/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012 Cyril Plisko. All rights reserved. * Copyright (c) 2013, 2017 by Delphix. All rights reserved. * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * NB: FreeBSD expects to be able to do vnode locking in lookup and * hold the locks across all subsequent VOPs until vput is called. * This means that its zfs vnops routines can't do any internal locking. * In order to have the same contract as the Linux vnops there would * needed to be duplicate locked vnops. If the vnops were used more widely * in common code this would likely be preferable. However, currently * this is the only file where this is the case. */ /* * Functions to replay ZFS intent log (ZIL) records * The functions are called through a function vector (zfs_replay_vector) * which is indexed by the transaction type. */ static void zfs_init_vattr(vattr_t *vap, uint64_t mask, uint64_t mode, uint64_t uid, uint64_t gid, uint64_t rdev, uint64_t nodeid) { memset(vap, 0, sizeof (*vap)); vap->va_mask = (uint_t)mask; vap->va_mode = mode; #if defined(__FreeBSD__) || defined(__APPLE__) vap->va_type = IFTOVT(mode); #endif vap->va_uid = (uid_t)(IS_EPHEMERAL(uid)) ? -1 : uid; vap->va_gid = (gid_t)(IS_EPHEMERAL(gid)) ? -1 : gid; vap->va_rdev = zfs_cmpldev(rdev); vap->va_nodeid = nodeid; } static int zfs_replay_error(void *arg1, void *arg2, boolean_t byteswap) { (void) arg1, (void) arg2, (void) byteswap; return (SET_ERROR(ENOTSUP)); } static void zfs_replay_xvattr(lr_attr_t *lrattr, xvattr_t *xvap) { xoptattr_t *xoap = NULL; uint64_t *attrs; uint64_t *crtime; uint32_t *bitmap; void *scanstamp; int i; xvap->xva_vattr.va_mask |= ATTR_XVATTR; if ((xoap = xva_getxoptattr(xvap)) == NULL) { xvap->xva_vattr.va_mask &= ~ATTR_XVATTR; /* shouldn't happen */ return; } ASSERT(lrattr->lr_attr_masksize == xvap->xva_mapsize); bitmap = &lrattr->lr_attr_bitmap; for (i = 0; i != lrattr->lr_attr_masksize; i++, bitmap++) xvap->xva_reqattrmap[i] = *bitmap; attrs = (uint64_t *)(lrattr + lrattr->lr_attr_masksize - 1); crtime = attrs + 1; scanstamp = (caddr_t)(crtime + 2); if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) xoap->xoa_hidden = ((*attrs & XAT0_HIDDEN) != 0); if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) xoap->xoa_system = ((*attrs & XAT0_SYSTEM) != 0); if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) xoap->xoa_archive = ((*attrs & XAT0_ARCHIVE) != 0); if (XVA_ISSET_REQ(xvap, XAT_READONLY)) xoap->xoa_readonly = ((*attrs & XAT0_READONLY) != 0); if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) xoap->xoa_immutable = ((*attrs & XAT0_IMMUTABLE) != 0); if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) xoap->xoa_nounlink = ((*attrs & XAT0_NOUNLINK) != 0); if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) xoap->xoa_appendonly = ((*attrs & XAT0_APPENDONLY) != 0); if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) xoap->xoa_nodump = ((*attrs & XAT0_NODUMP) != 0); if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) xoap->xoa_opaque = ((*attrs & XAT0_OPAQUE) != 0); if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) xoap->xoa_av_modified = ((*attrs & XAT0_AV_MODIFIED) != 0); if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) xoap->xoa_av_quarantined = ((*attrs & XAT0_AV_QUARANTINED) != 0); if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) ZFS_TIME_DECODE(&xoap->xoa_createtime, crtime); if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { ASSERT(!XVA_ISSET_REQ(xvap, XAT_PROJID)); memcpy(xoap->xoa_av_scanstamp, scanstamp, AV_SCANSTAMP_SZ); } else if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { /* * XAT_PROJID and XAT_AV_SCANSTAMP will never be valid * at the same time, so we can share the same space. */ memcpy(&xoap->xoa_projid, scanstamp, sizeof (uint64_t)); } if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) xoap->xoa_reparse = ((*attrs & XAT0_REPARSE) != 0); if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) xoap->xoa_offline = ((*attrs & XAT0_OFFLINE) != 0); if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) xoap->xoa_sparse = ((*attrs & XAT0_SPARSE) != 0); if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) xoap->xoa_projinherit = ((*attrs & XAT0_PROJINHERIT) != 0); } static int zfs_replay_domain_cnt(uint64_t uid, uint64_t gid) { uint64_t uid_idx; uint64_t gid_idx; int domcnt = 0; uid_idx = FUID_INDEX(uid); gid_idx = FUID_INDEX(gid); if (uid_idx) domcnt++; if (gid_idx > 0 && gid_idx != uid_idx) domcnt++; return (domcnt); } static void * zfs_replay_fuid_domain_common(zfs_fuid_info_t *fuid_infop, void *start, int domcnt) { int i; for (i = 0; i != domcnt; i++) { fuid_infop->z_domain_table[i] = start; start = (caddr_t)start + strlen(start) + 1; } return (start); } /* * Set the uid/gid in the fuid_info structure. */ static void zfs_replay_fuid_ugid(zfs_fuid_info_t *fuid_infop, uint64_t uid, uint64_t gid) { /* * If owner or group are log specific FUIDs then slurp up * domain information and build zfs_fuid_info_t */ if (IS_EPHEMERAL(uid)) fuid_infop->z_fuid_owner = uid; if (IS_EPHEMERAL(gid)) fuid_infop->z_fuid_group = gid; } /* * Load fuid domains into fuid_info_t */ static zfs_fuid_info_t * zfs_replay_fuid_domain(void *buf, void **end, uint64_t uid, uint64_t gid) { int domcnt; zfs_fuid_info_t *fuid_infop; fuid_infop = zfs_fuid_info_alloc(); domcnt = zfs_replay_domain_cnt(uid, gid); if (domcnt == 0) return (fuid_infop); fuid_infop->z_domain_table = kmem_zalloc(domcnt * sizeof (char *), KM_SLEEP); zfs_replay_fuid_ugid(fuid_infop, uid, gid); fuid_infop->z_domain_cnt = domcnt; *end = zfs_replay_fuid_domain_common(fuid_infop, buf, domcnt); return (fuid_infop); } /* * load zfs_fuid_t's and fuid_domains into fuid_info_t */ static zfs_fuid_info_t * zfs_replay_fuids(void *start, void **end, int idcnt, int domcnt, uint64_t uid, uint64_t gid) { uint64_t *log_fuid = (uint64_t *)start; zfs_fuid_info_t *fuid_infop; int i; fuid_infop = zfs_fuid_info_alloc(); fuid_infop->z_domain_cnt = domcnt; fuid_infop->z_domain_table = kmem_zalloc(domcnt * sizeof (char *), KM_SLEEP); for (i = 0; i != idcnt; i++) { zfs_fuid_t *zfuid; zfuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP); zfuid->z_logfuid = *log_fuid; zfuid->z_id = -1; zfuid->z_domidx = 0; list_insert_tail(&fuid_infop->z_fuids, zfuid); log_fuid++; } zfs_replay_fuid_ugid(fuid_infop, uid, gid); *end = zfs_replay_fuid_domain_common(fuid_infop, log_fuid, domcnt); return (fuid_infop); } static void zfs_replay_swap_attrs(lr_attr_t *lrattr) { /* swap the lr_attr structure */ byteswap_uint32_array(lrattr, sizeof (*lrattr)); /* swap the bitmap */ byteswap_uint32_array(lrattr + 1, (lrattr->lr_attr_masksize - 1) * sizeof (uint32_t)); /* swap the attributes, create time + 64 bit word for attributes */ byteswap_uint64_array((caddr_t)(lrattr + 1) + (sizeof (uint32_t) * (lrattr->lr_attr_masksize - 1)), 3 * sizeof (uint64_t)); } /* * Replay file create with optional ACL, xvattr information as well * as option FUID information. */ static int zfs_replay_create_acl(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_acl_create_t *lracl = arg2; char *name = NULL; /* location determined later */ lr_create_t *lr = (lr_create_t *)lracl; znode_t *dzp; znode_t *zp; xvattr_t xva; int vflg = 0; vsecattr_t vsec = { 0 }; lr_attr_t *lrattr; void *aclstart; void *fuidstart; size_t xvatlen = 0; uint64_t txtype; uint64_t objid; uint64_t dnodesize; int error; txtype = (lr->lr_common.lrc_txtype & ~TX_CI); if (byteswap) { byteswap_uint64_array(lracl, sizeof (*lracl)); if (txtype == TX_CREATE_ACL_ATTR || txtype == TX_MKDIR_ACL_ATTR) { lrattr = (lr_attr_t *)(caddr_t)(lracl + 1); zfs_replay_swap_attrs(lrattr); xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); } aclstart = (caddr_t)(lracl + 1) + xvatlen; zfs_ace_byteswap(aclstart, lracl->lr_acl_bytes, B_FALSE); /* swap fuids */ if (lracl->lr_fuidcnt) { byteswap_uint64_array((caddr_t)aclstart + ZIL_ACE_LENGTH(lracl->lr_acl_bytes), lracl->lr_fuidcnt * sizeof (uint64_t)); } } if ((error = zfs_zget(zfsvfs, lr->lr_doid, &dzp)) != 0) return (error); objid = LR_FOID_GET_OBJ(lr->lr_foid); dnodesize = LR_FOID_GET_SLOTS(lr->lr_foid) << DNODE_SHIFT; xva_init(&xva); zfs_init_vattr(&xva.xva_vattr, ATTR_MODE | ATTR_UID | ATTR_GID, lr->lr_mode, lr->lr_uid, lr->lr_gid, lr->lr_rdev, objid); /* * All forms of zfs create (create, mkdir, mkxattrdir, symlink) * eventually end up in zfs_mknode(), which assigns the object's * creation time, generation number, and dnode size. The generic * zfs_create() has no concept of these attributes, so we smuggle * the values inside the vattr's otherwise unused va_ctime, * va_nblocks, and va_fsid fields. */ ZFS_TIME_DECODE(&xva.xva_vattr.va_ctime, lr->lr_crtime); xva.xva_vattr.va_nblocks = lr->lr_gen; xva.xva_vattr.va_fsid = dnodesize; error = dnode_try_claim(zfsvfs->z_os, objid, dnodesize >> DNODE_SHIFT); if (error) goto bail; if (lr->lr_common.lrc_txtype & TX_CI) vflg |= FIGNORECASE; switch (txtype) { case TX_CREATE_ACL: aclstart = (caddr_t)(lracl + 1); fuidstart = (caddr_t)aclstart + ZIL_ACE_LENGTH(lracl->lr_acl_bytes); zfsvfs->z_fuid_replay = zfs_replay_fuids(fuidstart, (void *)&name, lracl->lr_fuidcnt, lracl->lr_domcnt, lr->lr_uid, lr->lr_gid); zfs_fallthrough; case TX_CREATE_ACL_ATTR: if (name == NULL) { lrattr = (lr_attr_t *)(caddr_t)(lracl + 1); xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); xva.xva_vattr.va_mask |= ATTR_XVATTR; zfs_replay_xvattr(lrattr, &xva); } vsec.vsa_mask = VSA_ACE | VSA_ACE_ACLFLAGS; vsec.vsa_aclentp = (caddr_t)(lracl + 1) + xvatlen; vsec.vsa_aclcnt = lracl->lr_aclcnt; vsec.vsa_aclentsz = lracl->lr_acl_bytes; vsec.vsa_aclflags = lracl->lr_acl_flags; if (zfsvfs->z_fuid_replay == NULL) { fuidstart = (caddr_t)(lracl + 1) + xvatlen + ZIL_ACE_LENGTH(lracl->lr_acl_bytes); zfsvfs->z_fuid_replay = zfs_replay_fuids(fuidstart, (void *)&name, lracl->lr_fuidcnt, lracl->lr_domcnt, lr->lr_uid, lr->lr_gid); } #if defined(__linux__) error = zfs_create(dzp, name, &xva.xva_vattr, 0, 0, &zp, kcred, vflg, &vsec, kcred->user_ns); #else error = zfs_create(dzp, name, &xva.xva_vattr, 0, 0, &zp, kcred, vflg, &vsec, NULL); #endif break; case TX_MKDIR_ACL: aclstart = (caddr_t)(lracl + 1); fuidstart = (caddr_t)aclstart + ZIL_ACE_LENGTH(lracl->lr_acl_bytes); zfsvfs->z_fuid_replay = zfs_replay_fuids(fuidstart, (void *)&name, lracl->lr_fuidcnt, lracl->lr_domcnt, lr->lr_uid, lr->lr_gid); zfs_fallthrough; case TX_MKDIR_ACL_ATTR: if (name == NULL) { lrattr = (lr_attr_t *)(caddr_t)(lracl + 1); xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); zfs_replay_xvattr(lrattr, &xva); } vsec.vsa_mask = VSA_ACE | VSA_ACE_ACLFLAGS; vsec.vsa_aclentp = (caddr_t)(lracl + 1) + xvatlen; vsec.vsa_aclcnt = lracl->lr_aclcnt; vsec.vsa_aclentsz = lracl->lr_acl_bytes; vsec.vsa_aclflags = lracl->lr_acl_flags; if (zfsvfs->z_fuid_replay == NULL) { fuidstart = (caddr_t)(lracl + 1) + xvatlen + ZIL_ACE_LENGTH(lracl->lr_acl_bytes); zfsvfs->z_fuid_replay = zfs_replay_fuids(fuidstart, (void *)&name, lracl->lr_fuidcnt, lracl->lr_domcnt, lr->lr_uid, lr->lr_gid); } #if defined(__linux__) error = zfs_mkdir(dzp, name, &xva.xva_vattr, &zp, kcred, vflg, &vsec, kcred->user_ns); #else error = zfs_mkdir(dzp, name, &xva.xva_vattr, &zp, kcred, vflg, &vsec, NULL); #endif break; default: error = SET_ERROR(ENOTSUP); } bail: if (error == 0 && zp != NULL) { #ifdef __FreeBSD__ VOP_UNLOCK1(ZTOV(zp)); #endif zrele(zp); } zrele(dzp); if (zfsvfs->z_fuid_replay) zfs_fuid_info_free(zfsvfs->z_fuid_replay); zfsvfs->z_fuid_replay = NULL; return (error); } static int zfs_replay_create(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_create_t *lr = arg2; char *name = NULL; /* location determined later */ char *link; /* symlink content follows name */ znode_t *dzp; znode_t *zp = NULL; xvattr_t xva; int vflg = 0; size_t lrsize = sizeof (lr_create_t); lr_attr_t *lrattr; void *start; size_t xvatlen; uint64_t txtype; uint64_t objid; uint64_t dnodesize; int error; txtype = (lr->lr_common.lrc_txtype & ~TX_CI); if (byteswap) { byteswap_uint64_array(lr, sizeof (*lr)); if (txtype == TX_CREATE_ATTR || txtype == TX_MKDIR_ATTR) zfs_replay_swap_attrs((lr_attr_t *)(lr + 1)); } if ((error = zfs_zget(zfsvfs, lr->lr_doid, &dzp)) != 0) return (error); objid = LR_FOID_GET_OBJ(lr->lr_foid); dnodesize = LR_FOID_GET_SLOTS(lr->lr_foid) << DNODE_SHIFT; xva_init(&xva); zfs_init_vattr(&xva.xva_vattr, ATTR_MODE | ATTR_UID | ATTR_GID, lr->lr_mode, lr->lr_uid, lr->lr_gid, lr->lr_rdev, objid); /* * All forms of zfs create (create, mkdir, mkxattrdir, symlink) * eventually end up in zfs_mknode(), which assigns the object's * creation time, generation number, and dnode slot count. The * generic zfs_create() has no concept of these attributes, so * we smuggle the values inside the vattr's otherwise unused * va_ctime, va_nblocks, and va_fsid fields. */ ZFS_TIME_DECODE(&xva.xva_vattr.va_ctime, lr->lr_crtime); xva.xva_vattr.va_nblocks = lr->lr_gen; xva.xva_vattr.va_fsid = dnodesize; error = dnode_try_claim(zfsvfs->z_os, objid, dnodesize >> DNODE_SHIFT); if (error) goto out; if (lr->lr_common.lrc_txtype & TX_CI) vflg |= FIGNORECASE; /* * Symlinks don't have fuid info, and CIFS never creates * symlinks. * * The _ATTR versions will grab the fuid info in their subcases. */ if (txtype != TX_SYMLINK && txtype != TX_MKDIR_ATTR && txtype != TX_CREATE_ATTR) { start = (lr + 1); zfsvfs->z_fuid_replay = zfs_replay_fuid_domain(start, &start, lr->lr_uid, lr->lr_gid); } switch (txtype) { case TX_CREATE_ATTR: lrattr = (lr_attr_t *)(caddr_t)(lr + 1); xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); zfs_replay_xvattr((lr_attr_t *)((caddr_t)lr + lrsize), &xva); start = (caddr_t)(lr + 1) + xvatlen; zfsvfs->z_fuid_replay = zfs_replay_fuid_domain(start, &start, lr->lr_uid, lr->lr_gid); name = (char *)start; zfs_fallthrough; case TX_CREATE: if (name == NULL) name = (char *)start; #if defined(__linux__) error = zfs_create(dzp, name, &xva.xva_vattr, 0, 0, &zp, kcred, vflg, NULL, kcred->user_ns); #else error = zfs_create(dzp, name, &xva.xva_vattr, 0, 0, &zp, kcred, vflg, NULL, NULL); #endif break; case TX_MKDIR_ATTR: lrattr = (lr_attr_t *)(caddr_t)(lr + 1); xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); zfs_replay_xvattr((lr_attr_t *)((caddr_t)lr + lrsize), &xva); start = (caddr_t)(lr + 1) + xvatlen; zfsvfs->z_fuid_replay = zfs_replay_fuid_domain(start, &start, lr->lr_uid, lr->lr_gid); name = (char *)start; zfs_fallthrough; case TX_MKDIR: if (name == NULL) name = (char *)(lr + 1); #if defined(__linux__) error = zfs_mkdir(dzp, name, &xva.xva_vattr, &zp, kcred, vflg, NULL, kcred->user_ns); #else error = zfs_mkdir(dzp, name, &xva.xva_vattr, &zp, kcred, vflg, NULL, NULL); #endif break; case TX_MKXATTR: error = zfs_make_xattrdir(dzp, &xva.xva_vattr, &zp, kcred); break; case TX_SYMLINK: name = (char *)(lr + 1); link = name + strlen(name) + 1; #if defined(__linux__) error = zfs_symlink(dzp, name, &xva.xva_vattr, link, &zp, kcred, vflg, kcred->user_ns); #else error = zfs_symlink(dzp, name, &xva.xva_vattr, link, &zp, kcred, vflg, NULL); #endif break; default: error = SET_ERROR(ENOTSUP); } out: if (error == 0 && zp != NULL) { #ifdef __FreeBSD__ VOP_UNLOCK1(ZTOV(zp)); #endif zrele(zp); } zrele(dzp); if (zfsvfs->z_fuid_replay) zfs_fuid_info_free(zfsvfs->z_fuid_replay); zfsvfs->z_fuid_replay = NULL; return (error); } static int zfs_replay_remove(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_remove_t *lr = arg2; char *name = (char *)(lr + 1); /* name follows lr_remove_t */ znode_t *dzp; int error; int vflg = 0; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_doid, &dzp)) != 0) return (error); if (lr->lr_common.lrc_txtype & TX_CI) vflg |= FIGNORECASE; switch ((int)lr->lr_common.lrc_txtype) { case TX_REMOVE: error = zfs_remove(dzp, name, kcred, vflg); break; case TX_RMDIR: error = zfs_rmdir(dzp, name, NULL, kcred, vflg); break; default: error = SET_ERROR(ENOTSUP); } zrele(dzp); return (error); } static int zfs_replay_link(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_link_t *lr = arg2; char *name = (char *)(lr + 1); /* name follows lr_link_t */ znode_t *dzp, *zp; int error; int vflg = 0; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_doid, &dzp)) != 0) return (error); if ((error = zfs_zget(zfsvfs, lr->lr_link_obj, &zp)) != 0) { zrele(dzp); return (error); } if (lr->lr_common.lrc_txtype & TX_CI) vflg |= FIGNORECASE; error = zfs_link(dzp, zp, name, kcred, vflg); zrele(zp); zrele(dzp); return (error); } static int do_zfs_replay_rename(zfsvfs_t *zfsvfs, lr_rename_t *lr, char *sname, char *tname, uint64_t rflags, vattr_t *wo_vap) { znode_t *sdzp, *tdzp; int error, vflg = 0; /* Only Linux currently supports RENAME_* flags. */ #ifdef __linux__ VERIFY0(rflags & ~(RENAME_EXCHANGE | RENAME_WHITEOUT)); /* wo_vap must be non-NULL iff. we're doing RENAME_WHITEOUT */ VERIFY_EQUIV(rflags & RENAME_WHITEOUT, wo_vap != NULL); #else VERIFY0(rflags); #endif if ((error = zfs_zget(zfsvfs, lr->lr_sdoid, &sdzp)) != 0) return (error); if ((error = zfs_zget(zfsvfs, lr->lr_tdoid, &tdzp)) != 0) { zrele(sdzp); return (error); } if (lr->lr_common.lrc_txtype & TX_CI) vflg |= FIGNORECASE; #if defined(__linux__) error = zfs_rename(sdzp, sname, tdzp, tname, kcred, vflg, rflags, wo_vap, kcred->user_ns); #else error = zfs_rename(sdzp, sname, tdzp, tname, kcred, vflg, rflags, wo_vap, NULL); #endif zrele(tdzp); zrele(sdzp); return (error); } static int zfs_replay_rename(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_rename_t *lr = arg2; char *sname = (char *)(lr + 1); /* sname and tname follow lr_rename_t */ char *tname = sname + strlen(sname) + 1; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); return (do_zfs_replay_rename(zfsvfs, lr, sname, tname, 0, NULL)); } static int zfs_replay_rename_exchange(void *arg1, void *arg2, boolean_t byteswap) { #ifdef __linux__ zfsvfs_t *zfsvfs = arg1; lr_rename_t *lr = arg2; char *sname = (char *)(lr + 1); /* sname and tname follow lr_rename_t */ char *tname = sname + strlen(sname) + 1; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); return (do_zfs_replay_rename(zfsvfs, lr, sname, tname, RENAME_EXCHANGE, NULL)); #else return (SET_ERROR(ENOTSUP)); #endif } static int zfs_replay_rename_whiteout(void *arg1, void *arg2, boolean_t byteswap) { #ifdef __linux__ zfsvfs_t *zfsvfs = arg1; lr_rename_whiteout_t *lr = arg2; int error; /* sname and tname follow lr_rename_whiteout_t */ char *sname = (char *)(lr + 1); char *tname = sname + strlen(sname) + 1; /* For the whiteout file. */ xvattr_t xva; uint64_t objid; uint64_t dnodesize; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); objid = LR_FOID_GET_OBJ(lr->lr_wfoid); dnodesize = LR_FOID_GET_SLOTS(lr->lr_wfoid) << DNODE_SHIFT; xva_init(&xva); zfs_init_vattr(&xva.xva_vattr, ATTR_MODE | ATTR_UID | ATTR_GID, lr->lr_wmode, lr->lr_wuid, lr->lr_wgid, lr->lr_wrdev, objid); /* * As with TX_CREATE, RENAME_WHITEOUT ends up in zfs_mknode(), which * assigns the object's creation time, generation number, and dnode * slot count. The generic zfs_rename() has no concept of these * attributes, so we smuggle the values inside the vattr's otherwise * unused va_ctime, va_nblocks, and va_fsid fields. */ ZFS_TIME_DECODE(&xva.xva_vattr.va_ctime, lr->lr_wcrtime); xva.xva_vattr.va_nblocks = lr->lr_wgen; xva.xva_vattr.va_fsid = dnodesize; error = dnode_try_claim(zfsvfs->z_os, objid, dnodesize >> DNODE_SHIFT); if (error) return (error); return (do_zfs_replay_rename(zfsvfs, &lr->lr_rename, sname, tname, RENAME_WHITEOUT, &xva.xva_vattr)); #else return (SET_ERROR(ENOTSUP)); #endif } static int zfs_replay_write(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_write_t *lr = arg2; char *data = (char *)(lr + 1); /* data follows lr_write_t */ znode_t *zp; int error; uint64_t eod, offset, length; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) { /* * As we can log writes out of order, it's possible the * file has been removed. In this case just drop the write * and return success. */ if (error == ENOENT) error = 0; return (error); } offset = lr->lr_offset; length = lr->lr_length; eod = offset + length; /* end of data for this write */ /* * This may be a write from a dmu_sync() for a whole block, * and may extend beyond the current end of the file. * We can't just replay what was written for this TX_WRITE as * a future TX_WRITE2 may extend the eof and the data for that * write needs to be there. So we write the whole block and * reduce the eof. This needs to be done within the single dmu * transaction created within vn_rdwr -> zfs_write. So a possible * new end of file is passed through in zfsvfs->z_replay_eof */ zfsvfs->z_replay_eof = 0; /* 0 means don't change end of file */ /* If it's a dmu_sync() block, write the whole block */ if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); if (length < blocksize) { offset -= offset % blocksize; length = blocksize; } if (zp->z_size < eod) zfsvfs->z_replay_eof = eod; } error = zfs_write_simple(zp, data, length, offset, NULL); zrele(zp); zfsvfs->z_replay_eof = 0; /* safety */ return (error); } /* * TX_WRITE2 are only generated when dmu_sync() returns EALREADY * meaning the pool block is already being synced. So now that we always write * out full blocks, all we have to do is expand the eof if * the file is grown. */ static int zfs_replay_write2(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_write_t *lr = arg2; znode_t *zp; int error; uint64_t end; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); top: end = lr->lr_offset + lr->lr_length; if (end > zp->z_size) { dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); zp->z_size = end; dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { zrele(zp); if (error == ERESTART) { dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } dmu_tx_abort(tx); return (error); } (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), (void *)&zp->z_size, sizeof (uint64_t), tx); /* Ensure the replayed seq is updated */ (void) zil_replaying(zfsvfs->z_log, tx); dmu_tx_commit(tx); } zrele(zp); return (error); } static int zfs_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_truncate_t *lr = arg2; znode_t *zp; flock64_t fl = {0}; int error; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); fl.l_type = F_WRLCK; fl.l_whence = SEEK_SET; fl.l_start = lr->lr_offset; fl.l_len = lr->lr_length; error = zfs_space(zp, F_FREESP, &fl, O_RDWR | O_LARGEFILE, lr->lr_offset, kcred); zrele(zp); return (error); } static int zfs_replay_setattr(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_setattr_t *lr = arg2; znode_t *zp; xvattr_t xva; vattr_t *vap = &xva.xva_vattr; int error; void *start; xva_init(&xva); if (byteswap) { byteswap_uint64_array(lr, sizeof (*lr)); if ((lr->lr_mask & ATTR_XVATTR) && zfsvfs->z_version >= ZPL_VERSION_INITIAL) zfs_replay_swap_attrs((lr_attr_t *)(lr + 1)); } if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); zfs_init_vattr(vap, lr->lr_mask, lr->lr_mode, lr->lr_uid, lr->lr_gid, 0, lr->lr_foid); vap->va_size = lr->lr_size; ZFS_TIME_DECODE(&vap->va_atime, lr->lr_atime); ZFS_TIME_DECODE(&vap->va_mtime, lr->lr_mtime); gethrestime(&vap->va_ctime); vap->va_mask |= ATTR_CTIME; /* * Fill in xvattr_t portions if necessary. */ start = (lr_setattr_t *)(lr + 1); if (vap->va_mask & ATTR_XVATTR) { zfs_replay_xvattr((lr_attr_t *)start, &xva); start = (caddr_t)start + ZIL_XVAT_SIZE(((lr_attr_t *)start)->lr_attr_masksize); } else xva.xva_vattr.va_mask &= ~ATTR_XVATTR; zfsvfs->z_fuid_replay = zfs_replay_fuid_domain(start, &start, lr->lr_uid, lr->lr_gid); #if defined(__linux__) error = zfs_setattr(zp, vap, 0, kcred, kcred->user_ns); #else error = zfs_setattr(zp, vap, 0, kcred, NULL); #endif zfs_fuid_info_free(zfsvfs->z_fuid_replay); zfsvfs->z_fuid_replay = NULL; zrele(zp); return (error); } static int zfs_replay_setsaxattr(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_setsaxattr_t *lr = arg2; znode_t *zp; nvlist_t *nvl; size_t sa_size; char *name; char *value; size_t size; int error = 0; ASSERT(spa_feature_is_active(zfsvfs->z_os->os_spa, SPA_FEATURE_ZILSAXATTR)); if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); rw_enter(&zp->z_xattr_lock, RW_WRITER); mutex_enter(&zp->z_lock); if (zp->z_xattr_cached == NULL) error = zfs_sa_get_xattr(zp); mutex_exit(&zp->z_lock); if (error) goto out; ASSERT(zp->z_xattr_cached); nvl = zp->z_xattr_cached; /* Get xattr name, value and size from log record */ size = lr->lr_size; name = (char *)(lr + 1); if (size == 0) { value = NULL; error = nvlist_remove(nvl, name, DATA_TYPE_BYTE_ARRAY); } else { value = name + strlen(name) + 1; /* Limited to 32k to keep nvpair memory allocations small */ if (size > DXATTR_MAX_ENTRY_SIZE) { error = SET_ERROR(EFBIG); goto out; } /* Prevent the DXATTR SA from consuming the entire SA region */ error = nvlist_size(nvl, &sa_size, NV_ENCODE_XDR); if (error) goto out; if (sa_size > DXATTR_MAX_SA_SIZE) { error = SET_ERROR(EFBIG); goto out; } error = nvlist_add_byte_array(nvl, name, (uchar_t *)value, size); } /* * Update the SA for additions, modifications, and removals. On * error drop the inconsistent cached version of the nvlist, it * will be reconstructed from the ARC when next accessed. */ if (error == 0) error = zfs_sa_set_xattr(zp, name, value, size); if (error) { nvlist_free(nvl); zp->z_xattr_cached = NULL; } out: rw_exit(&zp->z_xattr_lock); zrele(zp); return (error); } static int zfs_replay_acl_v0(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_acl_v0_t *lr = arg2; ace_t *ace = (ace_t *)(lr + 1); /* ace array follows lr_acl_t */ vsecattr_t vsa = {0}; znode_t *zp; int error; if (byteswap) { byteswap_uint64_array(lr, sizeof (*lr)); zfs_oldace_byteswap(ace, lr->lr_aclcnt); } if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); vsa.vsa_mask = VSA_ACE | VSA_ACECNT; vsa.vsa_aclcnt = lr->lr_aclcnt; vsa.vsa_aclentsz = sizeof (ace_t) * vsa.vsa_aclcnt; vsa.vsa_aclflags = 0; vsa.vsa_aclentp = ace; error = zfs_setsecattr(zp, &vsa, 0, kcred); zrele(zp); return (error); } /* * Replaying ACLs is complicated by FUID support. * The log record may contain some optional data * to be used for replaying FUID's. These pieces * are the actual FUIDs that were created initially. * The FUID table index may no longer be valid and * during zfs_create() a new index may be assigned. * Because of this the log will contain the original * domain+rid in order to create a new FUID. * * The individual ACEs may contain an ephemeral uid/gid which is no * longer valid and will need to be replaced with an actual FUID. * */ static int zfs_replay_acl(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_acl_t *lr = arg2; ace_t *ace = (ace_t *)(lr + 1); vsecattr_t vsa = {0}; znode_t *zp; int error; if (byteswap) { byteswap_uint64_array(lr, sizeof (*lr)); zfs_ace_byteswap(ace, lr->lr_acl_bytes, B_FALSE); if (lr->lr_fuidcnt) { byteswap_uint64_array((caddr_t)ace + ZIL_ACE_LENGTH(lr->lr_acl_bytes), lr->lr_fuidcnt * sizeof (uint64_t)); } } if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); vsa.vsa_mask = VSA_ACE | VSA_ACECNT | VSA_ACE_ACLFLAGS; vsa.vsa_aclcnt = lr->lr_aclcnt; vsa.vsa_aclentp = ace; vsa.vsa_aclentsz = lr->lr_acl_bytes; vsa.vsa_aclflags = lr->lr_acl_flags; if (lr->lr_fuidcnt) { void *fuidstart = (caddr_t)ace + ZIL_ACE_LENGTH(lr->lr_acl_bytes); zfsvfs->z_fuid_replay = zfs_replay_fuids(fuidstart, &fuidstart, lr->lr_fuidcnt, lr->lr_domcnt, 0, 0); } error = zfs_setsecattr(zp, &vsa, 0, kcred); if (zfsvfs->z_fuid_replay) zfs_fuid_info_free(zfsvfs->z_fuid_replay); zfsvfs->z_fuid_replay = NULL; zrele(zp); return (error); } static int zfs_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_clone_range_t *lr = arg2; znode_t *zp; int error; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) { /* * Clones can be logged out of order, so don't be surprised if * the file is gone - just return success. */ if (error == ENOENT) error = 0; return (error); } error = zfs_clone_range_replay(zp, lr->lr_offset, lr->lr_length, lr->lr_blksz, lr->lr_bps, lr->lr_nbps); zrele(zp); return (error); } /* * Callback vectors for replaying records */ zil_replay_func_t *const zfs_replay_vector[TX_MAX_TYPE] = { zfs_replay_error, /* no such type */ zfs_replay_create, /* TX_CREATE */ zfs_replay_create, /* TX_MKDIR */ zfs_replay_create, /* TX_MKXATTR */ zfs_replay_create, /* TX_SYMLINK */ zfs_replay_remove, /* TX_REMOVE */ zfs_replay_remove, /* TX_RMDIR */ zfs_replay_link, /* TX_LINK */ zfs_replay_rename, /* TX_RENAME */ zfs_replay_write, /* TX_WRITE */ zfs_replay_truncate, /* TX_TRUNCATE */ zfs_replay_setattr, /* TX_SETATTR */ zfs_replay_acl_v0, /* TX_ACL_V0 */ zfs_replay_acl, /* TX_ACL */ zfs_replay_create_acl, /* TX_CREATE_ACL */ zfs_replay_create, /* TX_CREATE_ATTR */ zfs_replay_create_acl, /* TX_CREATE_ACL_ATTR */ zfs_replay_create_acl, /* TX_MKDIR_ACL */ zfs_replay_create, /* TX_MKDIR_ATTR */ zfs_replay_create_acl, /* TX_MKDIR_ACL_ATTR */ zfs_replay_write2, /* TX_WRITE2 */ zfs_replay_setsaxattr, /* TX_SETSAXATTR */ zfs_replay_rename_exchange, /* TX_RENAME_EXCHANGE */ zfs_replay_rename_whiteout, /* TX_RENAME_WHITEOUT */ zfs_replay_clone_range, /* TX_CLONE_RANGE */ };