/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #endif typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, const zbookmark_phys_t *); static scan_cb_t dsl_scan_scrub_cb; static void dsl_scan_cancel_sync(void *, dmu_tx_t *); static void dsl_scan_sync_state(dsl_scan_t *, dmu_tx_t *tx); int zfs_top_maxinflight = 32; /* maximum I/Os per top-level */ int zfs_resilver_delay = 2; /* number of ticks to delay resilver */ int zfs_scrub_delay = 4; /* number of ticks to delay scrub */ int zfs_scan_idle = 50; /* idle window in clock ticks */ int zfs_scan_min_time_ms = 1000; /* min millisecs to scrub per txg */ int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */ int zfs_resilver_min_time_ms = 3000; /* min millisecs to resilver per txg */ int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; int dsl_scan_delay_completion = B_FALSE; /* set to delay scan completion */ /* max number of blocks to free in a single TXG */ ulong zfs_free_max_blocks = 100000; #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) /* the order has to match pool_scan_type */ static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { NULL, dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ }; int dsl_scan_init(dsl_pool_t *dp, uint64_t txg) { int err; dsl_scan_t *scn; spa_t *spa = dp->dp_spa; uint64_t f; scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); scn->scn_dp = dp; /* * It's possible that we're resuming a scan after a reboot so * make sure that the scan_async_destroying flag is initialized * appropriately. */ ASSERT(!scn->scn_async_destroying); scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY); err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, "scrub_func", sizeof (uint64_t), 1, &f); if (err == 0) { /* * There was an old-style scrub in progress. Restart a * new-style scrub from the beginning. */ scn->scn_restart_txg = txg; zfs_dbgmsg("old-style scrub was in progress; " "restarting new-style scrub in txg %llu", scn->scn_restart_txg); /* * Load the queue obj from the old location so that it * can be freed by dsl_scan_done(). */ (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, "scrub_queue", sizeof (uint64_t), 1, &scn->scn_phys.scn_queue_obj); } else { err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, &scn->scn_phys); /* * Detect if the pool contains the signature of #2094. If it * does properly update the scn->scn_phys structure and notify * the administrator by setting an errata for the pool. */ if (err == EOVERFLOW) { uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, (23 * sizeof (uint64_t))); err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); if (err == 0) { uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; if (overflow & ~DSL_SCAN_FLAGS_MASK || scn->scn_async_destroying) { spa->spa_errata = ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; return (EOVERFLOW); } bcopy(zaptmp, &scn->scn_phys, SCAN_PHYS_NUMINTS * sizeof (uint64_t)); scn->scn_phys.scn_flags = overflow; /* Required scrub already in progress. */ if (scn->scn_phys.scn_state == DSS_FINISHED || scn->scn_phys.scn_state == DSS_CANCELED) spa->spa_errata = ZPOOL_ERRATA_ZOL_2094_SCRUB; } } if (err == ENOENT) return (0); else if (err) return (err); if (scn->scn_phys.scn_state == DSS_SCANNING && spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { /* * A new-type scrub was in progress on an old * pool, and the pool was accessed by old * software. Restart from the beginning, since * the old software may have changed the pool in * the meantime. */ scn->scn_restart_txg = txg; zfs_dbgmsg("new-style scrub was modified " "by old software; restarting in txg %llu", scn->scn_restart_txg); } } spa_scan_stat_init(spa); return (0); } void dsl_scan_fini(dsl_pool_t *dp) { if (dp->dp_scan) { kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); dp->dp_scan = NULL; } } /* ARGSUSED */ static int dsl_scan_setup_check(void *arg, dmu_tx_t *tx) { dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; if (scn->scn_phys.scn_state == DSS_SCANNING) return (SET_ERROR(EBUSY)); return (0); } static void dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) { dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; pool_scan_func_t *funcp = arg; dmu_object_type_t ot = 0; dsl_pool_t *dp = scn->scn_dp; spa_t *spa = dp->dp_spa; ASSERT(scn->scn_phys.scn_state != DSS_SCANNING); ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); bzero(&scn->scn_phys, sizeof (scn->scn_phys)); scn->scn_phys.scn_func = *funcp; scn->scn_phys.scn_state = DSS_SCANNING; scn->scn_phys.scn_min_txg = 0; scn->scn_phys.scn_max_txg = tx->tx_txg; scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ scn->scn_phys.scn_start_time = gethrestime_sec(); scn->scn_phys.scn_errors = 0; scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; scn->scn_restart_txg = 0; scn->scn_done_txg = 0; spa_scan_stat_init(spa); if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; /* rewrite all disk labels */ vdev_config_dirty(spa->spa_root_vdev); if (vdev_resilver_needed(spa->spa_root_vdev, &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { spa_event_notify(spa, NULL, FM_EREPORT_ZFS_RESILVER_START); } else { spa_event_notify(spa, NULL, FM_EREPORT_ZFS_SCRUB_START); } spa->spa_scrub_started = B_TRUE; /* * If this is an incremental scrub, limit the DDT scrub phase * to just the auto-ditto class (for correctness); the rest * of the scrub should go faster using top-down pruning. */ if (scn->scn_phys.scn_min_txg > TXG_INITIAL) scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; } /* back to the generic stuff */ if (dp->dp_blkstats == NULL) { dp->dp_blkstats = vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); } bzero(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) ot = DMU_OT_ZAP_OTHER; scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); dsl_scan_sync_state(scn, tx); spa_history_log_internal(spa, "scan setup", tx, "func=%u mintxg=%llu maxtxg=%llu", *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg); } /* ARGSUSED */ static void dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) { static const char *old_names[] = { "scrub_bookmark", "scrub_ddt_bookmark", "scrub_ddt_class_max", "scrub_queue", "scrub_min_txg", "scrub_max_txg", "scrub_func", "scrub_errors", NULL }; dsl_pool_t *dp = scn->scn_dp; spa_t *spa = dp->dp_spa; int i; /* Remove any remnants of an old-style scrub. */ for (i = 0; old_names[i]; i++) { (void) zap_remove(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); } if (scn->scn_phys.scn_queue_obj != 0) { VERIFY(0 == dmu_object_free(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, tx)); scn->scn_phys.scn_queue_obj = 0; } /* * If we were "restarted" from a stopped state, don't bother * with anything else. */ if (scn->scn_phys.scn_state != DSS_SCANNING) return; if (complete) scn->scn_phys.scn_state = DSS_FINISHED; else scn->scn_phys.scn_state = DSS_CANCELED; spa_history_log_internal(spa, "scan done", tx, "complete=%u", complete); if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { mutex_enter(&spa->spa_scrub_lock); while (spa->spa_scrub_inflight > 0) { cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); } mutex_exit(&spa->spa_scrub_lock); spa->spa_scrub_started = B_FALSE; spa->spa_scrub_active = B_FALSE; /* * If the scrub/resilver completed, update all DTLs to * reflect this. Whether it succeeded or not, vacate * all temporary scrub DTLs. */ vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, complete ? scn->scn_phys.scn_max_txg : 0, B_TRUE); if (complete) { spa_event_notify(spa, NULL, scn->scn_phys.scn_min_txg ? FM_EREPORT_ZFS_RESILVER_FINISH : FM_EREPORT_ZFS_SCRUB_FINISH); } spa_errlog_rotate(spa); /* * We may have finished replacing a device. * Let the async thread assess this and handle the detach. */ spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); } scn->scn_phys.scn_end_time = gethrestime_sec(); if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) spa->spa_errata = 0; } /* ARGSUSED */ static int dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) { dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; if (scn->scn_phys.scn_state != DSS_SCANNING) return (SET_ERROR(ENOENT)); return (0); } /* ARGSUSED */ static void dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) { dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; dsl_scan_done(scn, B_FALSE, tx); dsl_scan_sync_state(scn, tx); } int dsl_scan_cancel(dsl_pool_t *dp) { return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); } static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, dmu_objset_type_t ostype, dmu_tx_t *tx); inline __attribute__((always_inline)) static void dsl_scan_visitdnode( dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); void dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) { zio_free(dp->dp_spa, txg, bp); } void dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) { ASSERT(dsl_pool_sync_context(dp)); zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); } static uint64_t dsl_scan_ds_maxtxg(dsl_dataset_t *ds) { uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; if (ds->ds_is_snapshot) return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); return (smt); } static void dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx) { VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, &scn->scn_phys, tx)); } extern int zfs_vdev_async_write_active_min_dirty_percent; static boolean_t dsl_scan_check_pause(dsl_scan_t *scn, const zbookmark_phys_t *zb) { uint64_t elapsed_nanosecs; int mintime; int dirty_pct; /* we never skip user/group accounting objects */ if (zb && (int64_t)zb->zb_object < 0) return (B_FALSE); if (scn->scn_pausing) return (B_TRUE); /* we're already pausing */ if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) return (B_FALSE); /* we're resuming */ /* We only know how to resume from level-0 blocks. */ if (zb && zb->zb_level != 0) return (B_FALSE); /* * We pause if: * - we have scanned for the maximum time: an entire txg * timeout (default 5 sec) * or * - we have scanned for at least the minimum time (default 1 sec * for scrub, 3 sec for resilver), and either we have sufficient * dirty data that we are starting to write more quickly * (default 30%), or someone is explicitly waiting for this txg * to complete. * or * - the spa is shutting down because this pool is being exported * or the machine is rebooting. */ mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms : zfs_scan_min_time_ms; elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; if (elapsed_nanosecs / NANOSEC >= zfs_txg_timeout || (NSEC2MSEC(elapsed_nanosecs) > mintime && (txg_sync_waiting(scn->scn_dp) || dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent)) || spa_shutting_down(scn->scn_dp->dp_spa)) { if (zb) { dprintf("pausing at bookmark %llx/%llx/%llx/%llx\n", (longlong_t)zb->zb_objset, (longlong_t)zb->zb_object, (longlong_t)zb->zb_level, (longlong_t)zb->zb_blkid); scn->scn_phys.scn_bookmark = *zb; } dprintf("pausing at DDT bookmark %llx/%llx/%llx/%llx\n", (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_class, (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_type, (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_checksum, (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_cursor); scn->scn_pausing = B_TRUE; return (B_TRUE); } return (B_FALSE); } typedef struct zil_scan_arg { dsl_pool_t *zsa_dp; zil_header_t *zsa_zh; } zil_scan_arg_t; /* ARGSUSED */ static int dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) { zil_scan_arg_t *zsa = arg; dsl_pool_t *dp = zsa->zsa_dp; dsl_scan_t *scn = dp->dp_scan; zil_header_t *zh = zsa->zsa_zh; zbookmark_phys_t zb; if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) return (0); /* * One block ("stubby") can be allocated a long time ago; we * want to visit that one because it has been allocated * (on-disk) even if it hasn't been claimed (even though for * scrub there's nothing to do to it). */ if (claim_txg == 0 && bp->blk_birth >= spa_first_txg(dp->dp_spa)) return (0); SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); return (0); } /* ARGSUSED */ static int dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg) { if (lrc->lrc_txtype == TX_WRITE) { zil_scan_arg_t *zsa = arg; dsl_pool_t *dp = zsa->zsa_dp; dsl_scan_t *scn = dp->dp_scan; zil_header_t *zh = zsa->zsa_zh; lr_write_t *lr = (lr_write_t *)lrc; blkptr_t *bp = &lr->lr_blkptr; zbookmark_phys_t zb; if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) return (0); /* * birth can be < claim_txg if this record's txg is * already txg sync'ed (but this log block contains * other records that are not synced) */ if (claim_txg == 0 || bp->blk_birth < claim_txg) return (0); SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], lr->lr_foid, ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); } return (0); } static void dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) { uint64_t claim_txg = zh->zh_claim_txg; zil_scan_arg_t zsa = { dp, zh }; zilog_t *zilog; /* * We only want to visit blocks that have been claimed but not yet * replayed (or, in read-only mode, blocks that *would* be claimed). */ if (claim_txg == 0 && spa_writeable(dp->dp_spa)) return; zilog = zil_alloc(dp->dp_meta_objset, zh); (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, claim_txg); zil_free(zilog); } /* ARGSUSED */ static void dsl_scan_prefetch(dsl_scan_t *scn, arc_buf_t *buf, blkptr_t *bp, uint64_t objset, uint64_t object, uint64_t blkid) { zbookmark_phys_t czb; arc_flags_t flags = ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; if (zfs_no_scrub_prefetch) return; if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_min_txg || (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE)) return; SET_BOOKMARK(&czb, objset, object, BP_GET_LEVEL(bp), blkid); (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, bp, NULL, NULL, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD, &flags, &czb); } static boolean_t dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, const zbookmark_phys_t *zb) { /* * We never skip over user/group accounting objects (obj<0) */ if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && (int64_t)zb->zb_object >= 0) { /* * If we already visited this bp & everything below (in * a prior txg sync), don't bother doing it again. */ if (zbookmark_subtree_completed(dnp, zb, &scn->scn_phys.scn_bookmark)) return (B_TRUE); /* * If we found the block we're trying to resume from, or * we went past it to a different object, zero it out to * indicate that it's OK to start checking for pausing * again. */ if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { dprintf("resuming at %llx/%llx/%llx/%llx\n", (longlong_t)zb->zb_objset, (longlong_t)zb->zb_object, (longlong_t)zb->zb_level, (longlong_t)zb->zb_blkid); bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); } } return (B_FALSE); } /* * Return nonzero on i/o error. * Return new buf to write out in *bufp. */ inline __attribute__((always_inline)) static int dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, dnode_phys_t *dnp, const blkptr_t *bp, const zbookmark_phys_t *zb, dmu_tx_t *tx) { dsl_pool_t *dp = scn->scn_dp; int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; int err; if (BP_GET_LEVEL(bp) > 0) { arc_flags_t flags = ARC_FLAG_WAIT; int i; blkptr_t *cbp; int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; arc_buf_t *buf; err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ, zio_flags, &flags, zb); if (err) { scn->scn_phys.scn_errors++; return (err); } for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { dsl_scan_prefetch(scn, buf, cbp, zb->zb_objset, zb->zb_object, zb->zb_blkid * epb + i); } for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { zbookmark_phys_t czb; SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, zb->zb_level - 1, zb->zb_blkid * epb + i); dsl_scan_visitbp(cbp, &czb, dnp, ds, scn, ostype, tx); } (void) arc_buf_remove_ref(buf, &buf); } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { arc_flags_t flags = ARC_FLAG_WAIT; dnode_phys_t *cdnp; int i, j; int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; arc_buf_t *buf; err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ, zio_flags, &flags, zb); if (err) { scn->scn_phys.scn_errors++; return (err); } for (i = 0, cdnp = buf->b_data; i < epb; i++, cdnp++) { for (j = 0; j < cdnp->dn_nblkptr; j++) { blkptr_t *cbp = &cdnp->dn_blkptr[j]; dsl_scan_prefetch(scn, buf, cbp, zb->zb_objset, zb->zb_blkid * epb + i, j); } } for (i = 0, cdnp = buf->b_data; i < epb; i++, cdnp++) { dsl_scan_visitdnode(scn, ds, ostype, cdnp, zb->zb_blkid * epb + i, tx); } (void) arc_buf_remove_ref(buf, &buf); } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { arc_flags_t flags = ARC_FLAG_WAIT; objset_phys_t *osp; arc_buf_t *buf; err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ, zio_flags, &flags, zb); if (err) { scn->scn_phys.scn_errors++; return (err); } osp = buf->b_data; dsl_scan_visitdnode(scn, ds, osp->os_type, &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); if (OBJSET_BUF_HAS_USERUSED(buf)) { /* * We also always visit user/group accounting * objects, and never skip them, even if we are * pausing. This is necessary so that the space * deltas from this txg get integrated. */ dsl_scan_visitdnode(scn, ds, osp->os_type, &osp->os_groupused_dnode, DMU_GROUPUSED_OBJECT, tx); dsl_scan_visitdnode(scn, ds, osp->os_type, &osp->os_userused_dnode, DMU_USERUSED_OBJECT, tx); } (void) arc_buf_remove_ref(buf, &buf); } return (0); } inline __attribute__((always_inline)) static void dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx) { int j; for (j = 0; j < dnp->dn_nblkptr; j++) { zbookmark_phys_t czb; SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, dnp->dn_nlevels - 1, j); dsl_scan_visitbp(&dnp->dn_blkptr[j], &czb, dnp, ds, scn, ostype, tx); } if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { zbookmark_phys_t czb; SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 0, DMU_SPILL_BLKID); dsl_scan_visitbp(&dnp->dn_spill, &czb, dnp, ds, scn, ostype, tx); } } /* * The arguments are in this order because mdb can only print the * first 5; we want them to be useful. */ static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, dmu_objset_type_t ostype, dmu_tx_t *tx) { dsl_pool_t *dp = scn->scn_dp; blkptr_t *bp_toread; bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); *bp_toread = *bp; /* ASSERT(pbuf == NULL || arc_released(pbuf)); */ if (dsl_scan_check_pause(scn, zb)) goto out; if (dsl_scan_check_resume(scn, dnp, zb)) goto out; if (BP_IS_HOLE(bp)) goto out; scn->scn_visited_this_txg++; /* * This debugging is commented out to conserve stack space. This * function is called recursively and the debugging addes several * bytes to the stack for each call. It can be commented back in * if required to debug an issue in dsl_scan_visitbp(). * * dprintf_bp(bp, * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", * ds, ds ? ds->ds_object : 0, * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, * bp); */ if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) goto out; if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) goto out; /* * If dsl_scan_ddt() has aready visited this block, it will have * already done any translations or scrubbing, so don't call the * callback again. */ if (ddt_class_contains(dp->dp_spa, scn->scn_phys.scn_ddt_class_max, bp)) { goto out; } /* * If this block is from the future (after cur_max_txg), then we * are doing this on behalf of a deleted snapshot, and we will * revisit the future block on the next pass of this dataset. * Don't scan it now unless we need to because something * under it was modified. */ if (BP_PHYSICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_max_txg) { scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); } out: kmem_free(bp_toread, sizeof (blkptr_t)); } static void dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, dmu_tx_t *tx) { zbookmark_phys_t zb; SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); dprintf_ds(ds, "finished scan%s", ""); } void dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) { dsl_pool_t *dp = ds->ds_dir->dd_pool; dsl_scan_t *scn = dp->dp_scan; uint64_t mintxg; if (scn->scn_phys.scn_state != DSS_SCANNING) return; if (scn->scn_phys.scn_bookmark.zb_objset == ds->ds_object) { if (ds->ds_is_snapshot) { /* Note, scn_cur_{min,max}_txg stays the same. */ scn->scn_phys.scn_bookmark.zb_objset = dsl_dataset_phys(ds)->ds_next_snap_obj; zfs_dbgmsg("destroying ds %llu; currently traversing; " "reset zb_objset to %llu", (u_longlong_t)ds->ds_object, (u_longlong_t)dsl_dataset_phys(ds)-> ds_next_snap_obj); scn->scn_phys.scn_flags |= DSF_VISIT_DS_AGAIN; } else { SET_BOOKMARK(&scn->scn_phys.scn_bookmark, ZB_DESTROYED_OBJSET, 0, 0, 0); zfs_dbgmsg("destroying ds %llu; currently traversing; " "reset bookmark to -1,0,0,0", (u_longlong_t)ds->ds_object); } } else if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, &mintxg) == 0) { ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); if (ds->ds_is_snapshot) { /* * We keep the same mintxg; it could be > * ds_creation_txg if the previous snapshot was * deleted too. */ VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg, tx) == 0); zfs_dbgmsg("destroying ds %llu; in queue; " "replacing with %llu", (u_longlong_t)ds->ds_object, (u_longlong_t)dsl_dataset_phys(ds)-> ds_next_snap_obj); } else { zfs_dbgmsg("destroying ds %llu; in queue; removing", (u_longlong_t)ds->ds_object); } } else { zfs_dbgmsg("destroying ds %llu; ignoring", (u_longlong_t)ds->ds_object); } /* * dsl_scan_sync() should be called after this, and should sync * out our changed state, but just to be safe, do it here. */ dsl_scan_sync_state(scn, tx); } void dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) { dsl_pool_t *dp = ds->ds_dir->dd_pool; dsl_scan_t *scn = dp->dp_scan; uint64_t mintxg; if (scn->scn_phys.scn_state != DSS_SCANNING) return; ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); if (scn->scn_phys.scn_bookmark.zb_objset == ds->ds_object) { scn->scn_phys.scn_bookmark.zb_objset = dsl_dataset_phys(ds)->ds_prev_snap_obj; zfs_dbgmsg("snapshotting ds %llu; currently traversing; " "reset zb_objset to %llu", (u_longlong_t)ds->ds_object, (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); } else if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, &mintxg) == 0) { VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); zfs_dbgmsg("snapshotting ds %llu; in queue; " "replacing with %llu", (u_longlong_t)ds->ds_object, (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); } dsl_scan_sync_state(scn, tx); } void dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) { dsl_pool_t *dp = ds1->ds_dir->dd_pool; dsl_scan_t *scn = dp->dp_scan; uint64_t mintxg; if (scn->scn_phys.scn_state != DSS_SCANNING) return; if (scn->scn_phys.scn_bookmark.zb_objset == ds1->ds_object) { scn->scn_phys.scn_bookmark.zb_objset = ds2->ds_object; zfs_dbgmsg("clone_swap ds %llu; currently traversing; " "reset zb_objset to %llu", (u_longlong_t)ds1->ds_object, (u_longlong_t)ds2->ds_object); } else if (scn->scn_phys.scn_bookmark.zb_objset == ds2->ds_object) { scn->scn_phys.scn_bookmark.zb_objset = ds1->ds_object; zfs_dbgmsg("clone_swap ds %llu; currently traversing; " "reset zb_objset to %llu", (u_longlong_t)ds2->ds_object, (u_longlong_t)ds1->ds_object); } if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg) == 0) { int err; ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); err = zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx); VERIFY(err == 0 || err == EEXIST); if (err == EEXIST) { /* Both were there to begin with */ VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx)); } zfs_dbgmsg("clone_swap ds %llu; in queue; " "replacing with %llu", (u_longlong_t)ds1->ds_object, (u_longlong_t)ds2->ds_object); } else if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg) == 0) { ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx)); zfs_dbgmsg("clone_swap ds %llu; in queue; " "replacing with %llu", (u_longlong_t)ds2->ds_object, (u_longlong_t)ds1->ds_object); } dsl_scan_sync_state(scn, tx); } struct enqueue_clones_arg { dmu_tx_t *tx; uint64_t originobj; }; /* ARGSUSED */ static int enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) { struct enqueue_clones_arg *eca = arg; dsl_dataset_t *ds; int err; dsl_scan_t *scn = dp->dp_scan; if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != eca->originobj) return (0); err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); if (err) return (err); while (dsl_dataset_phys(ds)->ds_prev_snap_obj != eca->originobj) { dsl_dataset_t *prev; err = dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); dsl_dataset_rele(ds, FTAG); if (err) return (err); ds = prev; } VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, dsl_dataset_phys(ds)->ds_prev_snap_txg, eca->tx) == 0); dsl_dataset_rele(ds, FTAG); return (0); } static void dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) { dsl_pool_t *dp = scn->scn_dp; dsl_dataset_t *ds; objset_t *os; char *dsname; VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); if (dmu_objset_from_ds(ds, &os)) goto out; /* * Only the ZIL in the head (non-snapshot) is valid. Even though * snapshots can have ZIL block pointers (which may be the same * BP as in the head), they must be ignored. So we traverse the * ZIL here, rather than in scan_recurse(), because the regular * snapshot block-sharing rules don't apply to it. */ if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !ds->ds_is_snapshot) dsl_scan_zil(dp, &os->os_zil_header); /* * Iterate over the bps in this ds. */ dmu_buf_will_dirty(ds->ds_dbuf, tx); dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); dsname = kmem_alloc(ZFS_MAXNAMELEN, KM_SLEEP); dsl_dataset_name(ds, dsname); zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " "pausing=%u", (longlong_t)dsobj, dsname, (longlong_t)scn->scn_phys.scn_cur_min_txg, (longlong_t)scn->scn_phys.scn_cur_max_txg, (int)scn->scn_pausing); kmem_free(dsname, ZFS_MAXNAMELEN); if (scn->scn_pausing) goto out; /* * We've finished this pass over this dataset. */ /* * If we did not completely visit this dataset, do another pass. */ if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { zfs_dbgmsg("incomplete pass; visiting again"); scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, scn->scn_phys.scn_cur_max_txg, tx) == 0); goto out; } /* * Add descendent datasets to work queue. */ if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, dsl_dataset_phys(ds)->ds_next_snap_obj, dsl_dataset_phys(ds)->ds_creation_txg, tx) == 0); } if (dsl_dataset_phys(ds)->ds_num_children > 1) { boolean_t usenext = B_FALSE; if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { uint64_t count; /* * A bug in a previous version of the code could * cause upgrade_clones_cb() to not set * ds_next_snap_obj when it should, leading to a * missing entry. Therefore we can only use the * next_clones_obj when its count is correct. */ int err = zap_count(dp->dp_meta_objset, dsl_dataset_phys(ds)->ds_next_clones_obj, &count); if (err == 0 && count == dsl_dataset_phys(ds)->ds_num_children - 1) usenext = B_TRUE; } if (usenext) { VERIFY0(zap_join_key(dp->dp_meta_objset, dsl_dataset_phys(ds)->ds_next_clones_obj, scn->scn_phys.scn_queue_obj, dsl_dataset_phys(ds)->ds_creation_txg, tx)); } else { struct enqueue_clones_arg eca; eca.tx = tx; eca.originobj = ds->ds_object; VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, enqueue_clones_cb, &eca, DS_FIND_CHILDREN)); } } out: dsl_dataset_rele(ds, FTAG); } /* ARGSUSED */ static int enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) { dmu_tx_t *tx = arg; dsl_dataset_t *ds; int err; dsl_scan_t *scn = dp->dp_scan; err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); if (err) return (err); while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { dsl_dataset_t *prev; err = dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); if (err) { dsl_dataset_rele(ds, FTAG); return (err); } /* * If this is a clone, we don't need to worry about it for now. */ if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { dsl_dataset_rele(ds, FTAG); dsl_dataset_rele(prev, FTAG); return (0); } dsl_dataset_rele(ds, FTAG); ds = prev; } VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, dsl_dataset_phys(ds)->ds_prev_snap_txg, tx) == 0); dsl_dataset_rele(ds, FTAG); return (0); } /* * Scrub/dedup interaction. * * If there are N references to a deduped block, we don't want to scrub it * N times -- ideally, we should scrub it exactly once. * * We leverage the fact that the dde's replication class (enum ddt_class) * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. * * To prevent excess scrubbing, the scrub begins by walking the DDT * to find all blocks with refcnt > 1, and scrubs each of these once. * Since there are two replication classes which contain blocks with * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. * * There would be nothing more to say if a block's refcnt couldn't change * during a scrub, but of course it can so we must account for changes * in a block's replication class. * * Here's an example of what can occur: * * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 * when visited during the top-down scrub phase, it will be scrubbed twice. * This negates our scrub optimization, but is otherwise harmless. * * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 * on each visit during the top-down scrub phase, it will never be scrubbed. * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 * while a scrub is in progress, it scrubs the block right then. */ static void dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) { ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; ddt_entry_t dde; int error; uint64_t n = 0; bzero(&dde, sizeof (ddt_entry_t)); while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { ddt_t *ddt; if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) break; dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", (longlong_t)ddb->ddb_class, (longlong_t)ddb->ddb_type, (longlong_t)ddb->ddb_checksum, (longlong_t)ddb->ddb_cursor); /* There should be no pending changes to the dedup table */ ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; ASSERT(avl_first(&ddt->ddt_tree) == NULL); dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); n++; if (dsl_scan_check_pause(scn, NULL)) break; } zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; pausing=%u", (longlong_t)n, (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_pausing); ASSERT(error == 0 || error == ENOENT); ASSERT(error != ENOENT || ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); } /* ARGSUSED */ void dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, ddt_entry_t *dde, dmu_tx_t *tx) { const ddt_key_t *ddk = &dde->dde_key; ddt_phys_t *ddp = dde->dde_phys; blkptr_t bp; zbookmark_phys_t zb = { 0 }; int p; if (scn->scn_phys.scn_state != DSS_SCANNING) return; for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0 || ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) continue; ddt_bp_create(checksum, ddk, ddp, &bp); scn->scn_visited_this_txg++; scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); } } static void dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) { dsl_pool_t *dp = scn->scn_dp; zap_cursor_t *zc; zap_attribute_t *za; if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= scn->scn_phys.scn_ddt_class_max) { scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; dsl_scan_ddt(scn, tx); if (scn->scn_pausing) return; } if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { /* First do the MOS & ORIGIN */ scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; dsl_scan_visit_rootbp(scn, NULL, &dp->dp_meta_rootbp, tx); spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); if (scn->scn_pausing) return; if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, enqueue_cb, tx, DS_FIND_CHILDREN)); } else { dsl_scan_visitds(scn, dp->dp_origin_snap->ds_object, tx); } ASSERT(!scn->scn_pausing); } else if (scn->scn_phys.scn_bookmark.zb_objset != ZB_DESTROYED_OBJSET) { /* * If we were paused, continue from here. Note if the * ds we were paused on was deleted, the zb_objset may * be -1, so we will skip this and find a new objset * below. */ dsl_scan_visitds(scn, scn->scn_phys.scn_bookmark.zb_objset, tx); if (scn->scn_pausing) return; } /* * In case we were paused right at the end of the ds, zero the * bookmark so we don't think that we're still trying to resume. */ bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); /* keep pulling things out of the zap-object-as-queue */ while (zap_cursor_init(zc, dp->dp_meta_objset, scn->scn_phys.scn_queue_obj), zap_cursor_retrieve(zc, za) == 0) { dsl_dataset_t *ds; uint64_t dsobj; dsobj = strtonum(za->za_name, NULL); VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, dsobj, tx)); /* Set up min/max txg */ VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); if (za->za_first_integer != 0) { scn->scn_phys.scn_cur_min_txg = MAX(scn->scn_phys.scn_min_txg, za->za_first_integer); } else { scn->scn_phys.scn_cur_min_txg = MAX(scn->scn_phys.scn_min_txg, dsl_dataset_phys(ds)->ds_prev_snap_txg); } scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); dsl_dataset_rele(ds, FTAG); dsl_scan_visitds(scn, dsobj, tx); zap_cursor_fini(zc); if (scn->scn_pausing) goto out; } zap_cursor_fini(zc); out: kmem_free(za, sizeof (zap_attribute_t)); kmem_free(zc, sizeof (zap_cursor_t)); } static boolean_t dsl_scan_free_should_pause(dsl_scan_t *scn) { uint64_t elapsed_nanosecs; if (zfs_recover) return (B_FALSE); if (scn->scn_visited_this_txg >= zfs_free_max_blocks) return (B_TRUE); elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || (NSEC2MSEC(elapsed_nanosecs) > zfs_free_min_time_ms && txg_sync_waiting(scn->scn_dp)) || spa_shutting_down(scn->scn_dp->dp_spa)); } static int dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { dsl_scan_t *scn = arg; if (!scn->scn_is_bptree || (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { if (dsl_scan_free_should_pause(scn)) return (SET_ERROR(ERESTART)); } zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, dmu_tx_get_txg(tx), bp, 0)); dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); scn->scn_visited_this_txg++; return (0); } boolean_t dsl_scan_active(dsl_scan_t *scn) { spa_t *spa = scn->scn_dp->dp_spa; uint64_t used = 0, comp, uncomp; if (spa->spa_load_state != SPA_LOAD_NONE) return (B_FALSE); if (spa_shutting_down(spa)) return (B_FALSE); if (scn->scn_phys.scn_state == DSS_SCANNING || (scn->scn_async_destroying && !scn->scn_async_stalled)) return (B_TRUE); if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, &used, &comp, &uncomp); } return (used != 0); } void dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) { dsl_scan_t *scn = dp->dp_scan; spa_t *spa = dp->dp_spa; int err = 0; /* * Check for scn_restart_txg before checking spa_load_state, so * that we can restart an old-style scan while the pool is being * imported (see dsl_scan_init). */ if (scn->scn_restart_txg != 0 && scn->scn_restart_txg <= tx->tx_txg) { pool_scan_func_t func = POOL_SCAN_SCRUB; dsl_scan_done(scn, B_FALSE, tx); if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) func = POOL_SCAN_RESILVER; zfs_dbgmsg("restarting scan func=%u txg=%llu", func, tx->tx_txg); dsl_scan_setup_sync(&func, tx); } /* * If the scan is inactive due to a stalled async destroy, try again. */ if ((!scn->scn_async_stalled && !dsl_scan_active(scn)) || spa_sync_pass(dp->dp_spa) > 1) return; scn->scn_visited_this_txg = 0; scn->scn_pausing = B_FALSE; scn->scn_sync_start_time = gethrtime(); spa->spa_scrub_active = B_TRUE; /* * First process the async destroys. If we pause, don't do * any scrubbing or resilvering. This ensures that there are no * async destroys while we are scanning, so the scan code doesn't * have to worry about traversing it. It is also faster to free the * blocks than to scrub them. */ if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { scn->scn_is_bptree = B_FALSE; scn->scn_zio_root = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); err = bpobj_iterate(&dp->dp_free_bpobj, dsl_scan_free_block_cb, scn, tx); VERIFY3U(0, ==, zio_wait(scn->scn_zio_root)); if (err != 0 && err != ERESTART) zfs_panic_recover("error %u from bpobj_iterate()", err); } if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { ASSERT(scn->scn_async_destroying); scn->scn_is_bptree = B_TRUE; scn->scn_zio_root = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); err = bptree_iterate(dp->dp_meta_objset, dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); VERIFY0(zio_wait(scn->scn_zio_root)); if (err == EIO || err == ECKSUM) { err = 0; } else if (err != 0 && err != ERESTART) { zfs_panic_recover("error %u from " "traverse_dataset_destroyed()", err); } if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { /* finished; deactivate async destroy feature */ spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); ASSERT(!spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)); VERIFY0(zap_remove(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_BPTREE_OBJ, tx)); VERIFY0(bptree_free(dp->dp_meta_objset, dp->dp_bptree_obj, tx)); dp->dp_bptree_obj = 0; scn->scn_async_destroying = B_FALSE; scn->scn_async_stalled = B_FALSE; } else { /* * If we didn't make progress, mark the async * destroy as stalled, so that we will not initiate * a spa_sync() on its behalf. Note that we only * check this if we are not finished, because if the * bptree had no blocks for us to visit, we can * finish without "making progress". */ scn->scn_async_stalled = (scn->scn_visited_this_txg == 0); } } if (scn->scn_visited_this_txg) { zfs_dbgmsg("freed %llu blocks in %llums from " "free_bpobj/bptree txg %llu; err=%u", (longlong_t)scn->scn_visited_this_txg, (longlong_t) NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), (longlong_t)tx->tx_txg, err); scn->scn_visited_this_txg = 0; /* * Write out changes to the DDT that may be required as a * result of the blocks freed. This ensures that the DDT * is clean when a scrub/resilver runs. */ ddt_sync(spa, tx->tx_txg); } if (err != 0) return; if (!scn->scn_async_destroying && zfs_free_leak_on_eio && (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { /* * We have finished background destroying, but there is still * some space left in the dp_free_dir. Transfer this leaked * space to the dp_leak_dir. */ if (dp->dp_leak_dir == NULL) { rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); (void) dsl_dir_create_sync(dp, dp->dp_root_dir, LEAK_DIR_NAME, tx); VERIFY0(dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, &dp->dp_leak_dir)); rrw_exit(&dp->dp_config_rwlock, FTAG); } dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); } if (!scn->scn_async_destroying) { /* finished; verify that space accounting went to zero */ ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); } if (scn->scn_phys.scn_state != DSS_SCANNING) return; if (scn->scn_done_txg == tx->tx_txg) { ASSERT(!scn->scn_pausing); /* finished with scan. */ zfs_dbgmsg("txg %llu scan complete", tx->tx_txg); dsl_scan_done(scn, B_TRUE, tx); ASSERT3U(spa->spa_scrub_inflight, ==, 0); dsl_scan_sync_state(scn, tx); return; } if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= scn->scn_phys.scn_ddt_class_max) { zfs_dbgmsg("doing scan sync txg %llu; " "ddt bm=%llu/%llu/%llu/%llx", (longlong_t)tx->tx_txg, (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_class, (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_type, (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_checksum, (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_cursor); ASSERT(scn->scn_phys.scn_bookmark.zb_objset == 0); ASSERT(scn->scn_phys.scn_bookmark.zb_object == 0); ASSERT(scn->scn_phys.scn_bookmark.zb_level == 0); ASSERT(scn->scn_phys.scn_bookmark.zb_blkid == 0); } else { zfs_dbgmsg("doing scan sync txg %llu; bm=%llu/%llu/%llu/%llu", (longlong_t)tx->tx_txg, (longlong_t)scn->scn_phys.scn_bookmark.zb_objset, (longlong_t)scn->scn_phys.scn_bookmark.zb_object, (longlong_t)scn->scn_phys.scn_bookmark.zb_level, (longlong_t)scn->scn_phys.scn_bookmark.zb_blkid); } scn->scn_zio_root = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_CANFAIL); dsl_pool_config_enter(dp, FTAG); dsl_scan_visit(scn, tx); dsl_pool_config_exit(dp, FTAG); (void) zio_wait(scn->scn_zio_root); scn->scn_zio_root = NULL; zfs_dbgmsg("visited %llu blocks in %llums", (longlong_t)scn->scn_visited_this_txg, (longlong_t)NSEC2MSEC(gethrtime() - scn->scn_sync_start_time)); if (!scn->scn_pausing) { scn->scn_done_txg = tx->tx_txg + 1; zfs_dbgmsg("txg %llu traversal complete, waiting till txg %llu", tx->tx_txg, scn->scn_done_txg); } if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { mutex_enter(&spa->spa_scrub_lock); while (spa->spa_scrub_inflight > 0) { cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); } mutex_exit(&spa->spa_scrub_lock); } dsl_scan_sync_state(scn, tx); } /* * This will start a new scan, or restart an existing one. */ void dsl_resilver_restart(dsl_pool_t *dp, uint64_t txg) { if (txg == 0) { dmu_tx_t *tx; tx = dmu_tx_create_dd(dp->dp_mos_dir); VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); txg = dmu_tx_get_txg(tx); dp->dp_scan->scn_restart_txg = txg; dmu_tx_commit(tx); } else { dp->dp_scan->scn_restart_txg = txg; } zfs_dbgmsg("restarting resilver txg=%llu", txg); } boolean_t dsl_scan_resilvering(dsl_pool_t *dp) { return (dp->dp_scan->scn_phys.scn_state == DSS_SCANNING && dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); } /* * scrub consumers */ static void count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp) { int i; /* * If we resume after a reboot, zab will be NULL; don't record * incomplete stats in that case. */ if (zab == NULL) return; for (i = 0; i < 4; i++) { int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; int equal; zfs_blkstat_t *zb; if (t & DMU_OT_NEWTYPE) t = DMU_OT_OTHER; zb = &zab->zab_type[l][t]; zb->zb_count++; zb->zb_asize += BP_GET_ASIZE(bp); zb->zb_lsize += BP_GET_LSIZE(bp); zb->zb_psize += BP_GET_PSIZE(bp); zb->zb_gangs += BP_COUNT_GANG(bp); switch (BP_GET_NDVAS(bp)) { case 2: if (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1])) zb->zb_ditto_2_of_2_samevdev++; break; case 3: equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1])) + (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[2])) + (DVA_GET_VDEV(&bp->blk_dva[1]) == DVA_GET_VDEV(&bp->blk_dva[2])); if (equal == 1) zb->zb_ditto_2_of_3_samevdev++; else if (equal == 3) zb->zb_ditto_3_of_3_samevdev++; break; } } } static void dsl_scan_scrub_done(zio_t *zio) { spa_t *spa = zio->io_spa; zio_data_buf_free(zio->io_data, zio->io_size); mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_inflight--; cv_broadcast(&spa->spa_scrub_io_cv); if (zio->io_error && (zio->io_error != ECKSUM || !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors++; } mutex_exit(&spa->spa_scrub_lock); } static int dsl_scan_scrub_cb(dsl_pool_t *dp, const blkptr_t *bp, const zbookmark_phys_t *zb) { dsl_scan_t *scn = dp->dp_scan; size_t size = BP_GET_PSIZE(bp); spa_t *spa = dp->dp_spa; uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); boolean_t needs_io = B_FALSE; int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; int scan_delay = 0; int d; if (phys_birth <= scn->scn_phys.scn_min_txg || phys_birth >= scn->scn_phys.scn_max_txg) return (0); count_block(dp->dp_blkstats, bp); if (BP_IS_EMBEDDED(bp)) return (0); ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { zio_flags |= ZIO_FLAG_SCRUB; needs_io = B_TRUE; scan_delay = zfs_scrub_delay; } else { ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); zio_flags |= ZIO_FLAG_RESILVER; needs_io = B_FALSE; scan_delay = zfs_resilver_delay; } /* If it's an intent log block, failure is expected. */ if (zb->zb_level == ZB_ZIL_LEVEL) zio_flags |= ZIO_FLAG_SPECULATIVE; for (d = 0; d < BP_GET_NDVAS(bp); d++) { vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[d])); /* * Keep track of how much data we've examined so that * zpool(1M) status can make useful progress reports. */ scn->scn_phys.scn_examined += DVA_GET_ASIZE(&bp->blk_dva[d]); spa->spa_scan_pass_exam += DVA_GET_ASIZE(&bp->blk_dva[d]); /* if it's a resilver, this may not be in the target range */ if (!needs_io) { if (DVA_GET_GANG(&bp->blk_dva[d])) { /* * Gang members may be spread across multiple * vdevs, so the best estimate we have is the * scrub range, which has already been checked. * XXX -- it would be better to change our * allocation policy to ensure that all * gang members reside on the same vdev. */ needs_io = B_TRUE; } else { needs_io = vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1); } } } if (needs_io && !zfs_no_scrub_io) { vdev_t *rvd = spa->spa_root_vdev; uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight; void *data = zio_data_buf_alloc(size); mutex_enter(&spa->spa_scrub_lock); while (spa->spa_scrub_inflight >= maxinflight) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); spa->spa_scrub_inflight++; mutex_exit(&spa->spa_scrub_lock); /* * If we're seeing recent (zfs_scan_idle) "important" I/Os * then throttle our workload to limit the impact of a scan. */ if (ddi_get_lbolt64() - spa->spa_last_io <= zfs_scan_idle) delay(scan_delay); zio_nowait(zio_read(NULL, spa, bp, data, size, dsl_scan_scrub_done, NULL, ZIO_PRIORITY_SCRUB, zio_flags, zb)); } /* do not relocate this block */ return (0); } int dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) { spa_t *spa = dp->dp_spa; /* * Purge all vdev caches and probe all devices. We do this here * rather than in sync context because this requires a writer lock * on the spa_config lock, which we can't do from sync context. The * spa_scrub_reopen flag indicates that vdev_open() should not * attempt to start another scrub. */ spa_vdev_state_enter(spa, SCL_NONE); spa->spa_scrub_reopen = B_TRUE; vdev_reopen(spa->spa_root_vdev); spa->spa_scrub_reopen = B_FALSE; (void) spa_vdev_state_exit(spa, NULL, 0); return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_NONE)); } #if defined(_KERNEL) && defined(HAVE_SPL) module_param(zfs_top_maxinflight, int, 0644); MODULE_PARM_DESC(zfs_top_maxinflight, "Max I/Os per top-level"); module_param(zfs_resilver_delay, int, 0644); MODULE_PARM_DESC(zfs_resilver_delay, "Number of ticks to delay resilver"); module_param(zfs_scrub_delay, int, 0644); MODULE_PARM_DESC(zfs_scrub_delay, "Number of ticks to delay scrub"); module_param(zfs_scan_idle, int, 0644); MODULE_PARM_DESC(zfs_scan_idle, "Idle window in clock ticks"); module_param(zfs_scan_min_time_ms, int, 0644); MODULE_PARM_DESC(zfs_scan_min_time_ms, "Min millisecs to scrub per txg"); module_param(zfs_free_min_time_ms, int, 0644); MODULE_PARM_DESC(zfs_free_min_time_ms, "Min millisecs to free per txg"); module_param(zfs_resilver_min_time_ms, int, 0644); MODULE_PARM_DESC(zfs_resilver_min_time_ms, "Min millisecs to resilver per txg"); module_param(zfs_no_scrub_io, int, 0644); MODULE_PARM_DESC(zfs_no_scrub_io, "Set to disable scrub I/O"); module_param(zfs_no_scrub_prefetch, int, 0644); MODULE_PARM_DESC(zfs_no_scrub_prefetch, "Set to disable scrub prefetching"); module_param(zfs_free_max_blocks, ulong, 0644); MODULE_PARM_DESC(zfs_free_max_blocks, "Max number of blocks freed in one txg"); #endif