/* * This file is part of the SPL: Solaris Porting Layer. * * Copyright (c) 2008 Lawrence Livermore National Security, LLC. * Produced at Lawrence Livermore National Laboratory * Written by: * Brian Behlendorf , * Herb Wartens , * Jim Garlick * UCRL-CODE-235197 * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "splat-internal.h" #define SPLAT_SUBSYSTEM_CONDVAR 0x0500 #define SPLAT_CONDVAR_NAME "condvar" #define SPLAT_CONDVAR_DESC "Kernel Condition Variable Tests" #define SPLAT_CONDVAR_TEST1_ID 0x0501 #define SPLAT_CONDVAR_TEST1_NAME "signal1" #define SPLAT_CONDVAR_TEST1_DESC "Wake a single thread, cv_wait()/cv_signal()" #define SPLAT_CONDVAR_TEST2_ID 0x0502 #define SPLAT_CONDVAR_TEST2_NAME "broadcast1" #define SPLAT_CONDVAR_TEST2_DESC "Wake all threads, cv_wait()/cv_broadcast()" #define SPLAT_CONDVAR_TEST3_ID 0x0503 #define SPLAT_CONDVAR_TEST3_NAME "signal2" #define SPLAT_CONDVAR_TEST3_DESC "Wake a single thread, cv_wait_timeout()/cv_signal()" #define SPLAT_CONDVAR_TEST4_ID 0x0504 #define SPLAT_CONDVAR_TEST4_NAME "broadcast2" #define SPLAT_CONDVAR_TEST4_DESC "Wake all threads, cv_wait_timeout()/cv_broadcast()" #define SPLAT_CONDVAR_TEST5_ID 0x0505 #define SPLAT_CONDVAR_TEST5_NAME "timeout" #define SPLAT_CONDVAR_TEST5_DESC "Timeout thread, cv_wait_timeout()" #define SPLAT_CONDVAR_TEST_MAGIC 0x115599DDUL #define SPLAT_CONDVAR_TEST_NAME "condvar_test" #define SPLAT_CONDVAR_TEST_COUNT 8 typedef struct condvar_priv { unsigned long cv_magic; struct file *cv_file; kcondvar_t cv_condvar; kmutex_t cv_mtx; } condvar_priv_t; typedef struct condvar_thr { int ct_id; const char *ct_name; condvar_priv_t *ct_cvp; int ct_rc; } condvar_thr_t; int splat_condvar_test12_thread(void *arg) { condvar_thr_t *ct = (condvar_thr_t *)arg; condvar_priv_t *cv = ct->ct_cvp; char name[16]; ASSERT(cv->cv_magic == SPLAT_CONDVAR_TEST_MAGIC); snprintf(name, sizeof(name),"%s%d",SPLAT_CONDVAR_TEST_NAME,ct->ct_id); daemonize(name); mutex_enter(&cv->cv_mtx); splat_vprint(cv->cv_file, ct->ct_name, "%s thread sleeping with %d waiters\n", name, atomic_read(&cv->cv_condvar.cv_waiters)); cv_wait(&cv->cv_condvar, &cv->cv_mtx); splat_vprint(cv->cv_file, ct->ct_name, "%s thread woken %d waiters remain\n", name, atomic_read(&cv->cv_condvar.cv_waiters)); mutex_exit(&cv->cv_mtx); return 0; } static int splat_condvar_test1(struct file *file, void *arg) { int i, count = 0, rc = 0; long pids[SPLAT_CONDVAR_TEST_COUNT]; condvar_thr_t ct[SPLAT_CONDVAR_TEST_COUNT]; condvar_priv_t cv; cv.cv_magic = SPLAT_CONDVAR_TEST_MAGIC; cv.cv_file = file; mutex_init(&cv.cv_mtx, SPLAT_CONDVAR_TEST_NAME, MUTEX_DEFAULT, NULL); cv_init(&cv.cv_condvar, SPLAT_CONDVAR_TEST_NAME, CV_DEFAULT, NULL); /* Create some threads, the exact number isn't important just as * long as we know how many we managed to create and should expect. */ for (i = 0; i < SPLAT_CONDVAR_TEST_COUNT; i++) { ct[i].ct_cvp = &cv; ct[i].ct_id = i; ct[i].ct_name = SPLAT_CONDVAR_TEST1_NAME; ct[i].ct_rc = 0; pids[i] = kernel_thread(splat_condvar_test12_thread, &ct[i], 0); if (pids[i] >= 0) count++; } /* Wait until all threads are waiting on the condition variable */ while (atomic_read(&cv.cv_condvar.cv_waiters) != count) schedule(); /* Wake a single thread at a time, wait until it exits */ for (i = 1; i <= count; i++) { cv_signal(&cv.cv_condvar); while (atomic_read(&cv.cv_condvar.cv_waiters) > (count - i)) schedule(); /* Correct behavior 1 thread woken */ if (atomic_read(&cv.cv_condvar.cv_waiters) == (count - i)) continue; splat_vprint(file, SPLAT_CONDVAR_TEST1_NAME, "Attempted to " "wake %d thread but work %d threads woke\n", 1, count - atomic_read(&cv.cv_condvar.cv_waiters)); rc = -EINVAL; break; } if (!rc) splat_vprint(file, SPLAT_CONDVAR_TEST1_NAME, "Correctly woke " "%d sleeping threads %d at a time\n", count, 1); /* Wait until that last nutex is dropped */ while (mutex_owner(&cv.cv_mtx)) schedule(); /* Wake everything for the failure case */ cv_broadcast(&cv.cv_condvar); cv_destroy(&cv.cv_condvar); mutex_destroy(&cv.cv_mtx); return rc; } static int splat_condvar_test2(struct file *file, void *arg) { int i, count = 0, rc = 0; long pids[SPLAT_CONDVAR_TEST_COUNT]; condvar_thr_t ct[SPLAT_CONDVAR_TEST_COUNT]; condvar_priv_t cv; cv.cv_magic = SPLAT_CONDVAR_TEST_MAGIC; cv.cv_file = file; mutex_init(&cv.cv_mtx, SPLAT_CONDVAR_TEST_NAME, MUTEX_DEFAULT, NULL); cv_init(&cv.cv_condvar, SPLAT_CONDVAR_TEST_NAME, CV_DEFAULT, NULL); /* Create some threads, the exact number isn't important just as * long as we know how many we managed to create and should expect. */ for (i = 0; i < SPLAT_CONDVAR_TEST_COUNT; i++) { ct[i].ct_cvp = &cv; ct[i].ct_id = i; ct[i].ct_name = SPLAT_CONDVAR_TEST2_NAME; ct[i].ct_rc = 0; pids[i] = kernel_thread(splat_condvar_test12_thread, &ct[i], 0); if (pids[i] > 0) count++; } /* Wait until all threads are waiting on the condition variable */ while (atomic_read(&cv.cv_condvar.cv_waiters) != count) schedule(); /* Wake all threads waiting on the condition variable */ cv_broadcast(&cv.cv_condvar); /* Wait until all threads have exited */ while ((atomic_read(&cv.cv_condvar.cv_waiters) > 0) || mutex_owner(&cv.cv_mtx)) schedule(); splat_vprint(file, SPLAT_CONDVAR_TEST2_NAME, "Correctly woke all " "%d sleeping threads at once\n", count); /* Wake everything for the failure case */ cv_destroy(&cv.cv_condvar); mutex_destroy(&cv.cv_mtx); return rc; } int splat_condvar_test34_thread(void *arg) { condvar_thr_t *ct = (condvar_thr_t *)arg; condvar_priv_t *cv = ct->ct_cvp; char name[16]; clock_t rc; ASSERT(cv->cv_magic == SPLAT_CONDVAR_TEST_MAGIC); snprintf(name, sizeof(name), "%s%d", SPLAT_CONDVAR_TEST_NAME, ct->ct_id); daemonize(name); mutex_enter(&cv->cv_mtx); splat_vprint(cv->cv_file, ct->ct_name, "%s thread sleeping with %d waiters\n", name, atomic_read(&cv->cv_condvar.cv_waiters)); /* Sleep no longer than 3 seconds, for this test we should * actually never sleep that long without being woken up. */ rc = cv_timedwait(&cv->cv_condvar, &cv->cv_mtx, lbolt + HZ * 3); if (rc == -1) { ct->ct_rc = -ETIMEDOUT; splat_vprint(cv->cv_file, ct->ct_name, "%s thread timed out, " "should have been woken\n", name); } else { splat_vprint(cv->cv_file, ct->ct_name, "%s thread woken %d waiters remain\n", name, atomic_read(&cv->cv_condvar.cv_waiters)); } mutex_exit(&cv->cv_mtx); return 0; } static int splat_condvar_test3(struct file *file, void *arg) { int i, count = 0, rc = 0; long pids[SPLAT_CONDVAR_TEST_COUNT]; condvar_thr_t ct[SPLAT_CONDVAR_TEST_COUNT]; condvar_priv_t cv; cv.cv_magic = SPLAT_CONDVAR_TEST_MAGIC; cv.cv_file = file; mutex_init(&cv.cv_mtx, SPLAT_CONDVAR_TEST_NAME, MUTEX_DEFAULT, NULL); cv_init(&cv.cv_condvar, SPLAT_CONDVAR_TEST_NAME, CV_DEFAULT, NULL); /* Create some threads, the exact number isn't important just as * long as we know how many we managed to create and should expect. */ for (i = 0; i < SPLAT_CONDVAR_TEST_COUNT; i++) { ct[i].ct_cvp = &cv; ct[i].ct_id = i; ct[i].ct_name = SPLAT_CONDVAR_TEST3_NAME; ct[i].ct_rc = 0; pids[i] = kernel_thread(splat_condvar_test34_thread, &ct[i], 0); if (pids[i] >= 0) count++; } /* Wait until all threads are waiting on the condition variable */ while (atomic_read(&cv.cv_condvar.cv_waiters) != count) schedule(); /* Wake a single thread at a time, wait until it exits */ for (i = 1; i <= count; i++) { cv_signal(&cv.cv_condvar); while (atomic_read(&cv.cv_condvar.cv_waiters) > (count - i)) schedule(); /* Correct behavior 1 thread woken */ if (atomic_read(&cv.cv_condvar.cv_waiters) == (count - i)) continue; splat_vprint(file, SPLAT_CONDVAR_TEST3_NAME, "Attempted to " "wake %d thread but work %d threads woke\n", 1, count - atomic_read(&cv.cv_condvar.cv_waiters)); rc = -EINVAL; break; } /* Validate no waiting thread timed out early */ for (i = 0; i < count; i++) if (ct[i].ct_rc) rc = ct[i].ct_rc; if (!rc) splat_vprint(file, SPLAT_CONDVAR_TEST3_NAME, "Correctly woke " "%d sleeping threads %d at a time\n", count, 1); /* Wait until that last nutex is dropped */ while (mutex_owner(&cv.cv_mtx)) schedule(); /* Wake everything for the failure case */ cv_broadcast(&cv.cv_condvar); cv_destroy(&cv.cv_condvar); mutex_destroy(&cv.cv_mtx); return rc; } static int splat_condvar_test4(struct file *file, void *arg) { int i, count = 0, rc = 0; long pids[SPLAT_CONDVAR_TEST_COUNT]; condvar_thr_t ct[SPLAT_CONDVAR_TEST_COUNT]; condvar_priv_t cv; cv.cv_magic = SPLAT_CONDVAR_TEST_MAGIC; cv.cv_file = file; mutex_init(&cv.cv_mtx, SPLAT_CONDVAR_TEST_NAME, MUTEX_DEFAULT, NULL); cv_init(&cv.cv_condvar, SPLAT_CONDVAR_TEST_NAME, CV_DEFAULT, NULL); /* Create some threads, the exact number isn't important just as * long as we know how many we managed to create and should expect. */ for (i = 0; i < SPLAT_CONDVAR_TEST_COUNT; i++) { ct[i].ct_cvp = &cv; ct[i].ct_id = i; ct[i].ct_name = SPLAT_CONDVAR_TEST3_NAME; ct[i].ct_rc = 0; pids[i] = kernel_thread(splat_condvar_test34_thread, &ct[i], 0); if (pids[i] >= 0) count++; } /* Wait until all threads are waiting on the condition variable */ while (atomic_read(&cv.cv_condvar.cv_waiters) != count) schedule(); /* Wake a single thread at a time, wait until it exits */ for (i = 1; i <= count; i++) { cv_signal(&cv.cv_condvar); while (atomic_read(&cv.cv_condvar.cv_waiters) > (count - i)) schedule(); /* Correct behavior 1 thread woken */ if (atomic_read(&cv.cv_condvar.cv_waiters) == (count - i)) continue; splat_vprint(file, SPLAT_CONDVAR_TEST3_NAME, "Attempted to " "wake %d thread but work %d threads woke\n", 1, count - atomic_read(&cv.cv_condvar.cv_waiters)); rc = -EINVAL; break; } /* Validate no waiting thread timed out early */ for (i = 0; i < count; i++) if (ct[i].ct_rc) rc = ct[i].ct_rc; if (!rc) splat_vprint(file, SPLAT_CONDVAR_TEST3_NAME, "Correctly woke " "%d sleeping threads %d at a time\n", count, 1); /* Wait until that last nutex is dropped */ while (mutex_owner(&cv.cv_mtx)) schedule(); /* Wake everything for the failure case */ cv_broadcast(&cv.cv_condvar); cv_destroy(&cv.cv_condvar); mutex_destroy(&cv.cv_mtx); return rc; } static int splat_condvar_test5(struct file *file, void *arg) { kcondvar_t condvar; kmutex_t mtx; clock_t time_left, time_before, time_after, time_delta; int64_t whole_delta; int32_t remain_delta; int rc = 0; mutex_init(&mtx, SPLAT_CONDVAR_TEST_NAME, MUTEX_DEFAULT, NULL); cv_init(&condvar, SPLAT_CONDVAR_TEST_NAME, CV_DEFAULT, NULL); splat_vprint(file, SPLAT_CONDVAR_TEST5_NAME, "Thread going to sleep for " "%d second and expecting to be woken by timeout\n", 1); /* Allow a 1 second timeout, plenty long to validate correctness. */ time_before = lbolt; mutex_enter(&mtx); time_left = cv_timedwait(&condvar, &mtx, lbolt + HZ); mutex_exit(&mtx); time_after = lbolt; time_delta = time_after - time_before; /* XXX - Handle jiffie wrap */ whole_delta = time_delta; remain_delta = do_div(whole_delta, HZ); if (time_left == -1) { if (time_delta >= HZ) { splat_vprint(file, SPLAT_CONDVAR_TEST5_NAME, "Thread correctly timed out and was asleep " "for %d.%d seconds (%d second min)\n", (int)whole_delta, remain_delta, 1); } else { splat_vprint(file, SPLAT_CONDVAR_TEST5_NAME, "Thread correctly timed out but was only " "asleep for %d.%d seconds (%d second " "min)\n", (int)whole_delta, remain_delta, 1); rc = -ETIMEDOUT; } } else { splat_vprint(file, SPLAT_CONDVAR_TEST5_NAME, "Thread exited after only %d.%d seconds, it " "did not hit the %d second timeout\n", (int)whole_delta, remain_delta, 1); rc = -ETIMEDOUT; } cv_destroy(&condvar); mutex_destroy(&mtx); return rc; } splat_subsystem_t * splat_condvar_init(void) { splat_subsystem_t *sub; sub = kmalloc(sizeof(*sub), GFP_KERNEL); if (sub == NULL) return NULL; memset(sub, 0, sizeof(*sub)); strncpy(sub->desc.name, SPLAT_CONDVAR_NAME, SPLAT_NAME_SIZE); strncpy(sub->desc.desc, SPLAT_CONDVAR_DESC, SPLAT_DESC_SIZE); INIT_LIST_HEAD(&sub->subsystem_list); INIT_LIST_HEAD(&sub->test_list); spin_lock_init(&sub->test_lock); sub->desc.id = SPLAT_SUBSYSTEM_CONDVAR; SPLAT_TEST_INIT(sub, SPLAT_CONDVAR_TEST1_NAME, SPLAT_CONDVAR_TEST1_DESC, SPLAT_CONDVAR_TEST1_ID, splat_condvar_test1); SPLAT_TEST_INIT(sub, SPLAT_CONDVAR_TEST2_NAME, SPLAT_CONDVAR_TEST2_DESC, SPLAT_CONDVAR_TEST2_ID, splat_condvar_test2); SPLAT_TEST_INIT(sub, SPLAT_CONDVAR_TEST3_NAME, SPLAT_CONDVAR_TEST3_DESC, SPLAT_CONDVAR_TEST3_ID, splat_condvar_test3); SPLAT_TEST_INIT(sub, SPLAT_CONDVAR_TEST4_NAME, SPLAT_CONDVAR_TEST4_DESC, SPLAT_CONDVAR_TEST4_ID, splat_condvar_test4); SPLAT_TEST_INIT(sub, SPLAT_CONDVAR_TEST5_NAME, SPLAT_CONDVAR_TEST5_DESC, SPLAT_CONDVAR_TEST5_ID, splat_condvar_test5); return sub; } void splat_condvar_fini(splat_subsystem_t *sub) { ASSERT(sub); SPLAT_TEST_FINI(sub, SPLAT_CONDVAR_TEST5_ID); SPLAT_TEST_FINI(sub, SPLAT_CONDVAR_TEST4_ID); SPLAT_TEST_FINI(sub, SPLAT_CONDVAR_TEST3_ID); SPLAT_TEST_FINI(sub, SPLAT_CONDVAR_TEST2_ID); SPLAT_TEST_FINI(sub, SPLAT_CONDVAR_TEST1_ID); kfree(sub); } int splat_condvar_id(void) { return SPLAT_SUBSYSTEM_CONDVAR; }