(dmu_objset_pool(zsb->z_os), 0); dmu_objset_evict_dbufs(zsb->z_os); return (0); } EXPORT_SYMBOL(zfs_sb_teardown); #if !defined(HAVE_2ARGS_BDI_SETUP_AND_REGISTER) && \ !defined(HAVE_3ARGS_BDI_SETUP_AND_REGISTER) atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0); #endif int zfs_domount(struct super_block *sb, void *data, int silent) { zpl_mount_data_t *zmd = data; const char *osname = zmd->z_osname; zfs_sb_t *zsb; struct inode *root_inode; uint64_t recordsize; int error; error = zfs_sb_create(osname, &zsb); if (error) return (error); if ((error = dsl_prop_get_integer(osname, "recordsize", &recordsize, NULL))) goto out; zsb->z_sb = sb; sb->s_fs_info = zsb; sb->s_magic = ZFS_SUPER_MAGIC; sb->s_maxbytes = MAX_LFS_FILESIZE; sb->s_time_gran = 1; sb->s_blocksize = recordsize; sb->s_blocksize_bits = ilog2(recordsize); zsb->z_bdi.ra_pages = 0; sb->s_bdi = &zsb->z_bdi; error = -zpl_bdi_setup_and_register(&zsb->z_bdi, "zfs"); if (error) goto out; /* Set callback operations for the file system. */ sb->s_op = &zpl_super_operations; sb->s_xattr = zpl_xattr_handlers; sb->s_export_op = &zpl_export_operations; #ifdef HAVE_S_D_OP sb->s_d_op = &zpl_dentry_operations; #endif /* HAVE_S_D_OP */ /* Set features for file system. */ zfs_set_fuid_feature(zsb); if (dmu_objset_is_snapshot(zsb->z_os)) { uint64_t pval; atime_changed_cb(zsb, B_FALSE); readonly_changed_cb(zsb, B_TRUE); if ((error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))) goto out; xattr_changed_cb(zsb, pval); if ((error = dsl_prop_get_integer(osname, "acltype", &pval, NULL))) goto out; acltype_changed_cb(zsb, pval); zsb->z_issnap = B_TRUE; zsb->z_os->os_sync = ZFS_SYNC_DISABLED; mutex_enter(&zsb->z_os->os_user_ptr_lock); dmu_objset_set_user(zsb->z_os, zsb); mutex_exit(&zsb->z_os->os_user_ptr_lock); } else { error = zfs_sb_setup(zsb, B_TRUE); } /* Allocate a root inode for the filesystem. */ error = zfs_root(zsb, &root_inode); if (error) { (void) zfs_umount(sb); goto out; } /* Allocate a root dentry for the filesystem */ sb->s_root = d_make_root(root_inode); if (sb->s_root == NULL) { (void) zfs_umount(sb); error = SET_ERROR(ENOMEM); goto out; } if (!zsb->z_issnap) zfsctl_create(zsb); zsb->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb); out: if (error) { dmu_objset_disown(zsb->z_os, zsb); zfs_sb_free(zsb); } return (error); } EXPORT_SYMBOL(zfs_domount); /* * Called when an unmount is requested and certain sanity checks have * already passed. At this point no dentries or inodes have been reclaimed * from their respective caches. We drop the extra reference on the .zfs * control directory to allow everything to be reclaimed. All snapshots * must already have been unmounted to reach this point. */ void zfs_preumount(struct super_block *sb) { zfs_sb_t *zsb = sb->s_fs_info; if (zsb != NULL && zsb->z_ctldir != NULL) zfsctl_destroy(zsb); } EXPORT_SYMBOL(zfs_preumount); /* * Called once all other unmount released tear down has occurred. * It is our responsibility to release any remaining infrastructure. */ /*ARGSUSED*/ int zfs_umount(struct super_block *sb) { zfs_sb_t *zsb = sb->s_fs_info; objset_t *os; arc_remove_prune_callback(zsb->z_arc_prune); VERIFY(zfs_sb_teardown(zsb, B_TRUE) == 0); os = zsb->z_os; bdi_destroy(sb->s_bdi); /* * z_os will be NULL if there was an error in * attempting to reopen zsb. */ if (os != NULL) { /* * Unset the objset user_ptr. */ mutex_enter(&os->os_user_ptr_lock); dmu_objset_set_user(os, NULL); mutex_exit(&os->os_user_ptr_lock); /* * Finally release the objset */ dmu_objset_disown(os, zsb); } zfs_sb_free(zsb); return (0); } EXPORT_SYMBOL(zfs_umount); int zfs_remount(struct super_block *sb, int *flags, char *data) { /* * All namespace flags (MNT_*) and super block flags (MS_*) will * be handled by the Linux VFS. Only handle custom options here. */ return (0); } EXPORT_SYMBOL(zfs_remount); int zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp) { zfs_sb_t *zsb = sb->s_fs_info; znode_t *zp; uint64_t object = 0; uint64_t fid_gen = 0; uint64_t gen_mask; uint64_t zp_gen; int i, err; *ipp = NULL; ZFS_ENTER(zsb); if (fidp->fid_len == LONG_FID_LEN) { zfid_long_t *zlfid = (zfid_long_t *)fidp; uint64_t objsetid = 0; uint64_t setgen = 0; for (i = 0; i < sizeof (zlfid->zf_setid); i++) objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); for (i = 0; i < sizeof (zlfid->zf_setgen); i++) setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); ZFS_EXIT(zsb); err = zfsctl_lookup_objset(sb, objsetid, &zsb); if (err) return (SET_ERROR(EINVAL)); ZFS_ENTER(zsb); } if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { zfid_short_t *zfid = (zfid_short_t *)fidp; for (i = 0; i < sizeof (zfid->zf_object); i++) object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); for (i = 0; i < sizeof (zfid->zf_gen); i++) fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); } else { ZFS_EXIT(zsb); return (SET_ERROR(EINVAL)); } /* A zero fid_gen means we are in the .zfs control directories */ if (fid_gen == 0 && (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { *ipp = zsb->z_ctldir; ASSERT(*ipp != NULL); if (object == ZFSCTL_INO_SNAPDIR) { VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp, 0, kcred, NULL, NULL) == 0); } else { igrab(*ipp); } ZFS_EXIT(zsb); return (0); } gen_mask = -1ULL >> (64 - 8 * i); dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask); if ((err = zfs_zget(zsb, object, &zp))) { ZFS_EXIT(zsb); return (err); } (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb), &zp_gen, sizeof (uint64_t)); zp_gen = zp_gen & gen_mask; if (zp_gen == 0) zp_gen = 1; if (zp->z_unlinked || zp_gen != fid_gen) { dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen, fid_gen); iput(ZTOI(zp)); ZFS_EXIT(zsb); return (SET_ERROR(EINVAL)); } *ipp = ZTOI(zp); if (*ipp) zfs_inode_update(ITOZ(*ipp)); ZFS_EXIT(zsb); return (0); } EXPORT_SYMBOL(zfs_vget); /* * Block out VFS ops and close zfs_sb_t * * Note, if successful, then we return with the 'z_teardown_lock' and * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying * dataset and objset intact so that they can be atomically handed off during * a subsequent rollback or recv operation and the resume thereafter. */ int zfs_suspend_fs(zfs_sb_t *zsb) { int error; if ((error = zfs_sb_teardown(zsb, B_FALSE)) != 0) return (error); return (0); } EXPORT_SYMBOL(zfs_suspend_fs); /* * Reopen zfs_sb_t and release VFS ops. */ int zfs_resume_fs(zfs_sb_t *zsb, const char *osname) { int err, err2; znode_t *zp; uint64_t sa_obj = 0; ASSERT(RRW_WRITE_HELD(&zsb->z_teardown_lock)); ASSERT(RW_WRITE_HELD(&zsb->z_teardown_inactive_lock)); /* * We already own this, so just hold and rele it to update the * objset_t, as the one we had before may have been evicted. */ VERIFY0(dmu_objset_hold(osname, zsb, &zsb->z_os)); VERIFY3P(zsb->z_os->os_dsl_dataset->ds_owner, ==, zsb); VERIFY(dsl_dataset_long_held(zsb->z_os->os_dsl_dataset)); dmu_objset_rele(zsb->z_os, zsb); /* * Make sure version hasn't changed */ err = zfs_get_zplprop(zsb->z_os, ZFS_PROP_VERSION, &zsb->z_version); if (err) goto bail; err = zap_lookup(zsb->z_os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); if (err && zsb->z_version >= ZPL_VERSION_SA) goto bail; if ((err = sa_setup(zsb->z_os, sa_obj, zfs_attr_table, ZPL_END, &zsb->z_attr_table)) != 0) goto bail; if (zsb->z_version >= ZPL_VERSION_SA) sa_register_update_callback(zsb->z_os, zfs_sa_upgrade); VERIFY(zfs_sb_setup(zsb, B_FALSE) == 0); zfs_set_fuid_feature(zsb); zsb->z_rollback_time = jiffies; /* * Attempt to re-establish all the active inodes with their * dbufs. If a zfs_rezget() fails, then we unhash the inode * and mark it stale. This prevents a collision if a new * inode/object is created which must use the same inode * number. The stale inode will be be released when the * VFS prunes the dentry holding the remaining references * on the stale inode. */ mutex_enter(&zsb->z_znodes_lock); for (zp = list_head(&zsb->z_all_znodes); zp; zp = list_next(&zsb->z_all_znodes, zp)) { err2 = zfs_rezget(zp); if (err2) { remove_inode_hash(ZTOI(zp)); zp->z_is_stale = B_TRUE; } } mutex_exit(&zsb->z_znodes_lock); bail: /* release the VFS ops */ rw_exit(&zsb->z_teardown_inactive_lock); rrw_exit(&zsb->z_teardown_lock, FTAG); if (err) { /* * Since we couldn't setup the sa framework, try to force * unmount this file system. */ if (zsb->z_os) (void) zfs_umount(zsb->z_sb); } return (err); } EXPORT_SYMBOL(zfs_resume_fs); int zfs_set_version(zfs_sb_t *zsb, uint64_t newvers) { int error; objset_t *os = zsb->z_os; dmu_tx_t *tx; if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) return (SET_ERROR(EINVAL)); if (newvers < zsb->z_version) return (SET_ERROR(EINVAL)); if (zfs_spa_version_map(newvers) > spa_version(dmu_objset_spa(zsb->z_os))) return (SET_ERROR(ENOTSUP)); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) { dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, ZFS_SA_ATTRS); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); } error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &newvers, tx); if (error) { dmu_tx_commit(tx); return (error); } if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) { uint64_t sa_obj; ASSERT3U(spa_version(dmu_objset_spa(zsb->z_os)), >=, SPA_VERSION_SA); sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, DMU_OT_NONE, 0, tx); error = zap_add(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); ASSERT0(error); VERIFY(0 == sa_set_sa_object(os, sa_obj)); sa_register_update_callback(os, zfs_sa_upgrade); } spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, "from %llu to %llu", zsb->z_version, newvers); dmu_tx_commit(tx); zsb->z_version = newvers; zfs_set_fuid_feature(zsb); return (0); } EXPORT_SYMBOL(zfs_set_version); /* * Read a property stored within the master node. */ int zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) { const char *pname; int error = SET_ERROR(ENOENT); /* * Look up the file system's value for the property. For the * version property, we look up a slightly different string. */ if (prop == ZFS_PROP_VERSION) pname = ZPL_VERSION_STR; else pname = zfs_prop_to_name(prop); if (os != NULL) error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); if (error == ENOENT) { /* No value set, use the default value */ switch (prop) { case ZFS_PROP_VERSION: *value = ZPL_VERSION; break; case ZFS_PROP_NORMALIZE: case ZFS_PROP_UTF8ONLY: *value = 0; break; case ZFS_PROP_CASE: *value = ZFS_CASE_SENSITIVE; break; case ZFS_PROP_ACLTYPE: *value = ZFS_ACLTYPE_OFF; break; default: return (error); } error = 0; } return (error); } EXPORT_SYMBOL(zfs_get_zplprop); void zfs_init(void) { zfsctl_init(); zfs_znode_init(); dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); register_filesystem(&zpl_fs_type); } void zfs_fini(void) { taskq_wait(system_taskq); unregister_filesystem(&zpl_fs_type); zfs_znode_fini(); zfsctl_fini(); }