/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright 2013 Nexenta Systems, Inc. All rights reserved. */ /* * DVA-based Adjustable Replacement Cache * * While much of the theory of operation used here is * based on the self-tuning, low overhead replacement cache * presented by Megiddo and Modha at FAST 2003, there are some * significant differences: * * 1. The Megiddo and Modha model assumes any page is evictable. * Pages in its cache cannot be "locked" into memory. This makes * the eviction algorithm simple: evict the last page in the list. * This also make the performance characteristics easy to reason * about. Our cache is not so simple. At any given moment, some * subset of the blocks in the cache are un-evictable because we * have handed out a reference to them. Blocks are only evictable * when there are no external references active. This makes * eviction far more problematic: we choose to evict the evictable * blocks that are the "lowest" in the list. * * There are times when it is not possible to evict the requested * space. In these circumstances we are unable to adjust the cache * size. To prevent the cache growing unbounded at these times we * implement a "cache throttle" that slows the flow of new data * into the cache until we can make space available. * * 2. The Megiddo and Modha model assumes a fixed cache size. * Pages are evicted when the cache is full and there is a cache * miss. Our model has a variable sized cache. It grows with * high use, but also tries to react to memory pressure from the * operating system: decreasing its size when system memory is * tight. * * 3. The Megiddo and Modha model assumes a fixed page size. All * elements of the cache are therefore exactly the same size. So * when adjusting the cache size following a cache miss, its simply * a matter of choosing a single page to evict. In our model, we * have variable sized cache blocks (rangeing from 512 bytes to * 128K bytes). We therefore choose a set of blocks to evict to make * space for a cache miss that approximates as closely as possible * the space used by the new block. * * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" * by N. Megiddo & D. Modha, FAST 2003 */ /* * The locking model: * * A new reference to a cache buffer can be obtained in two * ways: 1) via a hash table lookup using the DVA as a key, * or 2) via one of the ARC lists. The arc_read() interface * uses method 1, while the internal arc algorithms for * adjusting the cache use method 2. We therefore provide two * types of locks: 1) the hash table lock array, and 2) the * arc list locks. * * Buffers do not have their own mutexes, rather they rely on the * hash table mutexes for the bulk of their protection (i.e. most * fields in the arc_buf_hdr_t are protected by these mutexes). * * buf_hash_find() returns the appropriate mutex (held) when it * locates the requested buffer in the hash table. It returns * NULL for the mutex if the buffer was not in the table. * * buf_hash_remove() expects the appropriate hash mutex to be * already held before it is invoked. * * Each arc state also has a mutex which is used to protect the * buffer list associated with the state. When attempting to * obtain a hash table lock while holding an arc list lock you * must use: mutex_tryenter() to avoid deadlock. Also note that * the active state mutex must be held before the ghost state mutex. * * Arc buffers may have an associated eviction callback function. * This function will be invoked prior to removing the buffer (e.g. * in arc_do_user_evicts()). Note however that the data associated * with the buffer may be evicted prior to the callback. The callback * must be made with *no locks held* (to prevent deadlock). Additionally, * the users of callbacks must ensure that their private data is * protected from simultaneous callbacks from arc_buf_evict() * and arc_do_user_evicts(). * * It as also possible to register a callback which is run when the * arc_meta_limit is reached and no buffers can be safely evicted. In * this case the arc user should drop a reference on some arc buffers so * they can be reclaimed and the arc_meta_limit honored. For example, * when using the ZPL each dentry holds a references on a znode. These * dentries must be pruned before the arc buffer holding the znode can * be safely evicted. * * Note that the majority of the performance stats are manipulated * with atomic operations. * * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: * * - L2ARC buflist creation * - L2ARC buflist eviction * - L2ARC write completion, which walks L2ARC buflists * - ARC header destruction, as it removes from L2ARC buflists * - ARC header release, as it removes from L2ARC buflists */ #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #endif #include #include #include #include #ifndef _KERNEL /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ boolean_t arc_watch = B_FALSE; #endif static kmutex_t arc_reclaim_thr_lock; static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ static uint8_t arc_thread_exit; /* number of bytes to prune from caches when at arc_meta_limit is reached */ int zfs_arc_meta_prune = 1048576; typedef enum arc_reclaim_strategy { ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ ARC_RECLAIM_CONS /* Conservative reclaim strategy */ } arc_reclaim_strategy_t; /* * The number of iterations through arc_evict_*() before we * drop & reacquire the lock. */ int arc_evict_iterations = 100; /* number of seconds before growing cache again */ int zfs_arc_grow_retry = 5; /* disable anon data aggressively growing arc_p */ int zfs_arc_p_aggressive_disable = 1; /* disable arc_p adapt dampener in arc_adapt */ int zfs_arc_p_dampener_disable = 1; /* log2(fraction of arc to reclaim) */ int zfs_arc_shrink_shift = 5; /* * minimum lifespan of a prefetch block in clock ticks * (initialized in arc_init()) */ int zfs_arc_min_prefetch_lifespan = HZ; /* disable arc proactive arc throttle due to low memory */ int zfs_arc_memory_throttle_disable = 1; /* disable duplicate buffer eviction */ int zfs_disable_dup_eviction = 0; /* * If this percent of memory is free, don't throttle. */ int arc_lotsfree_percent = 10; static int arc_dead; /* expiration time for arc_no_grow */ static clock_t arc_grow_time = 0; /* * The arc has filled available memory and has now warmed up. */ static boolean_t arc_warm; /* * These tunables are for performance analysis. */ unsigned long zfs_arc_max = 0; unsigned long zfs_arc_min = 0; unsigned long zfs_arc_meta_limit = 0; /* * Note that buffers can be in one of 6 states: * ARC_anon - anonymous (discussed below) * ARC_mru - recently used, currently cached * ARC_mru_ghost - recentely used, no longer in cache * ARC_mfu - frequently used, currently cached * ARC_mfu_ghost - frequently used, no longer in cache * ARC_l2c_only - exists in L2ARC but not other states * When there are no active references to the buffer, they are * are linked onto a list in one of these arc states. These are * the only buffers that can be evicted or deleted. Within each * state there are multiple lists, one for meta-data and one for * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, * etc.) is tracked separately so that it can be managed more * explicitly: favored over data, limited explicitly. * * Anonymous buffers are buffers that are not associated with * a DVA. These are buffers that hold dirty block copies * before they are written to stable storage. By definition, * they are "ref'd" and are considered part of arc_mru * that cannot be freed. Generally, they will aquire a DVA * as they are written and migrate onto the arc_mru list. * * The ARC_l2c_only state is for buffers that are in the second * level ARC but no longer in any of the ARC_m* lists. The second * level ARC itself may also contain buffers that are in any of * the ARC_m* states - meaning that a buffer can exist in two * places. The reason for the ARC_l2c_only state is to keep the * buffer header in the hash table, so that reads that hit the * second level ARC benefit from these fast lookups. */ typedef struct arc_state { list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ uint64_t arcs_size; /* total amount of data in this state */ kmutex_t arcs_mtx; arc_state_type_t arcs_state; } arc_state_t; /* The 6 states: */ static arc_state_t ARC_anon; static arc_state_t ARC_mru; static arc_state_t ARC_mru_ghost; static arc_state_t ARC_mfu; static arc_state_t ARC_mfu_ghost; static arc_state_t ARC_l2c_only; typedef struct arc_stats { kstat_named_t arcstat_hits; kstat_named_t arcstat_misses; kstat_named_t arcstat_demand_data_hits; kstat_named_t arcstat_demand_data_misses; kstat_named_t arcstat_demand_metadata_hits; kstat_named_t arcstat_demand_metadata_misses; kstat_named_t arcstat_prefetch_data_hits; kstat_named_t arcstat_prefetch_data_misses; kstat_named_t arcstat_prefetch_metadata_hits; kstat_named_t arcstat_prefetch_metadata_misses; kstat_named_t arcstat_mru_hits; kstat_named_t arcstat_mru_ghost_hits; kstat_named_t arcstat_mfu_hits; kstat_named_t arcstat_mfu_ghost_hits; kstat_named_t arcstat_deleted; kstat_named_t arcstat_recycle_miss; /* * Number of buffers that could not be evicted because the hash lock * was held by another thread. The lock may not necessarily be held * by something using the same buffer, since hash locks are shared * by multiple buffers. */ kstat_named_t arcstat_mutex_miss; /* * Number of buffers skipped because they have I/O in progress, are * indrect prefetch buffers that have not lived long enough, or are * not from the spa we're trying to evict from. */ kstat_named_t arcstat_evict_skip; kstat_named_t arcstat_evict_l2_cached; kstat_named_t arcstat_evict_l2_eligible; kstat_named_t arcstat_evict_l2_ineligible; kstat_named_t arcstat_hash_elements; kstat_named_t arcstat_hash_elements_max; kstat_named_t arcstat_hash_collisions; kstat_named_t arcstat_hash_chains; kstat_named_t arcstat_hash_chain_max; kstat_named_t arcstat_p; kstat_named_t arcstat_c; kstat_named_t arcstat_c_min; kstat_named_t arcstat_c_max; kstat_named_t arcstat_size; kstat_named_t arcstat_hdr_size; kstat_named_t arcstat_data_size; kstat_named_t arcstat_meta_size; kstat_named_t arcstat_other_size; kstat_named_t arcstat_anon_size; kstat_named_t arcstat_anon_evict_data; kstat_named_t arcstat_anon_evict_metadata; kstat_named_t arcstat_mru_size; kstat_named_t arcstat_mru_evict_data; kstat_named_t arcstat_mru_evict_metadata; kstat_named_t arcstat_mru_ghost_size; kstat_named_t arcstat_mru_ghost_evict_data; kstat_named_t arcstat_mru_ghost_evict_metadata; kstat_named_t arcstat_mfu_size; kstat_named_t arcstat_mfu_evict_data; kstat_named_t arcstat_mfu_evict_metadata; kstat_named_t arcstat_mfu_ghost_size; kstat_named_t arcstat_mfu_ghost_evict_data; kstat_named_t arcstat_mfu_ghost_evict_metadata; kstat_named_t arcstat_l2_hits; kstat_named_t arcstat_l2_misses; kstat_named_t arcstat_l2_feeds; kstat_named_t arcstat_l2_rw_clash; kstat_named_t arcstat_l2_read_bytes; kstat_named_t arcstat_l2_write_bytes; kstat_named_t arcstat_l2_writes_sent; kstat_named_t arcstat_l2_writes_done; kstat_named_t arcstat_l2_writes_error; kstat_named_t arcstat_l2_writes_hdr_miss; kstat_named_t arcstat_l2_evict_lock_retry; kstat_named_t arcstat_l2_evict_reading; kstat_named_t arcstat_l2_free_on_write; kstat_named_t arcstat_l2_abort_lowmem; kstat_named_t arcstat_l2_cksum_bad; kstat_named_t arcstat_l2_io_error; kstat_named_t arcstat_l2_size; kstat_named_t arcstat_l2_asize; kstat_named_t arcstat_l2_hdr_size; kstat_named_t arcstat_l2_compress_successes; kstat_named_t arcstat_l2_compress_zeros; kstat_named_t arcstat_l2_compress_failures; kstat_named_t arcstat_memory_throttle_count; kstat_named_t arcstat_duplicate_buffers; kstat_named_t arcstat_duplicate_buffers_size; kstat_named_t arcstat_duplicate_reads; kstat_named_t arcstat_memory_direct_count; kstat_named_t arcstat_memory_indirect_count; kstat_named_t arcstat_no_grow; kstat_named_t arcstat_tempreserve; kstat_named_t arcstat_loaned_bytes; kstat_named_t arcstat_prune; kstat_named_t arcstat_meta_used; kstat_named_t arcstat_meta_limit; kstat_named_t arcstat_meta_max; } arc_stats_t; static arc_stats_t arc_stats = { { "hits", KSTAT_DATA_UINT64 }, { "misses", KSTAT_DATA_UINT64 }, { "demand_data_hits", KSTAT_DATA_UINT64 }, { "demand_data_misses", KSTAT_DATA_UINT64 }, { "demand_metadata_hits", KSTAT_DATA_UINT64 }, { "demand_metadata_misses", KSTAT_DATA_UINT64 }, { "prefetch_data_hits", KSTAT_DATA_UINT64 }, { "prefetch_data_misses", KSTAT_DATA_UINT64 }, { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, { "mru_hits", KSTAT_DATA_UINT64 }, { "mru_ghost_hits", KSTAT_DATA_UINT64 }, { "mfu_hits", KSTAT_DATA_UINT64 }, { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, { "deleted", KSTAT_DATA_UINT64 }, { "recycle_miss", KSTAT_DATA_UINT64 }, { "mutex_miss", KSTAT_DATA_UINT64 }, { "evict_skip", KSTAT_DATA_UINT64 }, { "evict_l2_cached", KSTAT_DATA_UINT64 }, { "evict_l2_eligible", KSTAT_DATA_UINT64 }, { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, { "hash_elements", KSTAT_DATA_UINT64 }, { "hash_elements_max", KSTAT_DATA_UINT64 }, { "hash_collisions", KSTAT_DATA_UINT64 }, { "hash_chains", KSTAT_DATA_UINT64 }, { "hash_chain_max", KSTAT_DATA_UINT64 }, { "p", KSTAT_DATA_UINT64 }, { "c", KSTAT_DATA_UINT64 }, { "c_min", KSTAT_DATA_UINT64 }, { "c_max", KSTAT_DATA_UINT64 }, { "size", KSTAT_DATA_UINT64 }, { "hdr_size", KSTAT_DATA_UINT64 }, { "data_size", KSTAT_DATA_UINT64 }, { "meta_size", KSTAT_DATA_UINT64 }, { "other_size", KSTAT_DATA_UINT64 }, { "anon_size", KSTAT_DATA_UINT64 }, { "anon_evict_data", KSTAT_DATA_UINT64 }, { "anon_evict_metadata", KSTAT_DATA_UINT64 }, { "mru_size", KSTAT_DATA_UINT64 }, { "mru_evict_data", KSTAT_DATA_UINT64 }, { "mru_evict_metadata", KSTAT_DATA_UINT64 }, { "mru_ghost_size", KSTAT_DATA_UINT64 }, { "mru_ghost_evict_data", KSTAT_DATA_UINT64 }, { "mru_ghost_evict_metadata", KSTAT_DATA_UINT64 }, { "mfu_size", KSTAT_DATA_UINT64 }, { "mfu_evict_data", KSTAT_DATA_UINT64 }, { "mfu_evict_metadata", KSTAT_DATA_UINT64 }, { "mfu_ghost_size", KSTAT_DATA_UINT64 }, { "mfu_ghost_evict_data", KSTAT_DATA_UINT64 }, { "mfu_ghost_evict_metadata", KSTAT_DATA_UINT64 }, { "l2_hits", KSTAT_DATA_UINT64 }, { "l2_misses", KSTAT_DATA_UINT64 }, { "l2_feeds", KSTAT_DATA_UINT64 }, { "l2_rw_clash", KSTAT_DATA_UINT64 }, { "l2_read_bytes", KSTAT_DATA_UINT64 }, { "l2_write_bytes", KSTAT_DATA_UINT64 }, { "l2_writes_sent", KSTAT_DATA_UINT64 }, { "l2_writes_done", KSTAT_DATA_UINT64 }, { "l2_writes_error", KSTAT_DATA_UINT64 }, { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, { "l2_evict_reading", KSTAT_DATA_UINT64 }, { "l2_free_on_write", KSTAT_DATA_UINT64 }, { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, { "l2_cksum_bad", KSTAT_DATA_UINT64 }, { "l2_io_error", KSTAT_DATA_UINT64 }, { "l2_size", KSTAT_DATA_UINT64 }, { "l2_asize", KSTAT_DATA_UINT64 }, { "l2_hdr_size", KSTAT_DATA_UINT64 }, { "l2_compress_successes", KSTAT_DATA_UINT64 }, { "l2_compress_zeros", KSTAT_DATA_UINT64 }, { "l2_compress_failures", KSTAT_DATA_UINT64 }, { "memory_throttle_count", KSTAT_DATA_UINT64 }, { "duplicate_buffers", KSTAT_DATA_UINT64 }, { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, { "duplicate_reads", KSTAT_DATA_UINT64 }, { "memory_direct_count", KSTAT_DATA_UINT64 }, { "memory_indirect_count", KSTAT_DATA_UINT64 }, { "arc_no_grow", KSTAT_DATA_UINT64 }, { "arc_tempreserve", KSTAT_DATA_UINT64 }, { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, { "arc_prune", KSTAT_DATA_UINT64 }, { "arc_meta_used", KSTAT_DATA_UINT64 }, { "arc_meta_limit", KSTAT_DATA_UINT64 }, { "arc_meta_max", KSTAT_DATA_UINT64 }, }; #define ARCSTAT(stat) (arc_stats.stat.value.ui64) #define ARCSTAT_INCR(stat, val) \ atomic_add_64(&arc_stats.stat.value.ui64, (val)) #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) #define ARCSTAT_MAX(stat, val) { \ uint64_t m; \ while ((val) > (m = arc_stats.stat.value.ui64) && \ (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ continue; \ } #define ARCSTAT_MAXSTAT(stat) \ ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) /* * We define a macro to allow ARC hits/misses to be easily broken down by * two separate conditions, giving a total of four different subtypes for * each of hits and misses (so eight statistics total). */ #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ if (cond1) { \ if (cond2) { \ ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ } else { \ ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ } \ } else { \ if (cond2) { \ ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ } else { \ ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ } \ } kstat_t *arc_ksp; static arc_state_t *arc_anon; static arc_state_t *arc_mru; static arc_state_t *arc_mru_ghost; static arc_state_t *arc_mfu; static arc_state_t *arc_mfu_ghost; static arc_state_t *arc_l2c_only; /* * There are several ARC variables that are critical to export as kstats -- * but we don't want to have to grovel around in the kstat whenever we wish to * manipulate them. For these variables, we therefore define them to be in * terms of the statistic variable. This assures that we are not introducing * the possibility of inconsistency by having shadow copies of the variables, * while still allowing the code to be readable. */ #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ #define arc_no_grow ARCSTAT(arcstat_no_grow) #define arc_tempreserve ARCSTAT(arcstat_tempreserve) #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ #define L2ARC_IS_VALID_COMPRESS(_c_) \ ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY) typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; typedef struct arc_callback arc_callback_t; struct arc_callback { void *acb_private; arc_done_func_t *acb_done; arc_buf_t *acb_buf; zio_t *acb_zio_dummy; arc_callback_t *acb_next; }; typedef struct arc_write_callback arc_write_callback_t; struct arc_write_callback { void *awcb_private; arc_done_func_t *awcb_ready; arc_done_func_t *awcb_physdone; arc_done_func_t *awcb_done; arc_buf_t *awcb_buf; }; struct arc_buf_hdr { /* protected by hash lock */ dva_t b_dva; uint64_t b_birth; uint64_t b_cksum0; kmutex_t b_freeze_lock; zio_cksum_t *b_freeze_cksum; arc_buf_hdr_t *b_hash_next; arc_buf_t *b_buf; uint32_t b_flags; uint32_t b_datacnt; arc_callback_t *b_acb; kcondvar_t b_cv; /* immutable */ arc_buf_contents_t b_type; uint64_t b_size; uint64_t b_spa; /* protected by arc state mutex */ arc_state_t *b_state; list_node_t b_arc_node; /* updated atomically */ clock_t b_arc_access; uint32_t b_mru_hits; uint32_t b_mru_ghost_hits; uint32_t b_mfu_hits; uint32_t b_mfu_ghost_hits; uint32_t b_l2_hits; /* self protecting */ refcount_t b_refcnt; l2arc_buf_hdr_t *b_l2hdr; list_node_t b_l2node; }; static list_t arc_prune_list; static kmutex_t arc_prune_mtx; static arc_buf_t *arc_eviction_list; static kmutex_t arc_eviction_mtx; static arc_buf_hdr_t arc_eviction_hdr; static void arc_get_data_buf(arc_buf_t *buf); static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); static int arc_evict_needed(arc_buf_contents_t type); static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes, arc_buf_contents_t type); static void arc_buf_watch(arc_buf_t *buf); static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); #define GHOST_STATE(state) \ ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ (state) == arc_l2c_only) /* * Private ARC flags. These flags are private ARC only flags that will show up * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can * be passed in as arc_flags in things like arc_read. However, these flags * should never be passed and should only be set by ARC code. When adding new * public flags, make sure not to smash the private ones. */ #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ (hdr)->b_l2hdr != NULL) #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) /* * Other sizes */ #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) /* * Hash table routines */ #define HT_LOCK_ALIGN 64 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN))) struct ht_lock { kmutex_t ht_lock; #ifdef _KERNEL unsigned char pad[HT_LOCK_PAD]; #endif }; #define BUF_LOCKS 256 typedef struct buf_hash_table { uint64_t ht_mask; arc_buf_hdr_t **ht_table; struct ht_lock ht_locks[BUF_LOCKS]; } buf_hash_table_t; static buf_hash_table_t buf_hash_table; #define BUF_HASH_INDEX(spa, dva, birth) \ (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) #define HDR_LOCK(hdr) \ (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) uint64_t zfs_crc64_table[256]; /* * Level 2 ARC */ #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ #define L2ARC_HEADROOM 2 /* num of writes */ /* * If we discover during ARC scan any buffers to be compressed, we boost * our headroom for the next scanning cycle by this percentage multiple. */ #define L2ARC_HEADROOM_BOOST 200 #define L2ARC_FEED_SECS 1 /* caching interval secs */ #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) /* L2ARC Performance Tunables */ unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ int l2arc_nocompress = B_FALSE; /* don't compress bufs */ int l2arc_feed_again = B_TRUE; /* turbo warmup */ int l2arc_norw = B_FALSE; /* no reads during writes */ /* * L2ARC Internals */ typedef struct l2arc_dev { vdev_t *l2ad_vdev; /* vdev */ spa_t *l2ad_spa; /* spa */ uint64_t l2ad_hand; /* next write location */ uint64_t l2ad_start; /* first addr on device */ uint64_t l2ad_end; /* last addr on device */ uint64_t l2ad_evict; /* last addr eviction reached */ boolean_t l2ad_first; /* first sweep through */ boolean_t l2ad_writing; /* currently writing */ list_t *l2ad_buflist; /* buffer list */ list_node_t l2ad_node; /* device list node */ } l2arc_dev_t; static list_t L2ARC_dev_list; /* device list */ static list_t *l2arc_dev_list; /* device list pointer */ static kmutex_t l2arc_dev_mtx; /* device list mutex */ static l2arc_dev_t *l2arc_dev_last; /* last device used */ static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ static list_t L2ARC_free_on_write; /* free after write buf list */ static list_t *l2arc_free_on_write; /* free after write list ptr */ static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ static uint64_t l2arc_ndev; /* number of devices */ typedef struct l2arc_read_callback { arc_buf_t *l2rcb_buf; /* read buffer */ spa_t *l2rcb_spa; /* spa */ blkptr_t l2rcb_bp; /* original blkptr */ zbookmark_t l2rcb_zb; /* original bookmark */ int l2rcb_flags; /* original flags */ enum zio_compress l2rcb_compress; /* applied compress */ } l2arc_read_callback_t; typedef struct l2arc_write_callback { l2arc_dev_t *l2wcb_dev; /* device info */ arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ } l2arc_write_callback_t; struct l2arc_buf_hdr { /* protected by arc_buf_hdr mutex */ l2arc_dev_t *b_dev; /* L2ARC device */ uint64_t b_daddr; /* disk address, offset byte */ /* compression applied to buffer data */ enum zio_compress b_compress; /* real alloc'd buffer size depending on b_compress applied */ uint32_t b_hits; uint64_t b_asize; /* temporary buffer holder for in-flight compressed data */ void *b_tmp_cdata; }; typedef struct l2arc_data_free { /* protected by l2arc_free_on_write_mtx */ void *l2df_data; size_t l2df_size; void (*l2df_func)(void *, size_t); list_node_t l2df_list_node; } l2arc_data_free_t; static kmutex_t l2arc_feed_thr_lock; static kcondvar_t l2arc_feed_thr_cv; static uint8_t l2arc_thread_exit; static void l2arc_read_done(zio_t *zio); static void l2arc_hdr_stat_add(void); static void l2arc_hdr_stat_remove(void); static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr); static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c); static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab); static uint64_t buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) { uint8_t *vdva = (uint8_t *)dva; uint64_t crc = -1ULL; int i; ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); for (i = 0; i < sizeof (dva_t); i++) crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; crc ^= (spa>>8) ^ birth; return (crc); } #define BUF_EMPTY(buf) \ ((buf)->b_dva.dva_word[0] == 0 && \ (buf)->b_dva.dva_word[1] == 0 && \ (buf)->b_birth == 0) #define BUF_EQUAL(spa, dva, birth, buf) \ ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ ((buf)->b_birth == birth) && ((buf)->b_spa == spa) static void buf_discard_identity(arc_buf_hdr_t *hdr) { hdr->b_dva.dva_word[0] = 0; hdr->b_dva.dva_word[1] = 0; hdr->b_birth = 0; hdr->b_cksum0 = 0; } static arc_buf_hdr_t * buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) { uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); kmutex_t *hash_lock = BUF_HASH_LOCK(idx); arc_buf_hdr_t *buf; mutex_enter(hash_lock); for (buf = buf_hash_table.ht_table[idx]; buf != NULL; buf = buf->b_hash_next) { if (BUF_EQUAL(spa, dva, birth, buf)) { *lockp = hash_lock; return (buf); } } mutex_exit(hash_lock); *lockp = NULL; return (NULL); } /* * Insert an entry into the hash table. If there is already an element * equal to elem in the hash table, then the already existing element * will be returned and the new element will not be inserted. * Otherwise returns NULL. */ static arc_buf_hdr_t * buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) { uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); kmutex_t *hash_lock = BUF_HASH_LOCK(idx); arc_buf_hdr_t *fbuf; uint32_t i; ASSERT(!HDR_IN_HASH_TABLE(buf)); *lockp = hash_lock; mutex_enter(hash_lock); for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; fbuf = fbuf->b_hash_next, i++) { if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) return (fbuf); } buf->b_hash_next = buf_hash_table.ht_table[idx]; buf_hash_table.ht_table[idx] = buf; buf->b_flags |= ARC_IN_HASH_TABLE; /* collect some hash table performance data */ if (i > 0) { ARCSTAT_BUMP(arcstat_hash_collisions); if (i == 1) ARCSTAT_BUMP(arcstat_hash_chains); ARCSTAT_MAX(arcstat_hash_chain_max, i); } ARCSTAT_BUMP(arcstat_hash_elements); ARCSTAT_MAXSTAT(arcstat_hash_elements); return (NULL); } static void buf_hash_remove(arc_buf_hdr_t *buf) { arc_buf_hdr_t *fbuf, **bufp; uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); ASSERT(HDR_IN_HASH_TABLE(buf)); bufp = &buf_hash_table.ht_table[idx]; while ((fbuf = *bufp) != buf) { ASSERT(fbuf != NULL); bufp = &fbuf->b_hash_next; } *bufp = buf->b_hash_next; buf->b_hash_next = NULL; buf->b_flags &= ~ARC_IN_HASH_TABLE; /* collect some hash table performance data */ ARCSTAT_BUMPDOWN(arcstat_hash_elements); if (buf_hash_table.ht_table[idx] && buf_hash_table.ht_table[idx]->b_hash_next == NULL) ARCSTAT_BUMPDOWN(arcstat_hash_chains); } /* * Global data structures and functions for the buf kmem cache. */ static kmem_cache_t *hdr_cache; static kmem_cache_t *buf_cache; static kmem_cache_t *l2arc_hdr_cache; static void buf_fini(void) { int i; #if defined(_KERNEL) && defined(HAVE_SPL) /* * Large allocations which do not require contiguous pages * should be using vmem_free() in the linux kernel\ */ vmem_free(buf_hash_table.ht_table, (buf_hash_table.ht_mask + 1) * sizeof (void *)); #else kmem_free(buf_hash_table.ht_table, (buf_hash_table.ht_mask + 1) * sizeof (void *)); #endif for (i = 0; i < BUF_LOCKS; i++) mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); kmem_cache_destroy(hdr_cache); kmem_cache_destroy(buf_cache); kmem_cache_destroy(l2arc_hdr_cache); } /* * Constructor callback - called when the cache is empty * and a new buf is requested. */ /* ARGSUSED */ static int hdr_cons(void *vbuf, void *unused, int kmflag) { arc_buf_hdr_t *buf = vbuf; bzero(buf, sizeof (arc_buf_hdr_t)); refcount_create(&buf->b_refcnt); cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); list_link_init(&buf->b_arc_node); list_link_init(&buf->b_l2node); arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); return (0); } /* ARGSUSED */ static int buf_cons(void *vbuf, void *unused, int kmflag) { arc_buf_t *buf = vbuf; bzero(buf, sizeof (arc_buf_t)); mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); return (0); } /* * Destructor callback - called when a cached buf is * no longer required. */ /* ARGSUSED */ static void hdr_dest(void *vbuf, void *unused) { arc_buf_hdr_t *buf = vbuf; ASSERT(BUF_EMPTY(buf)); refcount_destroy(&buf->b_refcnt); cv_destroy(&buf->b_cv); mutex_destroy(&buf->b_freeze_lock); arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); } /* ARGSUSED */ static void buf_dest(void *vbuf, void *unused) { arc_buf_t *buf = vbuf; mutex_destroy(&buf->b_evict_lock); arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); } static void buf_init(void) { uint64_t *ct; uint64_t hsize = 1ULL << 12; int i, j; /* * The hash table is big enough to fill all of physical memory * with an average 64K block size. The table will take up * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). */ while (hsize * 65536 < physmem * PAGESIZE) hsize <<= 1; retry: buf_hash_table.ht_mask = hsize - 1; #if defined(_KERNEL) && defined(HAVE_SPL) /* * Large allocations which do not require contiguous pages * should be using vmem_alloc() in the linux kernel */ buf_hash_table.ht_table = vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); #else buf_hash_table.ht_table = kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); #endif if (buf_hash_table.ht_table == NULL) { ASSERT(hsize > (1ULL << 8)); hsize >>= 1; goto retry; } hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 0, hdr_cons, hdr_dest, NULL, NULL, NULL, 0); buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); l2arc_hdr_cache = kmem_cache_create("l2arc_buf_hdr_t", L2HDR_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); for (i = 0; i < 256; i++) for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); for (i = 0; i < BUF_LOCKS; i++) { mutex_init(&buf_hash_table.ht_locks[i].ht_lock, NULL, MUTEX_DEFAULT, NULL); } } #define ARC_MINTIME (hz>>4) /* 62 ms */ static void arc_cksum_verify(arc_buf_t *buf) { zio_cksum_t zc; if (!(zfs_flags & ZFS_DEBUG_MODIFY)) return; mutex_enter(&buf->b_hdr->b_freeze_lock); if (buf->b_hdr->b_freeze_cksum == NULL || (buf->b_hdr->b_flags & ARC_IO_ERROR)) { mutex_exit(&buf->b_hdr->b_freeze_lock); return; } fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) panic("buffer modified while frozen!"); mutex_exit(&buf->b_hdr->b_freeze_lock); } static int arc_cksum_equal(arc_buf_t *buf) { zio_cksum_t zc; int equal; mutex_enter(&buf->b_hdr->b_freeze_lock); fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); mutex_exit(&buf->b_hdr->b_freeze_lock); return (equal); } static void arc_cksum_compute(arc_buf_t *buf, boolean_t force) { if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) return; mutex_enter(&buf->b_hdr->b_freeze_lock); if (buf->b_hdr->b_freeze_cksum != NULL) { mutex_exit(&buf->b_hdr->b_freeze_lock); return; } buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_PUSHPAGE); fletcher_2_native(buf->b_data, buf->b_hdr->b_size, buf->b_hdr->b_freeze_cksum); mutex_exit(&buf->b_hdr->b_freeze_lock); arc_buf_watch(buf); } #ifndef _KERNEL void arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) { panic("Got SIGSEGV at address: 0x%lx\n", (long) si->si_addr); } #endif /* ARGSUSED */ static void arc_buf_unwatch(arc_buf_t *buf) { #ifndef _KERNEL if (arc_watch) { ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size, PROT_READ | PROT_WRITE)); } #endif } /* ARGSUSED */ static void arc_buf_watch(arc_buf_t *buf) { #ifndef _KERNEL if (arc_watch) ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size, PROT_READ)); #endif } void arc_buf_thaw(arc_buf_t *buf) { if (zfs_flags & ZFS_DEBUG_MODIFY) { if (buf->b_hdr->b_state != arc_anon) panic("modifying non-anon buffer!"); if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) panic("modifying buffer while i/o in progress!"); arc_cksum_verify(buf); } mutex_enter(&buf->b_hdr->b_freeze_lock); if (buf->b_hdr->b_freeze_cksum != NULL) { kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); buf->b_hdr->b_freeze_cksum = NULL; } mutex_exit(&buf->b_hdr->b_freeze_lock); arc_buf_unwatch(buf); } void arc_buf_freeze(arc_buf_t *buf) { kmutex_t *hash_lock; if (!(zfs_flags & ZFS_DEBUG_MODIFY)) return; hash_lock = HDR_LOCK(buf->b_hdr); mutex_enter(hash_lock); ASSERT(buf->b_hdr->b_freeze_cksum != NULL || buf->b_hdr->b_state == arc_anon); arc_cksum_compute(buf, B_FALSE); mutex_exit(hash_lock); } static void add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) { ASSERT(MUTEX_HELD(hash_lock)); if ((refcount_add(&ab->b_refcnt, tag) == 1) && (ab->b_state != arc_anon)) { uint64_t delta = ab->b_size * ab->b_datacnt; list_t *list = &ab->b_state->arcs_list[ab->b_type]; uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); mutex_enter(&ab->b_state->arcs_mtx); ASSERT(list_link_active(&ab->b_arc_node)); list_remove(list, ab); if (GHOST_STATE(ab->b_state)) { ASSERT0(ab->b_datacnt); ASSERT3P(ab->b_buf, ==, NULL); delta = ab->b_size; } ASSERT(delta > 0); ASSERT3U(*size, >=, delta); atomic_add_64(size, -delta); mutex_exit(&ab->b_state->arcs_mtx); /* remove the prefetch flag if we get a reference */ if (ab->b_flags & ARC_PREFETCH) ab->b_flags &= ~ARC_PREFETCH; } } static int remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) { int cnt; arc_state_t *state = ab->b_state; ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); ASSERT(!GHOST_STATE(state)); if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && (state != arc_anon)) { uint64_t *size = &state->arcs_lsize[ab->b_type]; ASSERT(!MUTEX_HELD(&state->arcs_mtx)); mutex_enter(&state->arcs_mtx); ASSERT(!list_link_active(&ab->b_arc_node)); list_insert_head(&state->arcs_list[ab->b_type], ab); ASSERT(ab->b_datacnt > 0); atomic_add_64(size, ab->b_size * ab->b_datacnt); mutex_exit(&state->arcs_mtx); } return (cnt); } /* * Returns detailed information about a specific arc buffer. When the * state_index argument is set the function will calculate the arc header * list position for its arc state. Since this requires a linear traversal * callers are strongly encourage not to do this. However, it can be helpful * for targeted analysis so the functionality is provided. */ void arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) { arc_buf_hdr_t *hdr = ab->b_hdr; arc_state_t *state = hdr->b_state; memset(abi, 0, sizeof (arc_buf_info_t)); abi->abi_flags = hdr->b_flags; abi->abi_datacnt = hdr->b_datacnt; abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; abi->abi_state_contents = hdr->b_type; abi->abi_state_index = -1; abi->abi_size = hdr->b_size; abi->abi_access = hdr->b_arc_access; abi->abi_mru_hits = hdr->b_mru_hits; abi->abi_mru_ghost_hits = hdr->b_mru_ghost_hits; abi->abi_mfu_hits = hdr->b_mfu_hits; abi->abi_mfu_ghost_hits = hdr->b_mfu_ghost_hits; abi->abi_holds = refcount_count(&hdr->b_refcnt); if (hdr->b_l2hdr) { abi->abi_l2arc_dattr = hdr->b_l2hdr->b_daddr; abi->abi_l2arc_asize = hdr->b_l2hdr->b_asize; abi->abi_l2arc_compress = hdr->b_l2hdr->b_compress; abi->abi_l2arc_hits = hdr->b_l2hdr->b_hits; } if (state && state_index && list_link_active(&hdr->b_arc_node)) { list_t *list = &state->arcs_list[hdr->b_type]; arc_buf_hdr_t *h; mutex_enter(&state->arcs_mtx); for (h = list_head(list); h != NULL; h = list_next(list, h)) { abi->abi_state_index++; if (h == hdr) break; } mutex_exit(&state->arcs_mtx); } } /* * Move the supplied buffer to the indicated state. The mutex * for the buffer must be held by the caller. */ static void arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) { arc_state_t *old_state = ab->b_state; int64_t refcnt = refcount_count(&ab->b_refcnt); uint64_t from_delta, to_delta; ASSERT(MUTEX_HELD(hash_lock)); ASSERT3P(new_state, !=, old_state); ASSERT(refcnt == 0 || ab->b_datacnt > 0); ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); from_delta = to_delta = ab->b_datacnt * ab->b_size; /* * If this buffer is evictable, transfer it from the * old state list to the new state list. */ if (refcnt == 0) { if (old_state != arc_anon) { int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); uint64_t *size = &old_state->arcs_lsize[ab->b_type]; if (use_mutex) mutex_enter(&old_state->arcs_mtx); ASSERT(list_link_active(&ab->b_arc_node)); list_remove(&old_state->arcs_list[ab->b_type], ab); /* * If prefetching out of the ghost cache, * we will have a non-zero datacnt. */ if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { /* ghost elements have a ghost size */ ASSERT(ab->b_buf == NULL); from_delta = ab->b_size; } ASSERT3U(*size, >=, from_delta); atomic_add_64(size, -from_delta); if (use_mutex) mutex_exit(&old_state->arcs_mtx); } if (new_state != arc_anon) { int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); uint64_t *size = &new_state->arcs_lsize[ab->b_type]; if (use_mutex) mutex_enter(&new_state->arcs_mtx); list_insert_head(&new_state->arcs_list[ab->b_type], ab); /* ghost elements have a ghost size */ if (GHOST_STATE(new_state)) { ASSERT(ab->b_datacnt == 0); ASSERT(ab->b_buf == NULL); to_delta = ab->b_size; } atomic_add_64(size, to_delta); if (use_mutex) mutex_exit(&new_state->arcs_mtx); } } ASSERT(!BUF_EMPTY(ab)); if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) buf_hash_remove(ab); /* adjust state sizes */ if (to_delta) atomic_add_64(&new_state->arcs_size, to_delta); if (from_delta) { ASSERT3U(old_state->arcs_size, >=, from_delta); atomic_add_64(&old_state->arcs_size, -from_delta); } ab->b_state = new_state; /* adjust l2arc hdr stats */ if (new_state == arc_l2c_only) l2arc_hdr_stat_add(); else if (old_state == arc_l2c_only) l2arc_hdr_stat_remove(); } void arc_space_consume(uint64_t space, arc_space_type_t type) { ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); switch (type) { default: break; case ARC_SPACE_DATA: ARCSTAT_INCR(arcstat_data_size, space); break; case ARC_SPACE_META: ARCSTAT_INCR(arcstat_meta_size, space); break; case ARC_SPACE_OTHER: ARCSTAT_INCR(arcstat_other_size, space); break; case ARC_SPACE_HDRS: ARCSTAT_INCR(arcstat_hdr_size, space); break; case ARC_SPACE_L2HDRS: ARCSTAT_INCR(arcstat_l2_hdr_size, space); break; } if (type != ARC_SPACE_DATA) ARCSTAT_INCR(arcstat_meta_used, space); atomic_add_64(&arc_size, space); } void arc_space_return(uint64_t space, arc_space_type_t type) { ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); switch (type) { default: break; case ARC_SPACE_DATA: ARCSTAT_INCR(arcstat_data_size, -space); break; case ARC_SPACE_META: ARCSTAT_INCR(arcstat_meta_size, -space); break; case ARC_SPACE_OTHER: ARCSTAT_INCR(arcstat_other_size, -space); break; case ARC_SPACE_HDRS: ARCSTAT_INCR(arcstat_hdr_size, -space); break; case ARC_SPACE_L2HDRS: ARCSTAT_INCR(arcstat_l2_hdr_size, -space); break; } if (type != ARC_SPACE_DATA) { ASSERT(arc_meta_used >= space); if (arc_meta_max < arc_meta_used) arc_meta_max = arc_meta_used; ARCSTAT_INCR(arcstat_meta_used, -space); } ASSERT(arc_size >= space); atomic_add_64(&arc_size, -space); } arc_buf_t * arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) { arc_buf_hdr_t *hdr; arc_buf_t *buf; ASSERT3U(size, >, 0); hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); ASSERT(BUF_EMPTY(hdr)); hdr->b_size = size; hdr->b_type = type; hdr->b_spa = spa_load_guid(spa); hdr->b_state = arc_anon; hdr->b_arc_access = 0; hdr->b_mru_hits = 0; hdr->b_mru_ghost_hits = 0; hdr->b_mfu_hits = 0; hdr->b_mfu_ghost_hits = 0; hdr->b_l2_hits = 0; buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); buf->b_hdr = hdr; buf->b_data = NULL; buf->b_efunc = NULL; buf->b_private = NULL; buf->b_next = NULL; hdr->b_buf = buf; arc_get_data_buf(buf); hdr->b_datacnt = 1; hdr->b_flags = 0; ASSERT(refcount_is_zero(&hdr->b_refcnt)); (void) refcount_add(&hdr->b_refcnt, tag); return (buf); } static char *arc_onloan_tag = "onloan"; /* * Loan out an anonymous arc buffer. Loaned buffers are not counted as in * flight data by arc_tempreserve_space() until they are "returned". Loaned * buffers must be returned to the arc before they can be used by the DMU or * freed. */ arc_buf_t * arc_loan_buf(spa_t *spa, int size) { arc_buf_t *buf; buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); atomic_add_64(&arc_loaned_bytes, size); return (buf); } /* * Return a loaned arc buffer to the arc. */ void arc_return_buf(arc_buf_t *buf, void *tag) { arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT(buf->b_data != NULL); (void) refcount_add(&hdr->b_refcnt, tag); (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); atomic_add_64(&arc_loaned_bytes, -hdr->b_size); } /* Detach an arc_buf from a dbuf (tag) */ void arc_loan_inuse_buf(arc_buf_t *buf, void *tag) { arc_buf_hdr_t *hdr; ASSERT(buf->b_data != NULL); hdr = buf->b_hdr; (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); (void) refcount_remove(&hdr->b_refcnt, tag); buf->b_efunc = NULL; buf->b_private = NULL; atomic_add_64(&arc_loaned_bytes, hdr->b_size); } static arc_buf_t * arc_buf_clone(arc_buf_t *from) { arc_buf_t *buf; arc_buf_hdr_t *hdr = from->b_hdr; uint64_t size = hdr->b_size; ASSERT(hdr->b_state != arc_anon); buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); buf->b_hdr = hdr; buf->b_data = NULL; buf->b_efunc = NULL; buf->b_private = NULL; buf->b_next = hdr->b_buf; hdr->b_buf = buf; arc_get_data_buf(buf); bcopy(from->b_data, buf->b_data, size); /* * This buffer already exists in the arc so create a duplicate * copy for the caller. If the buffer is associated with user data * then track the size and number of duplicates. These stats will be * updated as duplicate buffers are created and destroyed. */ if (hdr->b_type == ARC_BUFC_DATA) { ARCSTAT_BUMP(arcstat_duplicate_buffers); ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); } hdr->b_datacnt += 1; return (buf); } void arc_buf_add_ref(arc_buf_t *buf, void* tag) { arc_buf_hdr_t *hdr; kmutex_t *hash_lock; /* * Check to see if this buffer is evicted. Callers * must verify b_data != NULL to know if the add_ref * was successful. */ mutex_enter(&buf->b_evict_lock); if (buf->b_data == NULL) { mutex_exit(&buf->b_evict_lock); return; } hash_lock = HDR_LOCK(buf->b_hdr); mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); mutex_exit(&buf->b_evict_lock); ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); add_reference(hdr, hash_lock, tag); DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); arc_access(hdr, hash_lock); mutex_exit(hash_lock); ARCSTAT_BUMP(arcstat_hits); ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, data, metadata, hits); } /* * Free the arc data buffer. If it is an l2arc write in progress, * the buffer is placed on l2arc_free_on_write to be freed later. */ static void arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) { arc_buf_hdr_t *hdr = buf->b_hdr; if (HDR_L2_WRITING(hdr)) { l2arc_data_free_t *df; df = kmem_alloc(sizeof (l2arc_data_free_t), KM_PUSHPAGE); df->l2df_data = buf->b_data; df->l2df_size = hdr->b_size; df->l2df_func = free_func; mutex_enter(&l2arc_free_on_write_mtx); list_insert_head(l2arc_free_on_write, df); mutex_exit(&l2arc_free_on_write_mtx); ARCSTAT_BUMP(arcstat_l2_free_on_write); } else { free_func(buf->b_data, hdr->b_size); } } static void arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) { arc_buf_t **bufp; /* free up data associated with the buf */ if (buf->b_data) { arc_state_t *state = buf->b_hdr->b_state; uint64_t size = buf->b_hdr->b_size; arc_buf_contents_t type = buf->b_hdr->b_type; arc_cksum_verify(buf); arc_buf_unwatch(buf); if (!recycle) { if (type == ARC_BUFC_METADATA) { arc_buf_data_free(buf, zio_buf_free); arc_space_return(size, ARC_SPACE_META); } else { ASSERT(type == ARC_BUFC_DATA); arc_buf_data_free(buf, zio_data_buf_free); arc_space_return(size, ARC_SPACE_DATA); } } if (list_link_active(&buf->b_hdr->b_arc_node)) { uint64_t *cnt = &state->arcs_lsize[type]; ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); ASSERT(state != arc_anon); ASSERT3U(*cnt, >=, size); atomic_add_64(cnt, -size); } ASSERT3U(state->arcs_size, >=, size); atomic_add_64(&state->arcs_size, -size); buf->b_data = NULL; /* * If we're destroying a duplicate buffer make sure * that the appropriate statistics are updated. */ if (buf->b_hdr->b_datacnt > 1 && buf->b_hdr->b_type == ARC_BUFC_DATA) { ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); } ASSERT(buf->b_hdr->b_datacnt > 0); buf->b_hdr->b_datacnt -= 1; } /* only remove the buf if requested */ if (!all) return; /* remove the buf from the hdr list */ for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) continue; *bufp = buf->b_next; buf->b_next = NULL; ASSERT(buf->b_efunc == NULL); /* clean up the buf */ buf->b_hdr = NULL; kmem_cache_free(buf_cache, buf); } static void arc_hdr_destroy(arc_buf_hdr_t *hdr) { l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; ASSERT(refcount_is_zero(&hdr->b_refcnt)); ASSERT3P(hdr->b_state, ==, arc_anon); ASSERT(!HDR_IO_IN_PROGRESS(hdr)); if (l2hdr != NULL) { boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); /* * To prevent arc_free() and l2arc_evict() from * attempting to free the same buffer at the same time, * a FREE_IN_PROGRESS flag is given to arc_free() to * give it priority. l2arc_evict() can't destroy this * header while we are waiting on l2arc_buflist_mtx. * * The hdr may be removed from l2ad_buflist before we * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. */ if (!buflist_held) { mutex_enter(&l2arc_buflist_mtx); l2hdr = hdr->b_l2hdr; } if (l2hdr != NULL) { list_remove(l2hdr->b_dev->l2ad_buflist, hdr); ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); kmem_cache_free(l2arc_hdr_cache, l2hdr); arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS); if (hdr->b_state == arc_l2c_only) l2arc_hdr_stat_remove(); hdr->b_l2hdr = NULL; } if (!buflist_held) mutex_exit(&l2arc_buflist_mtx); } if (!BUF_EMPTY(hdr)) { ASSERT(!HDR_IN_HASH_TABLE(hdr)); buf_discard_identity(hdr); } while (hdr->b_buf) { arc_buf_t *buf = hdr->b_buf; if (buf->b_efunc) { mutex_enter(&arc_eviction_mtx); mutex_enter(&buf->b_evict_lock); ASSERT(buf->b_hdr != NULL); arc_buf_destroy(hdr->b_buf, FALSE, FALSE); hdr->b_buf = buf->b_next; buf->b_hdr = &arc_eviction_hdr; buf->b_next = arc_eviction_list; arc_eviction_list = buf; mutex_exit(&buf->b_evict_lock); mutex_exit(&arc_eviction_mtx); } else { arc_buf_destroy(hdr->b_buf, FALSE, TRUE); } } if (hdr->b_freeze_cksum != NULL) { kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); hdr->b_freeze_cksum = NULL; } ASSERT(!list_link_active(&hdr->b_arc_node)); ASSERT3P(hdr->b_hash_next, ==, NULL); ASSERT3P(hdr->b_acb, ==, NULL); kmem_cache_free(hdr_cache, hdr); } void arc_buf_free(arc_buf_t *buf, void *tag) { arc_buf_hdr_t *hdr = buf->b_hdr; int hashed = hdr->b_state != arc_anon; ASSERT(buf->b_efunc == NULL); ASSERT(buf->b_data != NULL); if (hashed) { kmutex_t *hash_lock = HDR_LOCK(hdr); mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); (void) remove_reference(hdr, hash_lock, tag); if (hdr->b_datacnt > 1) { arc_buf_destroy(buf, FALSE, TRUE); } else { ASSERT(buf == hdr->b_buf); ASSERT(buf->b_efunc == NULL); hdr->b_flags |= ARC_BUF_AVAILABLE; } mutex_exit(hash_lock); } else if (HDR_IO_IN_PROGRESS(hdr)) { int destroy_hdr; /* * We are in the middle of an async write. Don't destroy * this buffer unless the write completes before we finish * decrementing the reference count. */ mutex_enter(&arc_eviction_mtx); (void) remove_reference(hdr, NULL, tag); ASSERT(refcount_is_zero(&hdr->b_refcnt)); destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); mutex_exit(&arc_eviction_mtx); if (destroy_hdr) arc_hdr_destroy(hdr); } else { if (remove_reference(hdr, NULL, tag) > 0) arc_buf_destroy(buf, FALSE, TRUE); else arc_hdr_destroy(hdr); } } boolean_t arc_buf_remove_ref(arc_buf_t *buf, void* tag) { arc_buf_hdr_t *hdr = buf->b_hdr; kmutex_t *hash_lock = NULL; boolean_t no_callback = (buf->b_efunc == NULL); if (hdr->b_state == arc_anon) { ASSERT(hdr->b_datacnt == 1); arc_buf_free(buf, tag); return (no_callback); } hash_lock = HDR_LOCK(hdr); mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); ASSERT(hdr->b_state != arc_anon); ASSERT(buf->b_data != NULL); (void) remove_reference(hdr, hash_lock, tag); if (hdr->b_datacnt > 1) { if (no_callback) arc_buf_destroy(buf, FALSE, TRUE); } else if (no_callback) { ASSERT(hdr->b_buf == buf && buf->b_next == NULL); ASSERT(buf->b_efunc == NULL); hdr->b_flags |= ARC_BUF_AVAILABLE; } ASSERT(no_callback || hdr->b_datacnt > 1 || refcount_is_zero(&hdr->b_refcnt)); mutex_exit(hash_lock); return (no_callback); } int arc_buf_size(arc_buf_t *buf) { return (buf->b_hdr->b_size); } /* * Called from the DMU to determine if the current buffer should be * evicted. In order to ensure proper locking, the eviction must be initiated * from the DMU. Return true if the buffer is associated with user data and * duplicate buffers still exist. */ boolean_t arc_buf_eviction_needed(arc_buf_t *buf) { arc_buf_hdr_t *hdr; boolean_t evict_needed = B_FALSE; if (zfs_disable_dup_eviction) return (B_FALSE); mutex_enter(&buf->b_evict_lock); hdr = buf->b_hdr; if (hdr == NULL) { /* * We are in arc_do_user_evicts(); let that function * perform the eviction. */ ASSERT(buf->b_data == NULL); mutex_exit(&buf->b_evict_lock); return (B_FALSE); } else if (buf->b_data == NULL) { /* * We have already been added to the arc eviction list; * recommend eviction. */ ASSERT3P(hdr, ==, &arc_eviction_hdr); mutex_exit(&buf->b_evict_lock); return (B_TRUE); } if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA) evict_needed = B_TRUE; mutex_exit(&buf->b_evict_lock); return (evict_needed); } /* * Evict buffers from list until we've removed the specified number of * bytes. Move the removed buffers to the appropriate evict state. * If the recycle flag is set, then attempt to "recycle" a buffer: * - look for a buffer to evict that is `bytes' long. * - return the data block from this buffer rather than freeing it. * This flag is used by callers that are trying to make space for a * new buffer in a full arc cache. * * This function makes a "best effort". It skips over any buffers * it can't get a hash_lock on, and so may not catch all candidates. * It may also return without evicting as much space as requested. */ static void * arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, arc_buf_contents_t type) { arc_state_t *evicted_state; uint64_t bytes_evicted = 0, skipped = 0, missed = 0; arc_buf_hdr_t *ab, *ab_prev = NULL; list_t *list = &state->arcs_list[type]; kmutex_t *hash_lock; boolean_t have_lock; void *stolen = NULL; arc_buf_hdr_t marker = {{{ 0 }}}; int count = 0; ASSERT(state == arc_mru || state == arc_mfu); evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; top: mutex_enter(&state->arcs_mtx); mutex_enter(&evicted_state->arcs_mtx); for (ab = list_tail(list); ab; ab = ab_prev) { ab_prev = list_prev(list, ab); /* prefetch buffers have a minimum lifespan */ if (HDR_IO_IN_PROGRESS(ab) || (spa && ab->b_spa != spa) || (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && ddi_get_lbolt() - ab->b_arc_access < zfs_arc_min_prefetch_lifespan)) { skipped++; continue; } /* "lookahead" for better eviction candidate */ if (recycle && ab->b_size != bytes && ab_prev && ab_prev->b_size == bytes) continue; /* ignore markers */ if (ab->b_spa == 0) continue; /* * It may take a long time to evict all the bufs requested. * To avoid blocking all arc activity, periodically drop * the arcs_mtx and give other threads a chance to run * before reacquiring the lock. * * If we are looking for a buffer to recycle, we are in * the hot code path, so don't sleep. */ if (!recycle && count++ > arc_evict_iterations) { list_insert_after(list, ab, &marker); mutex_exit(&evicted_state->arcs_mtx); mutex_exit(&state->arcs_mtx); kpreempt(KPREEMPT_SYNC); mutex_enter(&state->arcs_mtx); mutex_enter(&evicted_state->arcs_mtx); ab_prev = list_prev(list, &marker); list_remove(list, &marker); count = 0; continue; } hash_lock = HDR_LOCK(ab); have_lock = MUTEX_HELD(hash_lock); if (have_lock || mutex_tryenter(hash_lock)) { ASSERT0(refcount_count(&ab->b_refcnt)); ASSERT(ab->b_datacnt > 0); while (ab->b_buf) { arc_buf_t *buf = ab->b_buf; if (!mutex_tryenter(&buf->b_evict_lock)) { missed += 1; break; } if (buf->b_data) { bytes_evicted += ab->b_size; if (recycle && ab->b_type == type && ab->b_size == bytes && !HDR_L2_WRITING(ab)) { stolen = buf->b_data; recycle = FALSE; } } if (buf->b_efunc) { mutex_enter(&arc_eviction_mtx); arc_buf_destroy(buf, buf->b_data == stolen, FALSE); ab->b_buf = buf->b_next; buf->b_hdr = &arc_eviction_hdr; buf->b_next = arc_eviction_list; arc_eviction_list = buf; mutex_exit(&arc_eviction_mtx); mutex_exit(&buf->b_evict_lock); } else { mutex_exit(&buf->b_evict_lock); arc_buf_destroy(buf, buf->b_data == stolen, TRUE); } } if (ab->b_l2hdr) { ARCSTAT_INCR(arcstat_evict_l2_cached, ab->b_size); } else { if (l2arc_write_eligible(ab->b_spa, ab)) { ARCSTAT_INCR(arcstat_evict_l2_eligible, ab->b_size); } else { ARCSTAT_INCR( arcstat_evict_l2_ineligible, ab->b_size); } } if (ab->b_datacnt == 0) { arc_change_state(evicted_state, ab, hash_lock); ASSERT(HDR_IN_HASH_TABLE(ab)); ab->b_flags |= ARC_IN_HASH_TABLE; ab->b_flags &= ~ARC_BUF_AVAILABLE; DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); } if (!have_lock) mutex_exit(hash_lock); if (bytes >= 0 && bytes_evicted >= bytes) break; } else { missed += 1; } } mutex_exit(&evicted_state->arcs_mtx); mutex_exit(&state->arcs_mtx); if (list == &state->arcs_list[ARC_BUFC_DATA] && (bytes < 0 || bytes_evicted < bytes)) { /* Prevent second pass from recycling metadata into data */ recycle = FALSE; type = ARC_BUFC_METADATA; list = &state->arcs_list[type]; goto top; } if (bytes_evicted < bytes) dprintf("only evicted %lld bytes from %x\n", (longlong_t)bytes_evicted, state); if (skipped) ARCSTAT_INCR(arcstat_evict_skip, skipped); if (missed) ARCSTAT_INCR(arcstat_mutex_miss, missed); /* * Note: we have just evicted some data into the ghost state, * potentially putting the ghost size over the desired size. Rather * that evicting from the ghost list in this hot code path, leave * this chore to the arc_reclaim_thread(). */ return (stolen); } /* * Remove buffers from list until we've removed the specified number of * bytes. Destroy the buffers that are removed. */ static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes, arc_buf_contents_t type) { arc_buf_hdr_t *ab, *ab_prev; arc_buf_hdr_t marker; list_t *list = &state->arcs_list[type]; kmutex_t *hash_lock; uint64_t bytes_deleted = 0; uint64_t bufs_skipped = 0; int count = 0; ASSERT(GHOST_STATE(state)); bzero(&marker, sizeof (marker)); top: mutex_enter(&state->arcs_mtx); for (ab = list_tail(list); ab; ab = ab_prev) { ab_prev = list_prev(list, ab); if (ab->b_type > ARC_BUFC_NUMTYPES) panic("invalid ab=%p", (void *)ab); if (spa && ab->b_spa != spa) continue; /* ignore markers */ if (ab->b_spa == 0) continue; hash_lock = HDR_LOCK(ab); /* caller may be trying to modify this buffer, skip it */ if (MUTEX_HELD(hash_lock)) continue; /* * It may take a long time to evict all the bufs requested. * To avoid blocking all arc activity, periodically drop * the arcs_mtx and give other threads a chance to run * before reacquiring the lock. */ if (count++ > arc_evict_iterations) { list_insert_after(list, ab, &marker); mutex_exit(&state->arcs_mtx); kpreempt(KPREEMPT_SYNC); mutex_enter(&state->arcs_mtx); ab_prev = list_prev(list, &marker); list_remove(list, &marker); count = 0; continue; } if (mutex_tryenter(hash_lock)) { ASSERT(!HDR_IO_IN_PROGRESS(ab)); ASSERT(ab->b_buf == NULL); ARCSTAT_BUMP(arcstat_deleted); bytes_deleted += ab->b_size; if (ab->b_l2hdr != NULL) { /* * This buffer is cached on the 2nd Level ARC; * don't destroy the header. */ arc_change_state(arc_l2c_only, ab, hash_lock); mutex_exit(hash_lock); } else { arc_change_state(arc_anon, ab, hash_lock); mutex_exit(hash_lock); arc_hdr_destroy(ab); } DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); if (bytes >= 0 && bytes_deleted >= bytes) break; } else if (bytes < 0) { /* * Insert a list marker and then wait for the * hash lock to become available. Once its * available, restart from where we left off. */ list_insert_after(list, ab, &marker); mutex_exit(&state->arcs_mtx); mutex_enter(hash_lock); mutex_exit(hash_lock); mutex_enter(&state->arcs_mtx); ab_prev = list_prev(list, &marker); list_remove(list, &marker); } else { bufs_skipped += 1; } } mutex_exit(&state->arcs_mtx); if (list == &state->arcs_list[ARC_BUFC_DATA] && (bytes < 0 || bytes_deleted < bytes)) { list = &state->arcs_list[ARC_BUFC_METADATA]; goto top; } if (bufs_skipped) { ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); ASSERT(bytes >= 0); } if (bytes_deleted < bytes) dprintf("only deleted %lld bytes from %p\n", (longlong_t)bytes_deleted, state); } static void arc_adjust(void) { int64_t adjustment, delta; /* * Adjust MRU size */ adjustment = MIN((int64_t)(arc_size - arc_c), (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size - arc_p)); if (adjustment > 0 && arc_mru->arcs_size > 0) { delta = MIN(arc_mru->arcs_size, adjustment); (void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA); } /* * Adjust MFU size */ adjustment = arc_size - arc_c; if (adjustment > 0 && arc_mfu->arcs_size > 0) { delta = MIN(arc_mfu->arcs_size, adjustment); (void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA); } /* * Adjust ghost lists */ adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { delta = MIN(arc_mru_ghost->arcs_size, adjustment); arc_evict_ghost(arc_mru_ghost, 0, delta, ARC_BUFC_DATA); } adjustment = arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { delta = MIN(arc_mfu_ghost->arcs_size, adjustment); arc_evict_ghost(arc_mfu_ghost, 0, delta, ARC_BUFC_DATA); } } /* * Request that arc user drop references so that N bytes can be released * from the cache. This provides a mechanism to ensure the arc can honor * the arc_meta_limit and reclaim buffers which are pinned in the cache * by higher layers. (i.e. the zpl) */ static void arc_do_user_prune(int64_t adjustment) { arc_prune_func_t *func; void *private; arc_prune_t *cp, *np; mutex_enter(&arc_prune_mtx); cp = list_head(&arc_prune_list); while (cp != NULL) { func = cp->p_pfunc; private = cp->p_private; np = list_next(&arc_prune_list, cp); refcount_add(&cp->p_refcnt, func); mutex_exit(&arc_prune_mtx); if (func != NULL) func(adjustment, private); mutex_enter(&arc_prune_mtx); /* User removed prune callback concurrently with execution */ if (refcount_remove(&cp->p_refcnt, func) == 0) { ASSERT(!list_link_active(&cp->p_node)); refcount_destroy(&cp->p_refcnt); kmem_free(cp, sizeof (*cp)); } cp = np; } ARCSTAT_BUMP(arcstat_prune); mutex_exit(&arc_prune_mtx); } static void arc_do_user_evicts(void) { mutex_enter(&arc_eviction_mtx); while (arc_eviction_list != NULL) { arc_buf_t *buf = arc_eviction_list; arc_eviction_list = buf->b_next; mutex_enter(&buf->b_evict_lock); buf->b_hdr = NULL; mutex_exit(&buf->b_evict_lock); mutex_exit(&arc_eviction_mtx); if (buf->b_efunc != NULL) VERIFY(buf->b_efunc(buf) == 0); buf->b_efunc = NULL; buf->b_private = NULL; kmem_cache_free(buf_cache, buf); mutex_enter(&arc_eviction_mtx); } mutex_exit(&arc_eviction_mtx); } /* * Evict only meta data objects from the cache leaving the data objects. * This is only used to enforce the tunable arc_meta_limit, if we are * unable to evict enough buffers notify the user via the prune callback. */ static void arc_adjust_meta(void) { int64_t adjustmnt, delta; /* * This slightly differs than the way we evict from the mru in * arc_adjust because we don't have a "target" value (i.e. no * "meta" arc_p). As a result, I think we can completely * cannibalize the metadata in the MRU before we evict the * metadata from the MFU. I think we probably need to implement a * "metadata arc_p" value to do this properly. */ adjustmnt = arc_meta_used - arc_meta_limit; if (adjustmnt > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustmnt); arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_METADATA); adjustmnt -= delta; } /* * We can't afford to recalculate adjustmnt here. If we do, * new metadata buffers can sneak into the MRU or ANON lists, * thus penalize the MFU metadata. Although the fudge factor is * small, it has been empirically shown to be significant for * certain workloads (e.g. creating many empty directories). As * such, we use the original calculation for adjustmnt, and * simply decrement the amount of data evicted from the MRU. */ if (adjustmnt > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { delta = MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA], adjustmnt); arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_METADATA); } adjustmnt = arc_mru->arcs_lsize[ARC_BUFC_METADATA] + arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] - arc_meta_limit; if (adjustmnt > 0 && arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] > 0) { delta = MIN(adjustmnt, arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA]); arc_evict_ghost(arc_mru_ghost, 0, delta, ARC_BUFC_METADATA); } adjustmnt = arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] + arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA] - arc_meta_limit; if (adjustmnt > 0 && arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA] > 0) { delta = MIN(adjustmnt, arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA]); arc_evict_ghost(arc_mfu_ghost, 0, delta, ARC_BUFC_METADATA); } if (arc_meta_used > arc_meta_limit) arc_do_user_prune(zfs_arc_meta_prune); } /* * Flush all *evictable* data from the cache for the given spa. * NOTE: this will not touch "active" (i.e. referenced) data. */ void arc_flush(spa_t *spa) { uint64_t guid = 0; if (spa) guid = spa_load_guid(spa); while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); if (spa) break; } while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); if (spa) break; } while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); if (spa) break; } while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); if (spa) break; } arc_evict_ghost(arc_mru_ghost, guid, -1, ARC_BUFC_DATA); arc_evict_ghost(arc_mfu_ghost, guid, -1, ARC_BUFC_DATA); mutex_enter(&arc_reclaim_thr_lock); arc_do_user_evicts(); mutex_exit(&arc_reclaim_thr_lock); ASSERT(spa || arc_eviction_list == NULL); } void arc_shrink(uint64_t bytes) { if (arc_c > arc_c_min) { uint64_t to_free; to_free = bytes ? bytes : arc_c >> zfs_arc_shrink_shift; if (arc_c > arc_c_min + to_free) atomic_add_64(&arc_c, -to_free); else arc_c = arc_c_min; to_free = bytes ? bytes : arc_p >> zfs_arc_shrink_shift; if (arc_p > to_free) atomic_add_64(&arc_p, -to_free); else arc_p = 0; if (arc_c > arc_size) arc_c = MAX(arc_size, arc_c_min); if (arc_p > arc_c) arc_p = (arc_c >> 1); ASSERT(arc_c >= arc_c_min); ASSERT((int64_t)arc_p >= 0); } if (arc_size > arc_c) arc_adjust(); } static void arc_kmem_reap_now(arc_reclaim_strategy_t strat, uint64_t bytes) { size_t i; kmem_cache_t *prev_cache = NULL; kmem_cache_t *prev_data_cache = NULL; extern kmem_cache_t *zio_buf_cache[]; extern kmem_cache_t *zio_data_buf_cache[]; /* * An aggressive reclamation will shrink the cache size as well as * reap free buffers from the arc kmem caches. */ if (strat == ARC_RECLAIM_AGGR) arc_shrink(bytes); for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { if (zio_buf_cache[i] != prev_cache) { prev_cache = zio_buf_cache[i]; kmem_cache_reap_now(zio_buf_cache[i]); } if (zio_data_buf_cache[i] != prev_data_cache) { prev_data_cache = zio_data_buf_cache[i]; kmem_cache_reap_now(zio_data_buf_cache[i]); } } kmem_cache_reap_now(buf_cache); kmem_cache_reap_now(hdr_cache); } /* * Unlike other ZFS implementations this thread is only responsible for * adapting the target ARC size on Linux. The responsibility for memory * reclamation has been entirely delegated to the arc_shrinker_func() * which is registered with the VM. To reflect this change in behavior * the arc_reclaim thread has been renamed to arc_adapt. */ static void arc_adapt_thread(void) { callb_cpr_t cpr; CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); mutex_enter(&arc_reclaim_thr_lock); while (arc_thread_exit == 0) { #ifndef _KERNEL arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; if (spa_get_random(100) == 0) { if (arc_no_grow) { if (last_reclaim == ARC_RECLAIM_CONS) { last_reclaim = ARC_RECLAIM_AGGR; } else { last_reclaim = ARC_RECLAIM_CONS; } } else { arc_no_grow = TRUE; last_reclaim = ARC_RECLAIM_AGGR; membar_producer(); } /* reset the growth delay for every reclaim */ arc_grow_time = ddi_get_lbolt() + (zfs_arc_grow_retry * hz); arc_kmem_reap_now(last_reclaim, 0); arc_warm = B_TRUE; } #endif /* !_KERNEL */ /* No recent memory pressure allow the ARC to grow. */ if (arc_no_grow && ddi_time_after_eq(ddi_get_lbolt(), arc_grow_time)) arc_no_grow = FALSE; arc_adjust_meta(); arc_adjust(); if (arc_eviction_list != NULL) arc_do_user_evicts(); /* block until needed, or one second, whichever is shorter */ CALLB_CPR_SAFE_BEGIN(&cpr); (void) cv_timedwait_interruptible(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); /* Allow the module options to be changed */ if (zfs_arc_max > 64 << 20 && zfs_arc_max < physmem * PAGESIZE && zfs_arc_max != arc_c_max) arc_c_max = zfs_arc_max; if (zfs_arc_min > 0 && zfs_arc_min < arc_c_max && zfs_arc_min != arc_c_min) arc_c_min = zfs_arc_min; if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max && zfs_arc_meta_limit != arc_meta_limit) arc_meta_limit = zfs_arc_meta_limit; } arc_thread_exit = 0; cv_broadcast(&arc_reclaim_thr_cv); CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ thread_exit(); } #ifdef _KERNEL /* * Determine the amount of memory eligible for eviction contained in the * ARC. All clean data reported by the ghost lists can always be safely * evicted. Due to arc_c_min, the same does not hold for all clean data * contained by the regular mru and mfu lists. * * In the case of the regular mru and mfu lists, we need to report as * much clean data as possible, such that evicting that same reported * data will not bring arc_size below arc_c_min. Thus, in certain * circumstances, the total amount of clean data in the mru and mfu * lists might not actually be evictable. * * The following two distinct cases are accounted for: * * 1. The sum of the amount of dirty data contained by both the mru and * mfu lists, plus the ARC's other accounting (e.g. the anon list), * is greater than or equal to arc_c_min. * (i.e. amount of dirty data >= arc_c_min) * * This is the easy case; all clean data contained by the mru and mfu * lists is evictable. Evicting all clean data can only drop arc_size * to the amount of dirty data, which is greater than arc_c_min. * * 2. The sum of the amount of dirty data contained by both the mru and * mfu lists, plus the ARC's other accounting (e.g. the anon list), * is less than arc_c_min. * (i.e. arc_c_min > amount of dirty data) * * 2.1. arc_size is greater than or equal arc_c_min. * (i.e. arc_size >= arc_c_min > amount of dirty data) * * In this case, not all clean data from the regular mru and mfu * lists is actually evictable; we must leave enough clean data * to keep arc_size above arc_c_min. Thus, the maximum amount of * evictable data from the two lists combined, is exactly the * difference between arc_size and arc_c_min. * * 2.2. arc_size is less than arc_c_min * (i.e. arc_c_min > arc_size > amount of dirty data) * * In this case, none of the data contained in the mru and mfu * lists is evictable, even if it's clean. Since arc_size is * already below arc_c_min, evicting any more would only * increase this negative difference. */ static uint64_t arc_evictable_memory(void) { uint64_t arc_clean = arc_mru->arcs_lsize[ARC_BUFC_DATA] + arc_mru->arcs_lsize[ARC_BUFC_METADATA] + arc_mfu->arcs_lsize[ARC_BUFC_DATA] + arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; uint64_t ghost_clean = arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] + arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] + arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] + arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA]; uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0); if (arc_dirty >= arc_c_min) return (ghost_clean + arc_clean); return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0)); } static int __arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc) { uint64_t pages; /* The arc is considered warm once reclaim has occurred */ if (unlikely(arc_warm == B_FALSE)) arc_warm = B_TRUE; /* Return the potential number of reclaimable pages */ pages = btop(arc_evictable_memory()); if (sc->nr_to_scan == 0) return (pages); /* Not allowed to perform filesystem reclaim */ if (!(sc->gfp_mask & __GFP_FS)) return (-1); /* Reclaim in progress */ if (mutex_tryenter(&arc_reclaim_thr_lock) == 0) return (-1); /* * Evict the requested number of pages by shrinking arc_c the * requested amount. If there is nothing left to evict just * reap whatever we can from the various arc slabs. */ if (pages > 0) { arc_kmem_reap_now(ARC_RECLAIM_AGGR, ptob(sc->nr_to_scan)); pages = btop(arc_evictable_memory()); } else { arc_kmem_reap_now(ARC_RECLAIM_CONS, ptob(sc->nr_to_scan)); pages = -1; } /* * When direct reclaim is observed it usually indicates a rapid * increase in memory pressure. This occurs because the kswapd * threads were unable to asynchronously keep enough free memory * available. In this case set arc_no_grow to briefly pause arc * growth to avoid compounding the memory pressure. */ if (current_is_kswapd()) { ARCSTAT_BUMP(arcstat_memory_indirect_count); } else { arc_no_grow = B_TRUE; arc_grow_time = ddi_get_lbolt() + (zfs_arc_grow_retry * hz); ARCSTAT_BUMP(arcstat_memory_direct_count); } mutex_exit(&arc_reclaim_thr_lock); return (pages); } SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func); SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS); #endif /* _KERNEL */ /* * Adapt arc info given the number of bytes we are trying to add and * the state that we are comming from. This function is only called * when we are adding new content to the cache. */ static void arc_adapt(int bytes, arc_state_t *state) { int mult; if (state == arc_l2c_only) return; ASSERT(bytes > 0); /* * Adapt the target size of the MRU list: * - if we just hit in the MRU ghost list, then increase * the target size of the MRU list. * - if we just hit in the MFU ghost list, then increase * the target size of the MFU list by decreasing the * target size of the MRU list. */ if (state == arc_mru_ghost) { mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); if (!zfs_arc_p_dampener_disable) mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ arc_p = MIN(arc_c, arc_p + bytes * mult); } else if (state == arc_mfu_ghost) { uint64_t delta; mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); if (!zfs_arc_p_dampener_disable) mult = MIN(mult, 10); delta = MIN(bytes * mult, arc_p); arc_p = MAX(0, arc_p - delta); } ASSERT((int64_t)arc_p >= 0); if (arc_no_grow) return; if (arc_c >= arc_c_max) return; /* * If we're within (2 * maxblocksize) bytes of the target * cache size, increment the target cache size */ if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { atomic_add_64(&arc_c, (int64_t)bytes); if (arc_c > arc_c_max) arc_c = arc_c_max; else if (state == arc_anon) atomic_add_64(&arc_p, (int64_t)bytes); if (arc_p > arc_c) arc_p = arc_c; } ASSERT((int64_t)arc_p >= 0); } /* * Check if the cache has reached its limits and eviction is required * prior to insert. */ static int arc_evict_needed(arc_buf_contents_t type) { if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) return (1); if (arc_no_grow) return (1); return (arc_size > arc_c); } /* * The buffer, supplied as the first argument, needs a data block. * So, if we are at cache max, determine which cache should be victimized. * We have the following cases: * * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> * In this situation if we're out of space, but the resident size of the MFU is * under the limit, victimize the MFU cache to satisfy this insertion request. * * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> * Here, we've used up all of the available space for the MRU, so we need to * evict from our own cache instead. Evict from the set of resident MRU * entries. * * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> * c minus p represents the MFU space in the cache, since p is the size of the * cache that is dedicated to the MRU. In this situation there's still space on * the MFU side, so the MRU side needs to be victimized. * * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> * MFU's resident set is consuming more space than it has been allotted. In * this situation, we must victimize our own cache, the MFU, for this insertion. */ static void arc_get_data_buf(arc_buf_t *buf) { arc_state_t *state = buf->b_hdr->b_state; uint64_t size = buf->b_hdr->b_size; arc_buf_contents_t type = buf->b_hdr->b_type; arc_buf_contents_t evict = ARC_BUFC_DATA; boolean_t recycle = TRUE; arc_adapt(size, state); /* * We have not yet reached cache maximum size, * just allocate a new buffer. */ if (!arc_evict_needed(type)) { if (type == ARC_BUFC_METADATA) { buf->b_data = zio_buf_alloc(size); arc_space_consume(size, ARC_SPACE_META); } else { ASSERT(type == ARC_BUFC_DATA); buf->b_data = zio_data_buf_alloc(size); arc_space_consume(size, ARC_SPACE_DATA); } goto out; } /* * If we are prefetching from the mfu ghost list, this buffer * will end up on the mru list; so steal space from there. */ if (state == arc_mfu_ghost) state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; else if (state == arc_mru_ghost) state = arc_mru; if (state == arc_mru || state == arc_anon) { uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; state = (arc_mfu->arcs_lsize[type] >= size && arc_p > mru_used) ? arc_mfu : arc_mru; } else { /* MFU cases */ uint64_t mfu_space = arc_c - arc_p; state = (arc_mru->arcs_lsize[type] >= size && mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; } /* * Evict data buffers prior to metadata buffers, unless we're * over the metadata limit and adding a metadata buffer. */ if (type == ARC_BUFC_METADATA) { if (arc_meta_used >= arc_meta_limit) evict = ARC_BUFC_METADATA; else /* * In this case, we're evicting data while * adding metadata. Thus, to prevent recycling a * data buffer into a metadata buffer, recycling * is disabled in the following arc_evict call. */ recycle = FALSE; } if ((buf->b_data = arc_evict(state, 0, size, recycle, evict)) == NULL) { if (type == ARC_BUFC_METADATA) { buf->b_data = zio_buf_alloc(size); arc_space_consume(size, ARC_SPACE_META); /* * If we are unable to recycle an existing meta buffer * signal the reclaim thread. It will notify users * via the prune callback to drop references. The * prune callback in run in the context of the reclaim * thread to avoid deadlocking on the hash_lock. * Of course, only do this when recycle is true. */ if (recycle) cv_signal(&arc_reclaim_thr_cv); } else { ASSERT(type == ARC_BUFC_DATA); buf->b_data = zio_data_buf_alloc(size); arc_space_consume(size, ARC_SPACE_DATA); } /* Only bump this if we tried to recycle and failed */ if (recycle) ARCSTAT_BUMP(arcstat_recycle_miss); } ASSERT(buf->b_data != NULL); out: /* * Update the state size. Note that ghost states have a * "ghost size" and so don't need to be updated. */ if (!GHOST_STATE(buf->b_hdr->b_state)) { arc_buf_hdr_t *hdr = buf->b_hdr; atomic_add_64(&hdr->b_state->arcs_size, size); if (list_link_active(&hdr->b_arc_node)) { ASSERT(refcount_is_zero(&hdr->b_refcnt)); atomic_add_64(&hdr->b_state->arcs_lsize[type], size); } /* * If we are growing the cache, and we are adding anonymous * data, and we have outgrown arc_p, update arc_p */ if (!zfs_arc_p_aggressive_disable && arc_size < arc_c && hdr->b_state == arc_anon && arc_anon->arcs_size + arc_mru->arcs_size > arc_p) arc_p = MIN(arc_c, arc_p + size); } } /* * This routine is called whenever a buffer is accessed. * NOTE: the hash lock is dropped in this function. */ static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) { clock_t now; ASSERT(MUTEX_HELD(hash_lock)); if (buf->b_state == arc_anon) { /* * This buffer is not in the cache, and does not * appear in our "ghost" list. Add the new buffer * to the MRU state. */ ASSERT(buf->b_arc_access == 0); buf->b_arc_access = ddi_get_lbolt(); DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); arc_change_state(arc_mru, buf, hash_lock); } else if (buf->b_state == arc_mru) { now = ddi_get_lbolt(); /* * If this buffer is here because of a prefetch, then either: * - clear the flag if this is a "referencing" read * (any subsequent access will bump this into the MFU state). * or * - move the buffer to the head of the list if this is * another prefetch (to make it less likely to be evicted). */ if ((buf->b_flags & ARC_PREFETCH) != 0) { if (refcount_count(&buf->b_refcnt) == 0) { ASSERT(list_link_active(&buf->b_arc_node)); } else { buf->b_flags &= ~ARC_PREFETCH; atomic_inc_32(&buf->b_mru_hits); ARCSTAT_BUMP(arcstat_mru_hits); } buf->b_arc_access = now; return; } /* * This buffer has been "accessed" only once so far, * but it is still in the cache. Move it to the MFU * state. */ if (ddi_time_after(now, buf->b_arc_access + ARC_MINTIME)) { /* * More than 125ms have passed since we * instantiated this buffer. Move it to the * most frequently used state. */ buf->b_arc_access = now; DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); arc_change_state(arc_mfu, buf, hash_lock); } atomic_inc_32(&buf->b_mru_hits); ARCSTAT_BUMP(arcstat_mru_hits); } else if (buf->b_state == arc_mru_ghost) { arc_state_t *new_state; /* * This buffer has been "accessed" recently, but * was evicted from the cache. Move it to the * MFU state. */ if (buf->b_flags & ARC_PREFETCH) { new_state = arc_mru; if (refcount_count(&buf->b_refcnt) > 0) buf->b_flags &= ~ARC_PREFETCH; DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); } else { new_state = arc_mfu; DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); } buf->b_arc_access = ddi_get_lbolt(); arc_change_state(new_state, buf, hash_lock); atomic_inc_32(&buf->b_mru_ghost_hits); ARCSTAT_BUMP(arcstat_mru_ghost_hits); } else if (buf->b_state == arc_mfu) { /* * This buffer has been accessed more than once and is * still in the cache. Keep it in the MFU state. * * NOTE: an add_reference() that occurred when we did * the arc_read() will have kicked this off the list. * If it was a prefetch, we will explicitly move it to * the head of the list now. */ if ((buf->b_flags & ARC_PREFETCH) != 0) { ASSERT(refcount_count(&buf->b_refcnt) == 0); ASSERT(list_link_active(&buf->b_arc_node)); } atomic_inc_32(&buf->b_mfu_hits); ARCSTAT_BUMP(arcstat_mfu_hits); buf->b_arc_access = ddi_get_lbolt(); } else if (buf->b_state == arc_mfu_ghost) { arc_state_t *new_state = arc_mfu; /* * This buffer has been accessed more than once but has * been evicted from the cache. Move it back to the * MFU state. */ if (buf->b_flags & ARC_PREFETCH) { /* * This is a prefetch access... * move this block back to the MRU state. */ ASSERT0(refcount_count(&buf->b_refcnt)); new_state = arc_mru; } buf->b_arc_access = ddi_get_lbolt(); DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); arc_change_state(new_state, buf, hash_lock); atomic_inc_32(&buf->b_mfu_ghost_hits); ARCSTAT_BUMP(arcstat_mfu_ghost_hits); } else if (buf->b_state == arc_l2c_only) { /* * This buffer is on the 2nd Level ARC. */ buf->b_arc_access = ddi_get_lbolt(); DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); arc_change_state(arc_mfu, buf, hash_lock); } else { ASSERT(!"invalid arc state"); } } /* a generic arc_done_func_t which you can use */ /* ARGSUSED */ void arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) { if (zio == NULL || zio->io_error == 0) bcopy(buf->b_data, arg, buf->b_hdr->b_size); VERIFY(arc_buf_remove_ref(buf, arg)); } /* a generic arc_done_func_t */ void arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) { arc_buf_t **bufp = arg; if (zio && zio->io_error) { VERIFY(arc_buf_remove_ref(buf, arg)); *bufp = NULL; } else { *bufp = buf; ASSERT(buf->b_data); } } static void arc_read_done(zio_t *zio) { arc_buf_hdr_t *hdr, *found; arc_buf_t *buf; arc_buf_t *abuf; /* buffer we're assigning to callback */ kmutex_t *hash_lock; arc_callback_t *callback_list, *acb; int freeable = FALSE; buf = zio->io_private; hdr = buf->b_hdr; /* * The hdr was inserted into hash-table and removed from lists * prior to starting I/O. We should find this header, since * it's in the hash table, and it should be legit since it's * not possible to evict it during the I/O. The only possible * reason for it not to be found is if we were freed during the * read. */ found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth, &hash_lock); ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || (found == hdr && HDR_L2_READING(hdr))); hdr->b_flags &= ~ARC_L2_EVICTED; if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) hdr->b_flags &= ~ARC_L2CACHE; /* byteswap if necessary */ callback_list = hdr->b_acb; ASSERT(callback_list != NULL); if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { dmu_object_byteswap_t bswap = DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); if (BP_GET_LEVEL(zio->io_bp) > 0) byteswap_uint64_array(buf->b_data, hdr->b_size); else dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size); } arc_cksum_compute(buf, B_FALSE); arc_buf_watch(buf); if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { /* * Only call arc_access on anonymous buffers. This is because * if we've issued an I/O for an evicted buffer, we've already * called arc_access (to prevent any simultaneous readers from * getting confused). */ arc_access(hdr, hash_lock); } /* create copies of the data buffer for the callers */ abuf = buf; for (acb = callback_list; acb; acb = acb->acb_next) { if (acb->acb_done) { if (abuf == NULL) { ARCSTAT_BUMP(arcstat_duplicate_reads); abuf = arc_buf_clone(buf); } acb->acb_buf = abuf; abuf = NULL; } } hdr->b_acb = NULL; hdr->b_flags &= ~ARC_IO_IN_PROGRESS; ASSERT(!HDR_BUF_AVAILABLE(hdr)); if (abuf == buf) { ASSERT(buf->b_efunc == NULL); ASSERT(hdr->b_datacnt == 1); hdr->b_flags |= ARC_BUF_AVAILABLE; } ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); if (zio->io_error != 0) { hdr->b_flags |= ARC_IO_ERROR; if (hdr->b_state != arc_anon) arc_change_state(arc_anon, hdr, hash_lock); if (HDR_IN_HASH_TABLE(hdr)) buf_hash_remove(hdr); freeable = refcount_is_zero(&hdr->b_refcnt); } /* * Broadcast before we drop the hash_lock to avoid the possibility * that the hdr (and hence the cv) might be freed before we get to * the cv_broadcast(). */ cv_broadcast(&hdr->b_cv); if (hash_lock) { mutex_exit(hash_lock); } else { /* * This block was freed while we waited for the read to * complete. It has been removed from the hash table and * moved to the anonymous state (so that it won't show up * in the cache). */ ASSERT3P(hdr->b_state, ==, arc_anon); freeable = refcount_is_zero(&hdr->b_refcnt); } /* execute each callback and free its structure */ while ((acb = callback_list) != NULL) { if (acb->acb_done) acb->acb_done(zio, acb->acb_buf, acb->acb_private); if (acb->acb_zio_dummy != NULL) { acb->acb_zio_dummy->io_error = zio->io_error; zio_nowait(acb->acb_zio_dummy); } callback_list = acb->acb_next; kmem_free(acb, sizeof (arc_callback_t)); } if (freeable) arc_hdr_destroy(hdr); } /* * "Read" the block at the specified DVA (in bp) via the * cache. If the block is found in the cache, invoke the provided * callback immediately and return. Note that the `zio' parameter * in the callback will be NULL in this case, since no IO was * required. If the block is not in the cache pass the read request * on to the spa with a substitute callback function, so that the * requested block will be added to the cache. * * If a read request arrives for a block that has a read in-progress, * either wait for the in-progress read to complete (and return the * results); or, if this is a read with a "done" func, add a record * to the read to invoke the "done" func when the read completes, * and return; or just return. * * arc_read_done() will invoke all the requested "done" functions * for readers of this block. */ int arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags, const zbookmark_t *zb) { arc_buf_hdr_t *hdr; arc_buf_t *buf = NULL; kmutex_t *hash_lock; zio_t *rzio; uint64_t guid = spa_load_guid(spa); int rc = 0; top: hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), &hash_lock); if (hdr && hdr->b_datacnt > 0) { *arc_flags |= ARC_CACHED; if (HDR_IO_IN_PROGRESS(hdr)) { if (*arc_flags & ARC_WAIT) { cv_wait(&hdr->b_cv, hash_lock); mutex_exit(hash_lock); goto top; } ASSERT(*arc_flags & ARC_NOWAIT); if (done) { arc_callback_t *acb = NULL; acb = kmem_zalloc(sizeof (arc_callback_t), KM_PUSHPAGE); acb->acb_done = done; acb->acb_private = private; if (pio != NULL) acb->acb_zio_dummy = zio_null(pio, spa, NULL, NULL, NULL, zio_flags); ASSERT(acb->acb_done != NULL); acb->acb_next = hdr->b_acb; hdr->b_acb = acb; add_reference(hdr, hash_lock, private); mutex_exit(hash_lock); goto out; } mutex_exit(hash_lock); goto out; } ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); if (done) { add_reference(hdr, hash_lock, private); /* * If this block is already in use, create a new * copy of the data so that we will be guaranteed * that arc_release() will always succeed. */ buf = hdr->b_buf; ASSERT(buf); ASSERT(buf->b_data); if (HDR_BUF_AVAILABLE(hdr)) { ASSERT(buf->b_efunc == NULL); hdr->b_flags &= ~ARC_BUF_AVAILABLE; } else { buf = arc_buf_clone(buf); } } else if (*arc_flags & ARC_PREFETCH && refcount_count(&hdr->b_refcnt) == 0) { hdr->b_flags |= ARC_PREFETCH; } DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); arc_access(hdr, hash_lock); if (*arc_flags & ARC_L2CACHE) hdr->b_flags |= ARC_L2CACHE; if (*arc_flags & ARC_L2COMPRESS) hdr->b_flags |= ARC_L2COMPRESS; mutex_exit(hash_lock); ARCSTAT_BUMP(arcstat_hits); ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, data, metadata, hits); if (done) done(NULL, buf, private); } else { uint64_t size = BP_GET_LSIZE(bp); arc_callback_t *acb; vdev_t *vd = NULL; uint64_t addr = 0; boolean_t devw = B_FALSE; enum zio_compress b_compress = ZIO_COMPRESS_OFF; uint64_t b_asize = 0; if (hdr == NULL) { /* this block is not in the cache */ arc_buf_hdr_t *exists; arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); buf = arc_buf_alloc(spa, size, private, type); hdr = buf->b_hdr; hdr->b_dva = *BP_IDENTITY(bp); hdr->b_birth = BP_PHYSICAL_BIRTH(bp); hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; exists = buf_hash_insert(hdr, &hash_lock); if (exists) { /* somebody beat us to the hash insert */ mutex_exit(hash_lock); buf_discard_identity(hdr); (void) arc_buf_remove_ref(buf, private); goto top; /* restart the IO request */ } /* if this is a prefetch, we don't have a reference */ if (*arc_flags & ARC_PREFETCH) { (void) remove_reference(hdr, hash_lock, private); hdr->b_flags |= ARC_PREFETCH; } if (*arc_flags & ARC_L2CACHE) hdr->b_flags |= ARC_L2CACHE; if (*arc_flags & ARC_L2COMPRESS) hdr->b_flags |= ARC_L2COMPRESS; if (BP_GET_LEVEL(bp) > 0) hdr->b_flags |= ARC_INDIRECT; } else { /* this block is in the ghost cache */ ASSERT(GHOST_STATE(hdr->b_state)); ASSERT(!HDR_IO_IN_PROGRESS(hdr)); ASSERT0(refcount_count(&hdr->b_refcnt)); ASSERT(hdr->b_buf == NULL); /* if this is a prefetch, we don't have a reference */ if (*arc_flags & ARC_PREFETCH) hdr->b_flags |= ARC_PREFETCH; else add_reference(hdr, hash_lock, private); if (*arc_flags & ARC_L2CACHE) hdr->b_flags |= ARC_L2CACHE; if (*arc_flags & ARC_L2COMPRESS) hdr->b_flags |= ARC_L2COMPRESS; buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); buf->b_hdr = hdr; buf->b_data = NULL; buf->b_efunc = NULL; buf->b_private = NULL; buf->b_next = NULL; hdr->b_buf = buf; ASSERT(hdr->b_datacnt == 0); hdr->b_datacnt = 1; arc_get_data_buf(buf); arc_access(hdr, hash_lock); } ASSERT(!GHOST_STATE(hdr->b_state)); acb = kmem_zalloc(sizeof (arc_callback_t), KM_PUSHPAGE); acb->acb_done = done; acb->acb_private = private; ASSERT(hdr->b_acb == NULL); hdr->b_acb = acb; hdr->b_flags |= ARC_IO_IN_PROGRESS; if (hdr->b_l2hdr != NULL && (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { devw = hdr->b_l2hdr->b_dev->l2ad_writing; addr = hdr->b_l2hdr->b_daddr; b_compress = hdr->b_l2hdr->b_compress; b_asize = hdr->b_l2hdr->b_asize; /* * Lock out device removal. */ if (vdev_is_dead(vd) || !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) vd = NULL; } mutex_exit(hash_lock); /* * At this point, we have a level 1 cache miss. Try again in * L2ARC if possible. */ ASSERT3U(hdr->b_size, ==, size); DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, uint64_t, size, zbookmark_t *, zb); ARCSTAT_BUMP(arcstat_misses); ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, data, metadata, misses); if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { /* * Read from the L2ARC if the following are true: * 1. The L2ARC vdev was previously cached. * 2. This buffer still has L2ARC metadata. * 3. This buffer isn't currently writing to the L2ARC. * 4. The L2ARC entry wasn't evicted, which may * also have invalidated the vdev. * 5. This isn't prefetch and l2arc_noprefetch is set. */ if (hdr->b_l2hdr != NULL && !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { l2arc_read_callback_t *cb; DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); ARCSTAT_BUMP(arcstat_l2_hits); atomic_inc_32(&hdr->b_l2hdr->b_hits); cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_PUSHPAGE); cb->l2rcb_buf = buf; cb->l2rcb_spa = spa; cb->l2rcb_bp = *bp; cb->l2rcb_zb = *zb; cb->l2rcb_flags = zio_flags; cb->l2rcb_compress = b_compress; ASSERT(addr >= VDEV_LABEL_START_SIZE && addr + size < vd->vdev_psize - VDEV_LABEL_END_SIZE); /* * l2arc read. The SCL_L2ARC lock will be * released by l2arc_read_done(). * Issue a null zio if the underlying buffer * was squashed to zero size by compression. */ if (b_compress == ZIO_COMPRESS_EMPTY) { rzio = zio_null(pio, spa, vd, l2arc_read_done, cb, zio_flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY); } else { rzio = zio_read_phys(pio, vd, addr, b_asize, buf->b_data, ZIO_CHECKSUM_OFF, l2arc_read_done, cb, priority, zio_flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE); } DTRACE_PROBE2(l2arc__read, vdev_t *, vd, zio_t *, rzio); ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize); if (*arc_flags & ARC_NOWAIT) { zio_nowait(rzio); goto out; } ASSERT(*arc_flags & ARC_WAIT); if (zio_wait(rzio) == 0) goto out; /* l2arc read error; goto zio_read() */ } else { DTRACE_PROBE1(l2arc__miss, arc_buf_hdr_t *, hdr); ARCSTAT_BUMP(arcstat_l2_misses); if (HDR_L2_WRITING(hdr)) ARCSTAT_BUMP(arcstat_l2_rw_clash); spa_config_exit(spa, SCL_L2ARC, vd); } } else { if (vd != NULL) spa_config_exit(spa, SCL_L2ARC, vd); if (l2arc_ndev != 0) { DTRACE_PROBE1(l2arc__miss, arc_buf_hdr_t *, hdr); ARCSTAT_BUMP(arcstat_l2_misses); } } rzio = zio_read(pio, spa, bp, buf->b_data, size, arc_read_done, buf, priority, zio_flags, zb); if (*arc_flags & ARC_WAIT) { rc = zio_wait(rzio); goto out; } ASSERT(*arc_flags & ARC_NOWAIT); zio_nowait(rzio); } out: spa_read_history_add(spa, zb, *arc_flags); return (rc); } arc_prune_t * arc_add_prune_callback(arc_prune_func_t *func, void *private) { arc_prune_t *p; p = kmem_alloc(sizeof (*p), KM_SLEEP); p->p_pfunc = func; p->p_private = private; list_link_init(&p->p_node); refcount_create(&p->p_refcnt); mutex_enter(&arc_prune_mtx); refcount_add(&p->p_refcnt, &arc_prune_list); list_insert_head(&arc_prune_list, p); mutex_exit(&arc_prune_mtx); return (p); } void arc_remove_prune_callback(arc_prune_t *p) { mutex_enter(&arc_prune_mtx); list_remove(&arc_prune_list, p); if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) { refcount_destroy(&p->p_refcnt); kmem_free(p, sizeof (*p)); } mutex_exit(&arc_prune_mtx); } void arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) { ASSERT(buf->b_hdr != NULL); ASSERT(buf->b_hdr->b_state != arc_anon); ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); ASSERT(buf->b_efunc == NULL); ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); buf->b_efunc = func; buf->b_private = private; } /* * Notify the arc that a block was freed, and thus will never be used again. */ void arc_freed(spa_t *spa, const blkptr_t *bp) { arc_buf_hdr_t *hdr; kmutex_t *hash_lock; uint64_t guid = spa_load_guid(spa); hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), &hash_lock); if (hdr == NULL) return; if (HDR_BUF_AVAILABLE(hdr)) { arc_buf_t *buf = hdr->b_buf; add_reference(hdr, hash_lock, FTAG); hdr->b_flags &= ~ARC_BUF_AVAILABLE; mutex_exit(hash_lock); arc_release(buf, FTAG); (void) arc_buf_remove_ref(buf, FTAG); } else { mutex_exit(hash_lock); } } /* * This is used by the DMU to let the ARC know that a buffer is * being evicted, so the ARC should clean up. If this arc buf * is not yet in the evicted state, it will be put there. */ int arc_buf_evict(arc_buf_t *buf) { arc_buf_hdr_t *hdr; kmutex_t *hash_lock; arc_buf_t **bufp; mutex_enter(&buf->b_evict_lock); hdr = buf->b_hdr; if (hdr == NULL) { /* * We are in arc_do_user_evicts(). */ ASSERT(buf->b_data == NULL); mutex_exit(&buf->b_evict_lock); return (0); } else if (buf->b_data == NULL) { arc_buf_t copy = *buf; /* structure assignment */ /* * We are on the eviction list; process this buffer now * but let arc_do_user_evicts() do the reaping. */ buf->b_efunc = NULL; mutex_exit(&buf->b_evict_lock); VERIFY(copy.b_efunc(©) == 0); return (1); } hash_lock = HDR_LOCK(hdr); mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); /* * Pull this buffer off of the hdr */ bufp = &hdr->b_buf; while (*bufp != buf) bufp = &(*bufp)->b_next; *bufp = buf->b_next; ASSERT(buf->b_data != NULL); arc_buf_destroy(buf, FALSE, FALSE); if (hdr->b_datacnt == 0) { arc_state_t *old_state = hdr->b_state; arc_state_t *evicted_state; ASSERT(hdr->b_buf == NULL); ASSERT(refcount_is_zero(&hdr->b_refcnt)); evicted_state = (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; mutex_enter(&old_state->arcs_mtx); mutex_enter(&evicted_state->arcs_mtx); arc_change_state(evicted_state, hdr, hash_lock); ASSERT(HDR_IN_HASH_TABLE(hdr)); hdr->b_flags |= ARC_IN_HASH_TABLE; hdr->b_flags &= ~ARC_BUF_AVAILABLE; mutex_exit(&evicted_state->arcs_mtx); mutex_exit(&old_state->arcs_mtx); } mutex_exit(hash_lock); mutex_exit(&buf->b_evict_lock); VERIFY(buf->b_efunc(buf) == 0); buf->b_efunc = NULL; buf->b_private = NULL; buf->b_hdr = NULL; buf->b_next = NULL; kmem_cache_free(buf_cache, buf); return (1); } /* * Release this buffer from the cache, making it an anonymous buffer. This * must be done after a read and prior to modifying the buffer contents. * If the buffer has more than one reference, we must make * a new hdr for the buffer. */ void arc_release(arc_buf_t *buf, void *tag) { arc_buf_hdr_t *hdr; kmutex_t *hash_lock = NULL; l2arc_buf_hdr_t *l2hdr; uint64_t buf_size = 0; /* * It would be nice to assert that if it's DMU metadata (level > * 0 || it's the dnode file), then it must be syncing context. * But we don't know that information at this level. */ mutex_enter(&buf->b_evict_lock); hdr = buf->b_hdr; /* this buffer is not on any list */ ASSERT(refcount_count(&hdr->b_refcnt) > 0); if (hdr->b_state == arc_anon) { /* this buffer is already released */ ASSERT(buf->b_efunc == NULL); } else { hash_lock = HDR_LOCK(hdr); mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); } l2hdr = hdr->b_l2hdr; if (l2hdr) { mutex_enter(&l2arc_buflist_mtx); hdr->b_l2hdr = NULL; list_remove(l2hdr->b_dev->l2ad_buflist, hdr); } buf_size = hdr->b_size; /* * Do we have more than one buf? */ if (hdr->b_datacnt > 1) { arc_buf_hdr_t *nhdr; arc_buf_t **bufp; uint64_t blksz = hdr->b_size; uint64_t spa = hdr->b_spa; arc_buf_contents_t type = hdr->b_type; uint32_t flags = hdr->b_flags; ASSERT(hdr->b_buf != buf || buf->b_next != NULL); /* * Pull the data off of this hdr and attach it to * a new anonymous hdr. */ (void) remove_reference(hdr, hash_lock, tag); bufp = &hdr->b_buf; while (*bufp != buf) bufp = &(*bufp)->b_next; *bufp = buf->b_next; buf->b_next = NULL; ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); if (refcount_is_zero(&hdr->b_refcnt)) { uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; ASSERT3U(*size, >=, hdr->b_size); atomic_add_64(size, -hdr->b_size); } /* * We're releasing a duplicate user data buffer, update * our statistics accordingly. */ if (hdr->b_type == ARC_BUFC_DATA) { ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); ARCSTAT_INCR(arcstat_duplicate_buffers_size, -hdr->b_size); } hdr->b_datacnt -= 1; arc_cksum_verify(buf); arc_buf_unwatch(buf); mutex_exit(hash_lock); nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); nhdr->b_size = blksz; nhdr->b_spa = spa; nhdr->b_type = type; nhdr->b_buf = buf; nhdr->b_state = arc_anon; nhdr->b_arc_access = 0; nhdr->b_mru_hits = 0; nhdr->b_mru_ghost_hits = 0; nhdr->b_mfu_hits = 0; nhdr->b_mfu_ghost_hits = 0; nhdr->b_l2_hits = 0; nhdr->b_flags = flags & ARC_L2_WRITING; nhdr->b_l2hdr = NULL; nhdr->b_datacnt = 1; nhdr->b_freeze_cksum = NULL; (void) refcount_add(&nhdr->b_refcnt, tag); buf->b_hdr = nhdr; mutex_exit(&buf->b_evict_lock); atomic_add_64(&arc_anon->arcs_size, blksz); } else { mutex_exit(&buf->b_evict_lock); ASSERT(refcount_count(&hdr->b_refcnt) == 1); ASSERT(!list_link_active(&hdr->b_arc_node)); ASSERT(!HDR_IO_IN_PROGRESS(hdr)); if (hdr->b_state != arc_anon) arc_change_state(arc_anon, hdr, hash_lock); hdr->b_arc_access = 0; hdr->b_mru_hits = 0; hdr->b_mru_ghost_hits = 0; hdr->b_mfu_hits = 0; hdr->b_mfu_ghost_hits = 0; hdr->b_l2_hits = 0; if (hash_lock) mutex_exit(hash_lock); buf_discard_identity(hdr); arc_buf_thaw(buf); } buf->b_efunc = NULL; buf->b_private = NULL; if (l2hdr) { ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); kmem_cache_free(l2arc_hdr_cache, l2hdr); arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS); ARCSTAT_INCR(arcstat_l2_size, -buf_size); mutex_exit(&l2arc_buflist_mtx); } } int arc_released(arc_buf_t *buf) { int released; mutex_enter(&buf->b_evict_lock); released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); mutex_exit(&buf->b_evict_lock); return (released); } int arc_has_callback(arc_buf_t *buf) { int callback; mutex_enter(&buf->b_evict_lock); callback = (buf->b_efunc != NULL); mutex_exit(&buf->b_evict_lock); return (callback); } #ifdef ZFS_DEBUG int arc_referenced(arc_buf_t *buf) { int referenced; mutex_enter(&buf->b_evict_lock); referenced = (refcount_count(&buf->b_hdr->b_refcnt)); mutex_exit(&buf->b_evict_lock); return (referenced); } #endif static void arc_write_ready(zio_t *zio) { arc_write_callback_t *callback = zio->io_private; arc_buf_t *buf = callback->awcb_buf; arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); callback->awcb_ready(zio, buf, callback->awcb_private); /* * If the IO is already in progress, then this is a re-write * attempt, so we need to thaw and re-compute the cksum. * It is the responsibility of the callback to handle the * accounting for any re-write attempt. */ if (HDR_IO_IN_PROGRESS(hdr)) { mutex_enter(&hdr->b_freeze_lock); if (hdr->b_freeze_cksum != NULL) { kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); hdr->b_freeze_cksum = NULL; } mutex_exit(&hdr->b_freeze_lock); } arc_cksum_compute(buf, B_FALSE); hdr->b_flags |= ARC_IO_IN_PROGRESS; } /* * The SPA calls this callback for each physical write that happens on behalf * of a logical write. See the comment in dbuf_write_physdone() for details. */ static void arc_write_physdone(zio_t *zio) { arc_write_callback_t *cb = zio->io_private; if (cb->awcb_physdone != NULL) cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); } static void arc_write_done(zio_t *zio) { arc_write_callback_t *callback = zio->io_private; arc_buf_t *buf = callback->awcb_buf; arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT(hdr->b_acb == NULL); if (zio->io_error == 0) { hdr->b_dva = *BP_IDENTITY(zio->io_bp); hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; } else { ASSERT(BUF_EMPTY(hdr)); } /* * If the block to be written was all-zero, we may have * compressed it away. In this case no write was performed * so there will be no dva/birth/checksum. The buffer must * therefore remain anonymous (and uncached). */ if (!BUF_EMPTY(hdr)) { arc_buf_hdr_t *exists; kmutex_t *hash_lock; ASSERT(zio->io_error == 0); arc_cksum_verify(buf); exists = buf_hash_insert(hdr, &hash_lock); if (exists) { /* * This can only happen if we overwrite for * sync-to-convergence, because we remove * buffers from the hash table when we arc_free(). */ if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) panic("bad overwrite, hdr=%p exists=%p", (void *)hdr, (void *)exists); ASSERT(refcount_is_zero(&exists->b_refcnt)); arc_change_state(arc_anon, exists, hash_lock); mutex_exit(hash_lock); arc_hdr_destroy(exists); exists = buf_hash_insert(hdr, &hash_lock); ASSERT3P(exists, ==, NULL); } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { /* nopwrite */ ASSERT(zio->io_prop.zp_nopwrite); if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) panic("bad nopwrite, hdr=%p exists=%p", (void *)hdr, (void *)exists); } else { /* Dedup */ ASSERT(hdr->b_datacnt == 1); ASSERT(hdr->b_state == arc_anon); ASSERT(BP_GET_DEDUP(zio->io_bp)); ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); } } hdr->b_flags &= ~ARC_IO_IN_PROGRESS; /* if it's not anon, we are doing a scrub */ if (!exists && hdr->b_state == arc_anon) arc_access(hdr, hash_lock); mutex_exit(hash_lock); } else { hdr->b_flags &= ~ARC_IO_IN_PROGRESS; } ASSERT(!refcount_is_zero(&hdr->b_refcnt)); callback->awcb_done(zio, buf, callback->awcb_private); kmem_free(callback, sizeof (arc_write_callback_t)); } zio_t * arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress, const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone, arc_done_func_t *done, void *private, zio_priority_t priority, int zio_flags, const zbookmark_t *zb) { arc_buf_hdr_t *hdr = buf->b_hdr; arc_write_callback_t *callback; zio_t *zio; ASSERT(ready != NULL); ASSERT(done != NULL); ASSERT(!HDR_IO_ERROR(hdr)); ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); ASSERT(hdr->b_acb == NULL); if (l2arc) hdr->b_flags |= ARC_L2CACHE; if (l2arc_compress) hdr->b_flags |= ARC_L2COMPRESS; callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_PUSHPAGE); callback->awcb_ready = ready; callback->awcb_physdone = physdone; callback->awcb_done = done; callback->awcb_private = private; callback->awcb_buf = buf; zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, arc_write_ready, arc_write_physdone, arc_write_done, callback, priority, zio_flags, zb); return (zio); } static int arc_memory_throttle(uint64_t reserve, uint64_t txg) { #ifdef _KERNEL if (zfs_arc_memory_throttle_disable) return (0); if (freemem <= physmem * arc_lotsfree_percent / 100) { ARCSTAT_INCR(arcstat_memory_throttle_count, 1); DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim); return (SET_ERROR(EAGAIN)); } #endif return (0); } void arc_tempreserve_clear(uint64_t reserve) { atomic_add_64(&arc_tempreserve, -reserve); ASSERT((int64_t)arc_tempreserve >= 0); } int arc_tempreserve_space(uint64_t reserve, uint64_t txg) { int error; uint64_t anon_size; if (reserve > arc_c/4 && !arc_no_grow) arc_c = MIN(arc_c_max, reserve * 4); /* * Throttle when the calculated memory footprint for the TXG * exceeds the target ARC size. */ if (reserve > arc_c) { DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); return (SET_ERROR(ERESTART)); } /* * Don't count loaned bufs as in flight dirty data to prevent long * network delays from blocking transactions that are ready to be * assigned to a txg. */ anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); /* * Writes will, almost always, require additional memory allocations * in order to compress/encrypt/etc the data. We therefore need to * make sure that there is sufficient available memory for this. */ error = arc_memory_throttle(reserve, txg); if (error != 0) return (error); /* * Throttle writes when the amount of dirty data in the cache * gets too large. We try to keep the cache less than half full * of dirty blocks so that our sync times don't grow too large. * Note: if two requests come in concurrently, we might let them * both succeed, when one of them should fail. Not a huge deal. */ if (reserve + arc_tempreserve + anon_size > arc_c / 2 && anon_size > arc_c / 4) { dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", arc_tempreserve>>10, arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, reserve>>10, arc_c>>10); DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); return (SET_ERROR(ERESTART)); } atomic_add_64(&arc_tempreserve, reserve); return (0); } static void arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, kstat_named_t *evict_data, kstat_named_t *evict_metadata) { size->value.ui64 = state->arcs_size; evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA]; evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA]; } static int arc_kstat_update(kstat_t *ksp, int rw) { arc_stats_t *as = ksp->ks_data; if (rw == KSTAT_WRITE) { return (SET_ERROR(EACCES)); } else { arc_kstat_update_state(arc_anon, &as->arcstat_anon_size, &as->arcstat_anon_evict_data, &as->arcstat_anon_evict_metadata); arc_kstat_update_state(arc_mru, &as->arcstat_mru_size, &as->arcstat_mru_evict_data, &as->arcstat_mru_evict_metadata); arc_kstat_update_state(arc_mru_ghost, &as->arcstat_mru_ghost_size, &as->arcstat_mru_ghost_evict_data, &as->arcstat_mru_ghost_evict_metadata); arc_kstat_update_state(arc_mfu, &as->arcstat_mfu_size, &as->arcstat_mfu_evict_data, &as->arcstat_mfu_evict_metadata); arc_kstat_update_state(arc_mfu_ghost, &as->arcstat_mfu_ghost_size, &as->arcstat_mfu_ghost_evict_data, &as->arcstat_mfu_ghost_evict_metadata); } return (0); } void arc_init(void) { mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); /* Convert seconds to clock ticks */ zfs_arc_min_prefetch_lifespan = 1 * hz; /* Start out with 1/8 of all memory */ arc_c = physmem * PAGESIZE / 8; #ifdef _KERNEL /* * On architectures where the physical memory can be larger * than the addressable space (intel in 32-bit mode), we may * need to limit the cache to 1/8 of VM size. */ arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); /* * Register a shrinker to support synchronous (direct) memory * reclaim from the arc. This is done to prevent kswapd from * swapping out pages when it is preferable to shrink the arc. */ spl_register_shrinker(&arc_shrinker); #endif /* set min cache to zero */ arc_c_min = 4<<20; /* set max to 1/2 of all memory */ arc_c_max = arc_c * 4; /* * Allow the tunables to override our calculations if they are * reasonable (ie. over 64MB) */ if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) arc_c_max = zfs_arc_max; if (zfs_arc_min > 0 && zfs_arc_min <= arc_c_max) arc_c_min = zfs_arc_min; arc_c = arc_c_max; arc_p = (arc_c >> 1); /* limit meta-data to 3/4 of the arc capacity */ arc_meta_limit = (3 * arc_c_max) / 4; arc_meta_max = 0; /* Allow the tunable to override if it is reasonable */ if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) arc_meta_limit = zfs_arc_meta_limit; /* if kmem_flags are set, lets try to use less memory */ if (kmem_debugging()) arc_c = arc_c / 2; if (arc_c < arc_c_min) arc_c = arc_c_min; arc_anon = &ARC_anon; arc_mru = &ARC_mru; arc_mru_ghost = &ARC_mru_ghost; arc_mfu = &ARC_mfu; arc_mfu_ghost = &ARC_mfu_ghost; arc_l2c_only = &ARC_l2c_only; arc_size = 0; mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); arc_anon->arcs_state = ARC_STATE_ANON; arc_mru->arcs_state = ARC_STATE_MRU; arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; arc_mfu->arcs_state = ARC_STATE_MFU; arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; buf_init(); arc_thread_exit = 0; list_create(&arc_prune_list, sizeof (arc_prune_t), offsetof(arc_prune_t, p_node)); arc_eviction_list = NULL; mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (arc_ksp != NULL) { arc_ksp->ks_data = &arc_stats; arc_ksp->ks_update = arc_kstat_update; kstat_install(arc_ksp); } (void) thread_create(NULL, 0, arc_adapt_thread, NULL, 0, &p0, TS_RUN, minclsyspri); arc_dead = FALSE; arc_warm = B_FALSE; /* * Calculate maximum amount of dirty data per pool. * * If it has been set by a module parameter, take that. * Otherwise, use a percentage of physical memory defined by * zfs_dirty_data_max_percent (default 10%) with a cap at * zfs_dirty_data_max_max (default 25% of physical memory). */ if (zfs_dirty_data_max_max == 0) zfs_dirty_data_max_max = physmem * PAGESIZE * zfs_dirty_data_max_max_percent / 100; if (zfs_dirty_data_max == 0) { zfs_dirty_data_max = physmem * PAGESIZE * zfs_dirty_data_max_percent / 100; zfs_dirty_data_max = MIN(zfs_dirty_data_max, zfs_dirty_data_max_max); } } void arc_fini(void) { arc_prune_t *p; mutex_enter(&arc_reclaim_thr_lock); #ifdef _KERNEL spl_unregister_shrinker(&arc_shrinker); #endif /* _KERNEL */ arc_thread_exit = 1; while (arc_thread_exit != 0) cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); mutex_exit(&arc_reclaim_thr_lock); arc_flush(NULL); arc_dead = TRUE; if (arc_ksp != NULL) { kstat_delete(arc_ksp); arc_ksp = NULL; } mutex_enter(&arc_prune_mtx); while ((p = list_head(&arc_prune_list)) != NULL) { list_remove(&arc_prune_list, p); refcount_remove(&p->p_refcnt, &arc_prune_list); refcount_destroy(&p->p_refcnt); kmem_free(p, sizeof (*p)); } mutex_exit(&arc_prune_mtx); list_destroy(&arc_prune_list); mutex_destroy(&arc_prune_mtx); mutex_destroy(&arc_eviction_mtx); mutex_destroy(&arc_reclaim_thr_lock); cv_destroy(&arc_reclaim_thr_cv); list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); mutex_destroy(&arc_anon->arcs_mtx); mutex_destroy(&arc_mru->arcs_mtx); mutex_destroy(&arc_mru_ghost->arcs_mtx); mutex_destroy(&arc_mfu->arcs_mtx); mutex_destroy(&arc_mfu_ghost->arcs_mtx); mutex_destroy(&arc_l2c_only->arcs_mtx); buf_fini(); ASSERT(arc_loaned_bytes == 0); } /* * Level 2 ARC * * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. * It uses dedicated storage devices to hold cached data, which are populated * using large infrequent writes. The main role of this cache is to boost * the performance of random read workloads. The intended L2ARC devices * include short-stroked disks, solid state disks, and other media with * substantially faster read latency than disk. * * +-----------------------+ * | ARC | * +-----------------------+ * | ^ ^ * | | | * l2arc_feed_thread() arc_read() * | | | * | l2arc read | * V | | * +---------------+ | * | L2ARC | | * +---------------+ | * | ^ | * l2arc_write() | | * | | | * V | | * +-------+ +-------+ * | vdev | | vdev | * | cache | | cache | * +-------+ +-------+ * +=========+ .-----. * : L2ARC : |-_____-| * : devices : | Disks | * +=========+ `-_____-' * * Read requests are satisfied from the following sources, in order: * * 1) ARC * 2) vdev cache of L2ARC devices * 3) L2ARC devices * 4) vdev cache of disks * 5) disks * * Some L2ARC device types exhibit extremely slow write performance. * To accommodate for this there are some significant differences between * the L2ARC and traditional cache design: * * 1. There is no eviction path from the ARC to the L2ARC. Evictions from * the ARC behave as usual, freeing buffers and placing headers on ghost * lists. The ARC does not send buffers to the L2ARC during eviction as * this would add inflated write latencies for all ARC memory pressure. * * 2. The L2ARC attempts to cache data from the ARC before it is evicted. * It does this by periodically scanning buffers from the eviction-end of * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are * not already there. It scans until a headroom of buffers is satisfied, * which itself is a buffer for ARC eviction. If a compressible buffer is * found during scanning and selected for writing to an L2ARC device, we * temporarily boost scanning headroom during the next scan cycle to make * sure we adapt to compression effects (which might significantly reduce * the data volume we write to L2ARC). The thread that does this is * l2arc_feed_thread(), illustrated below; example sizes are included to * provide a better sense of ratio than this diagram: * * head --> tail * +---------------------+----------+ * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC * +---------------------+----------+ | o L2ARC eligible * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer * +---------------------+----------+ | * 15.9 Gbytes ^ 32 Mbytes | * headroom | * l2arc_feed_thread() * | * l2arc write hand <--[oooo]--' * | 8 Mbyte * | write max * V * +==============================+ * L2ARC dev |####|#|###|###| |####| ... | * +==============================+ * 32 Gbytes * * 3. If an ARC buffer is copied to the L2ARC but then hit instead of * evicted, then the L2ARC has cached a buffer much sooner than it probably * needed to, potentially wasting L2ARC device bandwidth and storage. It is * safe to say that this is an uncommon case, since buffers at the end of * the ARC lists have moved there due to inactivity. * * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, * then the L2ARC simply misses copying some buffers. This serves as a * pressure valve to prevent heavy read workloads from both stalling the ARC * with waits and clogging the L2ARC with writes. This also helps prevent * the potential for the L2ARC to churn if it attempts to cache content too * quickly, such as during backups of the entire pool. * * 5. After system boot and before the ARC has filled main memory, there are * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru * lists can remain mostly static. Instead of searching from tail of these * lists as pictured, the l2arc_feed_thread() will search from the list heads * for eligible buffers, greatly increasing its chance of finding them. * * The L2ARC device write speed is also boosted during this time so that * the L2ARC warms up faster. Since there have been no ARC evictions yet, * there are no L2ARC reads, and no fear of degrading read performance * through increased writes. * * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that * the vdev queue can aggregate them into larger and fewer writes. Each * device is written to in a rotor fashion, sweeping writes through * available space then repeating. * * 7. The L2ARC does not store dirty content. It never needs to flush * write buffers back to disk based storage. * * 8. If an ARC buffer is written (and dirtied) which also exists in the * L2ARC, the now stale L2ARC buffer is immediately dropped. * * The performance of the L2ARC can be tweaked by a number of tunables, which * may be necessary for different workloads: * * l2arc_write_max max write bytes per interval * l2arc_write_boost extra write bytes during device warmup * l2arc_noprefetch skip caching prefetched buffers * l2arc_nocompress skip compressing buffers * l2arc_headroom number of max device writes to precache * l2arc_headroom_boost when we find compressed buffers during ARC * scanning, we multiply headroom by this * percentage factor for the next scan cycle, * since more compressed buffers are likely to * be present * l2arc_feed_secs seconds between L2ARC writing * * Tunables may be removed or added as future performance improvements are * integrated, and also may become zpool properties. * * There are three key functions that control how the L2ARC warms up: * * l2arc_write_eligible() check if a buffer is eligible to cache * l2arc_write_size() calculate how much to write * l2arc_write_interval() calculate sleep delay between writes * * These three functions determine what to write, how much, and how quickly * to send writes. */ static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) { /* * A buffer is *not* eligible for the L2ARC if it: * 1. belongs to a different spa. * 2. is already cached on the L2ARC. * 3. has an I/O in progress (it may be an incomplete read). * 4. is flagged not eligible (zfs property). */ if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) return (B_FALSE); return (B_TRUE); } static uint64_t l2arc_write_size(void) { uint64_t size; /* * Make sure our globals have meaningful values in case the user * altered them. */ size = l2arc_write_max; if (size == 0) { cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " "be greater than zero, resetting it to the default (%d)", L2ARC_WRITE_SIZE); size = l2arc_write_max = L2ARC_WRITE_SIZE; } if (arc_warm == B_FALSE) size += l2arc_write_boost; return (size); } static clock_t l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) { clock_t interval, next, now; /* * If the ARC lists are busy, increase our write rate; if the * lists are stale, idle back. This is achieved by checking * how much we previously wrote - if it was more than half of * what we wanted, schedule the next write much sooner. */ if (l2arc_feed_again && wrote > (wanted / 2)) interval = (hz * l2arc_feed_min_ms) / 1000; else interval = hz * l2arc_feed_secs; now = ddi_get_lbolt(); next = MAX(now, MIN(now + interval, began + interval)); return (next); } static void l2arc_hdr_stat_add(void) { ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE); ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); } static void l2arc_hdr_stat_remove(void) { ARCSTAT_INCR(arcstat_l2_hdr_size, -HDR_SIZE); ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); } /* * Cycle through L2ARC devices. This is how L2ARC load balances. * If a device is returned, this also returns holding the spa config lock. */ static l2arc_dev_t * l2arc_dev_get_next(void) { l2arc_dev_t *first, *next = NULL; /* * Lock out the removal of spas (spa_namespace_lock), then removal * of cache devices (l2arc_dev_mtx). Once a device has been selected, * both locks will be dropped and a spa config lock held instead. */ mutex_enter(&spa_namespace_lock); mutex_enter(&l2arc_dev_mtx); /* if there are no vdevs, there is nothing to do */ if (l2arc_ndev == 0) goto out; first = NULL; next = l2arc_dev_last; do { /* loop around the list looking for a non-faulted vdev */ if (next == NULL) { next = list_head(l2arc_dev_list); } else { next = list_next(l2arc_dev_list, next); if (next == NULL) next = list_head(l2arc_dev_list); } /* if we have come back to the start, bail out */ if (first == NULL) first = next; else if (next == first) break; } while (vdev_is_dead(next->l2ad_vdev)); /* if we were unable to find any usable vdevs, return NULL */ if (vdev_is_dead(next->l2ad_vdev)) next = NULL; l2arc_dev_last = next; out: mutex_exit(&l2arc_dev_mtx); /* * Grab the config lock to prevent the 'next' device from being * removed while we are writing to it. */ if (next != NULL) spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); mutex_exit(&spa_namespace_lock); return (next); } /* * Free buffers that were tagged for destruction. */ static void l2arc_do_free_on_write(void) { list_t *buflist; l2arc_data_free_t *df, *df_prev; mutex_enter(&l2arc_free_on_write_mtx); buflist = l2arc_free_on_write; for (df = list_tail(buflist); df; df = df_prev) { df_prev = list_prev(buflist, df); ASSERT(df->l2df_data != NULL); ASSERT(df->l2df_func != NULL); df->l2df_func(df->l2df_data, df->l2df_size); list_remove(buflist, df); kmem_free(df, sizeof (l2arc_data_free_t)); } mutex_exit(&l2arc_free_on_write_mtx); } /* * A write to a cache device has completed. Update all headers to allow * reads from these buffers to begin. */ static void l2arc_write_done(zio_t *zio) { l2arc_write_callback_t *cb; l2arc_dev_t *dev; list_t *buflist; arc_buf_hdr_t *head, *ab, *ab_prev; l2arc_buf_hdr_t *abl2; kmutex_t *hash_lock; cb = zio->io_private; ASSERT(cb != NULL); dev = cb->l2wcb_dev; ASSERT(dev != NULL); head = cb->l2wcb_head; ASSERT(head != NULL); buflist = dev->l2ad_buflist; ASSERT(buflist != NULL); DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, l2arc_write_callback_t *, cb); if (zio->io_error != 0) ARCSTAT_BUMP(arcstat_l2_writes_error); mutex_enter(&l2arc_buflist_mtx); /* * All writes completed, or an error was hit. */ for (ab = list_prev(buflist, head); ab; ab = ab_prev) { ab_prev = list_prev(buflist, ab); abl2 = ab->b_l2hdr; /* * Release the temporary compressed buffer as soon as possible. */ if (abl2->b_compress != ZIO_COMPRESS_OFF) l2arc_release_cdata_buf(ab); hash_lock = HDR_LOCK(ab); if (!mutex_tryenter(hash_lock)) { /* * This buffer misses out. It may be in a stage * of eviction. Its ARC_L2_WRITING flag will be * left set, denying reads to this buffer. */ ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); continue; } if (zio->io_error != 0) { /* * Error - drop L2ARC entry. */ list_remove(buflist, ab); ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); ab->b_l2hdr = NULL; kmem_cache_free(l2arc_hdr_cache, abl2); arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS); ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); } /* * Allow ARC to begin reads to this L2ARC entry. */ ab->b_flags &= ~ARC_L2_WRITING; mutex_exit(hash_lock); } atomic_inc_64(&l2arc_writes_done); list_remove(buflist, head); kmem_cache_free(hdr_cache, head); mutex_exit(&l2arc_buflist_mtx); l2arc_do_free_on_write(); kmem_free(cb, sizeof (l2arc_write_callback_t)); } /* * A read to a cache device completed. Validate buffer contents before * handing over to the regular ARC routines. */ static void l2arc_read_done(zio_t *zio) { l2arc_read_callback_t *cb; arc_buf_hdr_t *hdr; arc_buf_t *buf; kmutex_t *hash_lock; int equal; ASSERT(zio->io_vd != NULL); ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); cb = zio->io_private; ASSERT(cb != NULL); buf = cb->l2rcb_buf; ASSERT(buf != NULL); hash_lock = HDR_LOCK(buf->b_hdr); mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); /* * If the buffer was compressed, decompress it first. */ if (cb->l2rcb_compress != ZIO_COMPRESS_OFF) l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress); ASSERT(zio->io_data != NULL); /* * Check this survived the L2ARC journey. */ equal = arc_cksum_equal(buf); if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { mutex_exit(hash_lock); zio->io_private = buf; zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ arc_read_done(zio); } else { mutex_exit(hash_lock); /* * Buffer didn't survive caching. Increment stats and * reissue to the original storage device. */ if (zio->io_error != 0) { ARCSTAT_BUMP(arcstat_l2_io_error); } else { zio->io_error = SET_ERROR(EIO); } if (!equal) ARCSTAT_BUMP(arcstat_l2_cksum_bad); /* * If there's no waiter, issue an async i/o to the primary * storage now. If there *is* a waiter, the caller must * issue the i/o in a context where it's OK to block. */ if (zio->io_waiter == NULL) { zio_t *pio = zio_unique_parent(zio); ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, buf->b_data, zio->io_size, arc_read_done, buf, zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); } } kmem_free(cb, sizeof (l2arc_read_callback_t)); } /* * This is the list priority from which the L2ARC will search for pages to * cache. This is used within loops (0..3) to cycle through lists in the * desired order. This order can have a significant effect on cache * performance. * * Currently the metadata lists are hit first, MFU then MRU, followed by * the data lists. This function returns a locked list, and also returns * the lock pointer. */ static list_t * l2arc_list_locked(int list_num, kmutex_t **lock) { list_t *list = NULL; ASSERT(list_num >= 0 && list_num <= 3); switch (list_num) { case 0: list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; *lock = &arc_mfu->arcs_mtx; break; case 1: list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; *lock = &arc_mru->arcs_mtx; break; case 2: list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; *lock = &arc_mfu->arcs_mtx; break; case 3: list = &arc_mru->arcs_list[ARC_BUFC_DATA]; *lock = &arc_mru->arcs_mtx; break; } ASSERT(!(MUTEX_HELD(*lock))); mutex_enter(*lock); return (list); } /* * Evict buffers from the device write hand to the distance specified in * bytes. This distance may span populated buffers, it may span nothing. * This is clearing a region on the L2ARC device ready for writing. * If the 'all' boolean is set, every buffer is evicted. */ static void l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) { list_t *buflist; l2arc_buf_hdr_t *abl2; arc_buf_hdr_t *ab, *ab_prev; kmutex_t *hash_lock; uint64_t taddr; buflist = dev->l2ad_buflist; if (buflist == NULL) return; if (!all && dev->l2ad_first) { /* * This is the first sweep through the device. There is * nothing to evict. */ return; } if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { /* * When nearing the end of the device, evict to the end * before the device write hand jumps to the start. */ taddr = dev->l2ad_end; } else { taddr = dev->l2ad_hand + distance; } DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, uint64_t, taddr, boolean_t, all); top: mutex_enter(&l2arc_buflist_mtx); for (ab = list_tail(buflist); ab; ab = ab_prev) { ab_prev = list_prev(buflist, ab); hash_lock = HDR_LOCK(ab); if (!mutex_tryenter(hash_lock)) { /* * Missed the hash lock. Retry. */ ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); mutex_exit(&l2arc_buflist_mtx); mutex_enter(hash_lock); mutex_exit(hash_lock); goto top; } if (HDR_L2_WRITE_HEAD(ab)) { /* * We hit a write head node. Leave it for * l2arc_write_done(). */ list_remove(buflist, ab); mutex_exit(hash_lock); continue; } if (!all && ab->b_l2hdr != NULL && (ab->b_l2hdr->b_daddr > taddr || ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { /* * We've evicted to the target address, * or the end of the device. */ mutex_exit(hash_lock); break; } if (HDR_FREE_IN_PROGRESS(ab)) { /* * Already on the path to destruction. */ mutex_exit(hash_lock); continue; } if (ab->b_state == arc_l2c_only) { ASSERT(!HDR_L2_READING(ab)); /* * This doesn't exist in the ARC. Destroy. * arc_hdr_destroy() will call list_remove() * and decrement arcstat_l2_size. */ arc_change_state(arc_anon, ab, hash_lock); arc_hdr_destroy(ab); } else { /* * Invalidate issued or about to be issued * reads, since we may be about to write * over this location. */ if (HDR_L2_READING(ab)) { ARCSTAT_BUMP(arcstat_l2_evict_reading); ab->b_flags |= ARC_L2_EVICTED; } /* * Tell ARC this no longer exists in L2ARC. */ if (ab->b_l2hdr != NULL) { abl2 = ab->b_l2hdr; ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); ab->b_l2hdr = NULL; kmem_cache_free(l2arc_hdr_cache, abl2); arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS); ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); } list_remove(buflist, ab); /* * This may have been leftover after a * failed write. */ ab->b_flags &= ~ARC_L2_WRITING; } mutex_exit(hash_lock); } mutex_exit(&l2arc_buflist_mtx); vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0); dev->l2ad_evict = taddr; } /* * Find and write ARC buffers to the L2ARC device. * * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid * for reading until they have completed writing. * The headroom_boost is an in-out parameter used to maintain headroom boost * state between calls to this function. * * Returns the number of bytes actually written (which may be smaller than * the delta by which the device hand has changed due to alignment). */ static uint64_t l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz, boolean_t *headroom_boost) { arc_buf_hdr_t *ab, *ab_prev, *head; list_t *list; uint64_t write_asize, write_psize, write_sz, headroom, buf_compress_minsz; void *buf_data; kmutex_t *list_lock = NULL; boolean_t full; l2arc_write_callback_t *cb; zio_t *pio, *wzio; uint64_t guid = spa_load_guid(spa); int try; const boolean_t do_headroom_boost = *headroom_boost; ASSERT(dev->l2ad_vdev != NULL); /* Lower the flag now, we might want to raise it again later. */ *headroom_boost = B_FALSE; pio = NULL; write_sz = write_asize = write_psize = 0; full = B_FALSE; head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); head->b_flags |= ARC_L2_WRITE_HEAD; /* * We will want to try to compress buffers that are at least 2x the * device sector size. */ buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift; /* * Copy buffers for L2ARC writing. */ mutex_enter(&l2arc_buflist_mtx); for (try = 0; try <= 3; try++) { uint64_t passed_sz = 0; list = l2arc_list_locked(try, &list_lock); /* * L2ARC fast warmup. * * Until the ARC is warm and starts to evict, read from the * head of the ARC lists rather than the tail. */ if (arc_warm == B_FALSE) ab = list_head(list); else ab = list_tail(list); headroom = target_sz * l2arc_headroom; if (do_headroom_boost) headroom = (headroom * l2arc_headroom_boost) / 100; for (; ab; ab = ab_prev) { l2arc_buf_hdr_t *l2hdr; kmutex_t *hash_lock; uint64_t buf_sz; if (arc_warm == B_FALSE) ab_prev = list_next(list, ab); else ab_prev = list_prev(list, ab); hash_lock = HDR_LOCK(ab); if (!mutex_tryenter(hash_lock)) { /* * Skip this buffer rather than waiting. */ continue; } passed_sz += ab->b_size; if (passed_sz > headroom) { /* * Searched too far. */ mutex_exit(hash_lock); break; } if (!l2arc_write_eligible(guid, ab)) { mutex_exit(hash_lock); continue; } if ((write_sz + ab->b_size) > target_sz) { full = B_TRUE; mutex_exit(hash_lock); break; } if (pio == NULL) { /* * Insert a dummy header on the buflist so * l2arc_write_done() can find where the * write buffers begin without searching. */ list_insert_head(dev->l2ad_buflist, head); cb = kmem_alloc(sizeof (l2arc_write_callback_t), KM_PUSHPAGE); cb->l2wcb_dev = dev; cb->l2wcb_head = head; pio = zio_root(spa, l2arc_write_done, cb, ZIO_FLAG_CANFAIL); } /* * Create and add a new L2ARC header. */ l2hdr = kmem_cache_alloc(l2arc_hdr_cache, KM_PUSHPAGE); l2hdr->b_dev = dev; l2hdr->b_daddr = 0; arc_space_consume(L2HDR_SIZE, ARC_SPACE_L2HDRS); ab->b_flags |= ARC_L2_WRITING; /* * Temporarily stash the data buffer in b_tmp_cdata. * The subsequent write step will pick it up from * there. This is because can't access ab->b_buf * without holding the hash_lock, which we in turn * can't access without holding the ARC list locks * (which we want to avoid during compression/writing) */ l2hdr->b_compress = ZIO_COMPRESS_OFF; l2hdr->b_asize = ab->b_size; l2hdr->b_tmp_cdata = ab->b_buf->b_data; l2hdr->b_hits = 0; buf_sz = ab->b_size; ab->b_l2hdr = l2hdr; list_insert_head(dev->l2ad_buflist, ab); /* * Compute and store the buffer cksum before * writing. On debug the cksum is verified first. */ arc_cksum_verify(ab->b_buf); arc_cksum_compute(ab->b_buf, B_TRUE); mutex_exit(hash_lock); write_sz += buf_sz; } mutex_exit(list_lock); if (full == B_TRUE) break; } /* No buffers selected for writing? */ if (pio == NULL) { ASSERT0(write_sz); mutex_exit(&l2arc_buflist_mtx); kmem_cache_free(hdr_cache, head); return (0); } /* * Now start writing the buffers. We're starting at the write head * and work backwards, retracing the course of the buffer selector * loop above. */ for (ab = list_prev(dev->l2ad_buflist, head); ab; ab = list_prev(dev->l2ad_buflist, ab)) { l2arc_buf_hdr_t *l2hdr; uint64_t buf_sz; /* * We shouldn't need to lock the buffer here, since we flagged * it as ARC_L2_WRITING in the previous step, but we must take * care to only access its L2 cache parameters. In particular, * ab->b_buf may be invalid by now due to ARC eviction. */ l2hdr = ab->b_l2hdr; l2hdr->b_daddr = dev->l2ad_hand; if (!l2arc_nocompress && (ab->b_flags & ARC_L2COMPRESS) && l2hdr->b_asize >= buf_compress_minsz) { if (l2arc_compress_buf(l2hdr)) { /* * If compression succeeded, enable headroom * boost on the next scan cycle. */ *headroom_boost = B_TRUE; } } /* * Pick up the buffer data we had previously stashed away * (and now potentially also compressed). */ buf_data = l2hdr->b_tmp_cdata; buf_sz = l2hdr->b_asize; /* Compression may have squashed the buffer to zero length. */ if (buf_sz != 0) { uint64_t buf_p_sz; wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); (void) zio_nowait(wzio); write_asize += buf_sz; /* * Keep the clock hand suitably device-aligned. */ buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); write_psize += buf_p_sz; dev->l2ad_hand += buf_p_sz; } } mutex_exit(&l2arc_buflist_mtx); ASSERT3U(write_asize, <=, target_sz); ARCSTAT_BUMP(arcstat_l2_writes_sent); ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); ARCSTAT_INCR(arcstat_l2_size, write_sz); ARCSTAT_INCR(arcstat_l2_asize, write_asize); vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0); /* * Bump device hand to the device start if it is approaching the end. * l2arc_evict() will already have evicted ahead for this case. */ if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { vdev_space_update(dev->l2ad_vdev, dev->l2ad_end - dev->l2ad_hand, 0, 0); dev->l2ad_hand = dev->l2ad_start; dev->l2ad_evict = dev->l2ad_start; dev->l2ad_first = B_FALSE; } dev->l2ad_writing = B_TRUE; (void) zio_wait(pio); dev->l2ad_writing = B_FALSE; return (write_asize); } /* * Compresses an L2ARC buffer. * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its * size in l2hdr->b_asize. This routine tries to compress the data and * depending on the compression result there are three possible outcomes: * *) The buffer was incompressible. The original l2hdr contents were left * untouched and are ready for writing to an L2 device. * *) The buffer was all-zeros, so there is no need to write it to an L2 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY. * *) Compression succeeded and b_tmp_cdata was replaced with a temporary * data buffer which holds the compressed data to be written, and b_asize * tells us how much data there is. b_compress is set to the appropriate * compression algorithm. Once writing is done, invoke * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer. * * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the * buffer was incompressible). */ static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr) { void *cdata; size_t csize, len; ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF); ASSERT(l2hdr->b_tmp_cdata != NULL); len = l2hdr->b_asize; cdata = zio_data_buf_alloc(len); csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata, cdata, l2hdr->b_asize); if (csize == 0) { /* zero block, indicate that there's nothing to write */ zio_data_buf_free(cdata, len); l2hdr->b_compress = ZIO_COMPRESS_EMPTY; l2hdr->b_asize = 0; l2hdr->b_tmp_cdata = NULL; ARCSTAT_BUMP(arcstat_l2_compress_zeros); return (B_TRUE); } else if (csize > 0 && csize < len) { /* * Compression succeeded, we'll keep the cdata around for * writing and release it afterwards. */ l2hdr->b_compress = ZIO_COMPRESS_LZ4; l2hdr->b_asize = csize; l2hdr->b_tmp_cdata = cdata; ARCSTAT_BUMP(arcstat_l2_compress_successes); return (B_TRUE); } else { /* * Compression failed, release the compressed buffer. * l2hdr will be left unmodified. */ zio_data_buf_free(cdata, len); ARCSTAT_BUMP(arcstat_l2_compress_failures); return (B_FALSE); } } /* * Decompresses a zio read back from an l2arc device. On success, the * underlying zio's io_data buffer is overwritten by the uncompressed * version. On decompression error (corrupt compressed stream), the * zio->io_error value is set to signal an I/O error. * * Please note that the compressed data stream is not checksummed, so * if the underlying device is experiencing data corruption, we may feed * corrupt data to the decompressor, so the decompressor needs to be * able to handle this situation (LZ4 does). */ static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c) { uint64_t csize; void *cdata; ASSERT(L2ARC_IS_VALID_COMPRESS(c)); if (zio->io_error != 0) { /* * An io error has occured, just restore the original io * size in preparation for a main pool read. */ zio->io_orig_size = zio->io_size = hdr->b_size; return; } if (c == ZIO_COMPRESS_EMPTY) { /* * An empty buffer results in a null zio, which means we * need to fill its io_data after we're done restoring the * buffer's contents. */ ASSERT(hdr->b_buf != NULL); bzero(hdr->b_buf->b_data, hdr->b_size); zio->io_data = zio->io_orig_data = hdr->b_buf->b_data; } else { ASSERT(zio->io_data != NULL); /* * We copy the compressed data from the start of the arc buffer * (the zio_read will have pulled in only what we need, the * rest is garbage which we will overwrite at decompression) * and then decompress back to the ARC data buffer. This way we * can minimize copying by simply decompressing back over the * original compressed data (rather than decompressing to an * aux buffer and then copying back the uncompressed buffer, * which is likely to be much larger). */ csize = zio->io_size; cdata = zio_data_buf_alloc(csize); bcopy(zio->io_data, cdata, csize); if (zio_decompress_data(c, cdata, zio->io_data, csize, hdr->b_size) != 0) zio->io_error = SET_ERROR(EIO); zio_data_buf_free(cdata, csize); } /* Restore the expected uncompressed IO size. */ zio->io_orig_size = zio->io_size = hdr->b_size; } /* * Releases the temporary b_tmp_cdata buffer in an l2arc header structure. * This buffer serves as a temporary holder of compressed data while * the buffer entry is being written to an l2arc device. Once that is * done, we can dispose of it. */ static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab) { l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr; if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) { /* * If the data was compressed, then we've allocated a * temporary buffer for it, so now we need to release it. */ ASSERT(l2hdr->b_tmp_cdata != NULL); zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size); } l2hdr->b_tmp_cdata = NULL; } /* * This thread feeds the L2ARC at regular intervals. This is the beating * heart of the L2ARC. */ static void l2arc_feed_thread(void) { callb_cpr_t cpr; l2arc_dev_t *dev; spa_t *spa; uint64_t size, wrote; clock_t begin, next = ddi_get_lbolt(); boolean_t headroom_boost = B_FALSE; CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); mutex_enter(&l2arc_feed_thr_lock); while (l2arc_thread_exit == 0) { CALLB_CPR_SAFE_BEGIN(&cpr); (void) cv_timedwait_interruptible(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, next); CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); next = ddi_get_lbolt() + hz; /* * Quick check for L2ARC devices. */ mutex_enter(&l2arc_dev_mtx); if (l2arc_ndev == 0) { mutex_exit(&l2arc_dev_mtx); continue; } mutex_exit(&l2arc_dev_mtx); begin = ddi_get_lbolt(); /* * This selects the next l2arc device to write to, and in * doing so the next spa to feed from: dev->l2ad_spa. This * will return NULL if there are now no l2arc devices or if * they are all faulted. * * If a device is returned, its spa's config lock is also * held to prevent device removal. l2arc_dev_get_next() * will grab and release l2arc_dev_mtx. */ if ((dev = l2arc_dev_get_next()) == NULL) continue; spa = dev->l2ad_spa; ASSERT(spa != NULL); /* * If the pool is read-only then force the feed thread to * sleep a little longer. */ if (!spa_writeable(spa)) { next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; spa_config_exit(spa, SCL_L2ARC, dev); continue; } /* * Avoid contributing to memory pressure. */ if (arc_no_grow) { ARCSTAT_BUMP(arcstat_l2_abort_lowmem); spa_config_exit(spa, SCL_L2ARC, dev); continue; } ARCSTAT_BUMP(arcstat_l2_feeds); size = l2arc_write_size(); /* * Evict L2ARC buffers that will be overwritten. */ l2arc_evict(dev, size, B_FALSE); /* * Write ARC buffers. */ wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost); /* * Calculate interval between writes. */ next = l2arc_write_interval(begin, size, wrote); spa_config_exit(spa, SCL_L2ARC, dev); } l2arc_thread_exit = 0; cv_broadcast(&l2arc_feed_thr_cv); CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ thread_exit(); } boolean_t l2arc_vdev_present(vdev_t *vd) { l2arc_dev_t *dev; mutex_enter(&l2arc_dev_mtx); for (dev = list_head(l2arc_dev_list); dev != NULL; dev = list_next(l2arc_dev_list, dev)) { if (dev->l2ad_vdev == vd) break; } mutex_exit(&l2arc_dev_mtx); return (dev != NULL); } /* * Add a vdev for use by the L2ARC. By this point the spa has already * validated the vdev and opened it. */ void l2arc_add_vdev(spa_t *spa, vdev_t *vd) { l2arc_dev_t *adddev; ASSERT(!l2arc_vdev_present(vd)); /* * Create a new l2arc device entry. */ adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); adddev->l2ad_spa = spa; adddev->l2ad_vdev = vd; adddev->l2ad_start = VDEV_LABEL_START_SIZE; adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); adddev->l2ad_hand = adddev->l2ad_start; adddev->l2ad_evict = adddev->l2ad_start; adddev->l2ad_first = B_TRUE; adddev->l2ad_writing = B_FALSE; list_link_init(&adddev->l2ad_node); /* * This is a list of all ARC buffers that are still valid on the * device. */ adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_l2node)); vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); /* * Add device to global list */ mutex_enter(&l2arc_dev_mtx); list_insert_head(l2arc_dev_list, adddev); atomic_inc_64(&l2arc_ndev); mutex_exit(&l2arc_dev_mtx); } /* * Remove a vdev from the L2ARC. */ void l2arc_remove_vdev(vdev_t *vd) { l2arc_dev_t *dev, *nextdev, *remdev = NULL; /* * Find the device by vdev */ mutex_enter(&l2arc_dev_mtx); for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { nextdev = list_next(l2arc_dev_list, dev); if (vd == dev->l2ad_vdev) { remdev = dev; break; } } ASSERT(remdev != NULL); /* * Remove device from global list */ list_remove(l2arc_dev_list, remdev); l2arc_dev_last = NULL; /* may have been invalidated */ atomic_dec_64(&l2arc_ndev); mutex_exit(&l2arc_dev_mtx); /* * Clear all buflists and ARC references. L2ARC device flush. */ l2arc_evict(remdev, 0, B_TRUE); list_destroy(remdev->l2ad_buflist); kmem_free(remdev->l2ad_buflist, sizeof (list_t)); kmem_free(remdev, sizeof (l2arc_dev_t)); } void l2arc_init(void) { l2arc_thread_exit = 0; l2arc_ndev = 0; l2arc_writes_sent = 0; l2arc_writes_done = 0; mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); l2arc_dev_list = &L2ARC_dev_list; l2arc_free_on_write = &L2ARC_free_on_write; list_create(l2arc_dev_list, sizeof (l2arc_dev_t), offsetof(l2arc_dev_t, l2ad_node)); list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), offsetof(l2arc_data_free_t, l2df_list_node)); } void l2arc_fini(void) { /* * This is called from dmu_fini(), which is called from spa_fini(); * Because of this, we can assume that all l2arc devices have * already been removed when the pools themselves were removed. */ l2arc_do_free_on_write(); mutex_destroy(&l2arc_feed_thr_lock); cv_destroy(&l2arc_feed_thr_cv); mutex_destroy(&l2arc_dev_mtx); mutex_destroy(&l2arc_buflist_mtx); mutex_destroy(&l2arc_free_on_write_mtx); list_destroy(l2arc_dev_list); list_destroy(l2arc_free_on_write); } void l2arc_start(void) { if (!(spa_mode_global & FWRITE)) return; (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, TS_RUN, minclsyspri); } void l2arc_stop(void) { if (!(spa_mode_global & FWRITE)) return; mutex_enter(&l2arc_feed_thr_lock); cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ l2arc_thread_exit = 1; while (l2arc_thread_exit != 0) cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); mutex_exit(&l2arc_feed_thr_lock); } #if defined(_KERNEL) && defined(HAVE_SPL) EXPORT_SYMBOL(arc_read); EXPORT_SYMBOL(arc_buf_remove_ref); EXPORT_SYMBOL(arc_buf_info); EXPORT_SYMBOL(arc_getbuf_func); EXPORT_SYMBOL(arc_add_prune_callback); EXPORT_SYMBOL(arc_remove_prune_callback); module_param(zfs_arc_min, ulong, 0644); MODULE_PARM_DESC(zfs_arc_min, "Min arc size"); module_param(zfs_arc_max, ulong, 0644); MODULE_PARM_DESC(zfs_arc_max, "Max arc size"); module_param(zfs_arc_meta_limit, ulong, 0644); MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size"); module_param(zfs_arc_meta_prune, int, 0644); MODULE_PARM_DESC(zfs_arc_meta_prune, "Bytes of meta data to prune"); module_param(zfs_arc_grow_retry, int, 0644); MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size"); module_param(zfs_arc_p_aggressive_disable, int, 0644); MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow"); module_param(zfs_arc_p_dampener_disable, int, 0644); MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener"); module_param(zfs_arc_shrink_shift, int, 0644); MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)"); module_param(zfs_disable_dup_eviction, int, 0644); MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction"); module_param(zfs_arc_memory_throttle_disable, int, 0644); MODULE_PARM_DESC(zfs_arc_memory_throttle_disable, "disable memory throttle"); module_param(zfs_arc_min_prefetch_lifespan, int, 0644); MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block"); module_param(l2arc_write_max, ulong, 0644); MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval"); module_param(l2arc_write_boost, ulong, 0644); MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup"); module_param(l2arc_headroom, ulong, 0644); MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache"); module_param(l2arc_headroom_boost, ulong, 0644); MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier"); module_param(l2arc_feed_secs, ulong, 0644); MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing"); module_param(l2arc_feed_min_ms, ulong, 0644); MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds"); module_param(l2arc_noprefetch, int, 0644); MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers"); module_param(l2arc_nocompress, int, 0644); MODULE_PARM_DESC(l2arc_nocompress, "Skip compressing L2ARC buffers"); module_param(l2arc_feed_again, int, 0644); MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup"); module_param(l2arc_norw, int, 0644); MODULE_PARM_DESC(l2arc_norw, "No reads during writes"); #endif