/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2009 by Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include /* * These are the void returning variants */ /* BEGIN CSTYLED */ #define ATOMIC_INC(name, type) \ void atomic_inc_##name(volatile type *target) \ { \ (void) __atomic_add_fetch(target, 1, __ATOMIC_SEQ_CST); \ } ATOMIC_INC(8, uint8_t) ATOMIC_INC(uchar, uchar_t) ATOMIC_INC(16, uint16_t) ATOMIC_INC(ushort, ushort_t) ATOMIC_INC(32, uint32_t) ATOMIC_INC(uint, uint_t) ATOMIC_INC(ulong, ulong_t) ATOMIC_INC(64, uint64_t) #define ATOMIC_DEC(name, type) \ void atomic_dec_##name(volatile type *target) \ { \ (void) __atomic_sub_fetch(target, 1, __ATOMIC_SEQ_CST); \ } ATOMIC_DEC(8, uint8_t) ATOMIC_DEC(uchar, uchar_t) ATOMIC_DEC(16, uint16_t) ATOMIC_DEC(ushort, ushort_t) ATOMIC_DEC(32, uint32_t) ATOMIC_DEC(uint, uint_t) ATOMIC_DEC(ulong, ulong_t) ATOMIC_DEC(64, uint64_t) #define ATOMIC_ADD(name, type1, type2) \ void atomic_add_##name(volatile type1 *target, type2 bits) \ { \ (void) __atomic_add_fetch(target, bits, __ATOMIC_SEQ_CST); \ } ATOMIC_ADD(8, uint8_t, int8_t) ATOMIC_ADD(char, uchar_t, signed char) ATOMIC_ADD(16, uint16_t, int16_t) ATOMIC_ADD(short, ushort_t, short) ATOMIC_ADD(32, uint32_t, int32_t) ATOMIC_ADD(int, uint_t, int) ATOMIC_ADD(long, ulong_t, long) ATOMIC_ADD(64, uint64_t, int64_t) void atomic_add_ptr(volatile void *target, ssize_t bits) { (void) __atomic_add_fetch((void **)target, bits, __ATOMIC_SEQ_CST); } #define ATOMIC_SUB(name, type1, type2) \ void atomic_sub_##name(volatile type1 *target, type2 bits) \ { \ (void) __atomic_sub_fetch(target, bits, __ATOMIC_SEQ_CST); \ } ATOMIC_SUB(8, uint8_t, int8_t) ATOMIC_SUB(char, uchar_t, signed char) ATOMIC_SUB(16, uint16_t, int16_t) ATOMIC_SUB(short, ushort_t, short) ATOMIC_SUB(32, uint32_t, int32_t) ATOMIC_SUB(int, uint_t, int) ATOMIC_SUB(long, ulong_t, long) ATOMIC_SUB(64, uint64_t, int64_t) void atomic_sub_ptr(volatile void *target, ssize_t bits) { (void) __atomic_sub_fetch((void **)target, bits, __ATOMIC_SEQ_CST); } #define ATOMIC_OR(name, type) \ void atomic_or_##name(volatile type *target, type bits) \ { \ (void) __atomic_or_fetch(target, bits, __ATOMIC_SEQ_CST); \ } ATOMIC_OR(8, uint8_t) ATOMIC_OR(uchar, uchar_t) ATOMIC_OR(16, uint16_t) ATOMIC_OR(ushort, ushort_t) ATOMIC_OR(32, uint32_t) ATOMIC_OR(uint, uint_t) ATOMIC_OR(ulong, ulong_t) ATOMIC_OR(64, uint64_t) #define ATOMIC_AND(name, type) \ void atomic_and_##name(volatile type *target, type bits) \ { \ (void) __atomic_and_fetch(target, bits, __ATOMIC_SEQ_CST); \ } ATOMIC_AND(8, uint8_t) ATOMIC_AND(uchar, uchar_t) ATOMIC_AND(16, uint16_t) ATOMIC_AND(ushort, ushort_t) ATOMIC_AND(32, uint32_t) ATOMIC_AND(uint, uint_t) ATOMIC_AND(ulong, ulong_t) ATOMIC_AND(64, uint64_t) /* * New value returning variants */ #define ATOMIC_INC_NV(name, type) \ type atomic_inc_##name##_nv(volatile type *target) \ { \ return (__atomic_add_fetch(target, 1, __ATOMIC_SEQ_CST)); \ } ATOMIC_INC_NV(8, uint8_t) ATOMIC_INC_NV(uchar, uchar_t) ATOMIC_INC_NV(16, uint16_t) ATOMIC_INC_NV(ushort, ushort_t) ATOMIC_INC_NV(32, uint32_t) ATOMIC_INC_NV(uint, uint_t) ATOMIC_INC_NV(ulong, ulong_t) ATOMIC_INC_NV(64, uint64_t) #define ATOMIC_DEC_NV(name, type) \ type atomic_dec_##name##_nv(volatile type *target) \ { \ return (__atomic_sub_fetch(target, 1, __ATOMIC_SEQ_CST)); \ } ATOMIC_DEC_NV(8, uint8_t) ATOMIC_DEC_NV(uchar, uchar_t) ATOMIC_DEC_NV(16, uint16_t) ATOMIC_DEC_NV(ushort, ushort_t) ATOMIC_DEC_NV(32, uint32_t) ATOMIC_DEC_NV(uint, uint_t) ATOMIC_DEC_NV(ulong, ulong_t) ATOMIC_DEC_NV(64, uint64_t) #define ATOMIC_ADD_NV(name, type1, type2) \ type1 atomic_add_##name##_nv(volatile type1 *target, type2 bits) \ { \ return (__atomic_add_fetch(target, bits, __ATOMIC_SEQ_CST)); \ } ATOMIC_ADD_NV(8, uint8_t, int8_t) ATOMIC_ADD_NV(char, uchar_t, signed char) ATOMIC_ADD_NV(16, uint16_t, int16_t) ATOMIC_ADD_NV(short, ushort_t, short) ATOMIC_ADD_NV(32, uint32_t, int32_t) ATOMIC_ADD_NV(int, uint_t, int) ATOMIC_ADD_NV(long, ulong_t, long) ATOMIC_ADD_NV(64, uint64_t, int64_t) void * atomic_add_ptr_nv(volatile void *target, ssize_t bits) { return (__atomic_add_fetch((void **)target, bits, __ATOMIC_SEQ_CST)); } #define ATOMIC_SUB_NV(name, type1, type2) \ type1 atomic_sub_##name##_nv(volatile type1 *target, type2 bits) \ { \ return (__atomic_sub_fetch(target, bits, __ATOMIC_SEQ_CST)); \ } ATOMIC_SUB_NV(8, uint8_t, int8_t) ATOMIC_SUB_NV(char, uchar_t, signed char) ATOMIC_SUB_NV(16, uint16_t, int16_t) ATOMIC_SUB_NV(short, ushort_t, short) ATOMIC_SUB_NV(32, uint32_t, int32_t) ATOMIC_SUB_NV(int, uint_t, int) ATOMIC_SUB_NV(long, ulong_t, long) ATOMIC_SUB_NV(64, uint64_t, int64_t) void * atomic_sub_ptr_nv(volatile void *target, ssize_t bits) { return (__atomic_sub_fetch((void **)target, bits, __ATOMIC_SEQ_CST)); } #define ATOMIC_OR_NV(name, type) \ type atomic_or_##name##_nv(volatile type *target, type bits) \ { \ return (__atomic_or_fetch(target, bits, __ATOMIC_SEQ_CST)); \ } ATOMIC_OR_NV(8, uint8_t) ATOMIC_OR_NV(uchar, uchar_t) ATOMIC_OR_NV(16, uint16_t) ATOMIC_OR_NV(ushort, ushort_t) ATOMIC_OR_NV(32, uint32_t) ATOMIC_OR_NV(uint, uint_t) ATOMIC_OR_NV(ulong, ulong_t) ATOMIC_OR_NV(64, uint64_t) #define ATOMIC_AND_NV(name, type) \ type atomic_and_##name##_nv(volatile type *target, type bits) \ { \ return (__atomic_and_fetch(target, bits, __ATOMIC_SEQ_CST)); \ } ATOMIC_AND_NV(8, uint8_t) ATOMIC_AND_NV(uchar, uchar_t) ATOMIC_AND_NV(16, uint16_t) ATOMIC_AND_NV(ushort, ushort_t) ATOMIC_AND_NV(32, uint32_t) ATOMIC_AND_NV(uint, uint_t) ATOMIC_AND_NV(ulong, ulong_t) ATOMIC_AND_NV(64, uint64_t) /* * If *tgt == exp, set *tgt = des; return old value * * This may not look right on the first pass (or the sixteenth), but, * from https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html: * > If they are not equal, the operation is a read * > and the current contents of *ptr are written into *expected. * And, in the converse case, exp is already *target by definition. */ #define ATOMIC_CAS(name, type) \ type atomic_cas_##name(volatile type *target, type exp, type des) \ { \ __atomic_compare_exchange_n(target, &exp, des, B_FALSE, \ __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); \ return (exp); \ } ATOMIC_CAS(8, uint8_t) ATOMIC_CAS(uchar, uchar_t) ATOMIC_CAS(16, uint16_t) ATOMIC_CAS(ushort, ushort_t) ATOMIC_CAS(32, uint32_t) ATOMIC_CAS(uint, uint_t) ATOMIC_CAS(ulong, ulong_t) ATOMIC_CAS(64, uint64_t) void * atomic_cas_ptr(volatile void *target, void *exp, void *des) { __atomic_compare_exchange_n((void **)target, &exp, des, B_FALSE, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); return (exp); } /* * Swap target and return old value */ #define ATOMIC_SWAP(name, type) \ type atomic_swap_##name(volatile type *target, type bits) \ { \ return (__atomic_exchange_n(target, bits, __ATOMIC_SEQ_CST)); \ } ATOMIC_SWAP(8, uint8_t) ATOMIC_SWAP(uchar, uchar_t) ATOMIC_SWAP(16, uint16_t) ATOMIC_SWAP(ushort, ushort_t) ATOMIC_SWAP(32, uint32_t) ATOMIC_SWAP(uint, uint_t) ATOMIC_SWAP(ulong, ulong_t) ATOMIC_SWAP(64, uint64_t) /* END CSTYLED */ void * atomic_swap_ptr(volatile void *target, void *bits) { return (__atomic_exchange_n((void **)target, bits, __ATOMIC_SEQ_CST)); } int atomic_set_long_excl(volatile ulong_t *target, uint_t value) { ulong_t bit = 1UL << value; ulong_t old = __atomic_fetch_or(target, bit, __ATOMIC_SEQ_CST); return ((old & bit) ? -1 : 0); } int atomic_clear_long_excl(volatile ulong_t *target, uint_t value) { ulong_t bit = 1UL << value; ulong_t old = __atomic_fetch_and(target, ~bit, __ATOMIC_SEQ_CST); return ((old & bit) ? 0 : -1); } void membar_enter(void) { __atomic_thread_fence(__ATOMIC_SEQ_CST); } void membar_exit(void) { __atomic_thread_fence(__ATOMIC_SEQ_CST); } void membar_producer(void) { __atomic_thread_fence(__ATOMIC_RELEASE); } void membar_consumer(void) { __atomic_thread_fence(__ATOMIC_ACQUIRE); }