/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_comutil.h" enum { TOKEN_RO, TOKEN_RW, TOKEN_SETUID, TOKEN_NOSETUID, TOKEN_EXEC, TOKEN_NOEXEC, TOKEN_DEVICES, TOKEN_NODEVICES, TOKEN_DIRXATTR, TOKEN_SAXATTR, TOKEN_XATTR, TOKEN_NOXATTR, TOKEN_ATIME, TOKEN_NOATIME, TOKEN_RELATIME, TOKEN_NORELATIME, TOKEN_NBMAND, TOKEN_NONBMAND, TOKEN_MNTPOINT, TOKEN_LAST, }; static const match_table_t zpl_tokens = { { TOKEN_RO, MNTOPT_RO }, { TOKEN_RW, MNTOPT_RW }, { TOKEN_SETUID, MNTOPT_SETUID }, { TOKEN_NOSETUID, MNTOPT_NOSETUID }, { TOKEN_EXEC, MNTOPT_EXEC }, { TOKEN_NOEXEC, MNTOPT_NOEXEC }, { TOKEN_DEVICES, MNTOPT_DEVICES }, { TOKEN_NODEVICES, MNTOPT_NODEVICES }, { TOKEN_DIRXATTR, MNTOPT_DIRXATTR }, { TOKEN_SAXATTR, MNTOPT_SAXATTR }, { TOKEN_XATTR, MNTOPT_XATTR }, { TOKEN_NOXATTR, MNTOPT_NOXATTR }, { TOKEN_ATIME, MNTOPT_ATIME }, { TOKEN_NOATIME, MNTOPT_NOATIME }, { TOKEN_RELATIME, MNTOPT_RELATIME }, { TOKEN_NORELATIME, MNTOPT_NORELATIME }, { TOKEN_NBMAND, MNTOPT_NBMAND }, { TOKEN_NONBMAND, MNTOPT_NONBMAND }, { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" }, { TOKEN_LAST, NULL }, }; static void zfsvfs_vfs_free(vfs_t *vfsp) { if (vfsp != NULL) { if (vfsp->vfs_mntpoint != NULL) kmem_strfree(vfsp->vfs_mntpoint); kmem_free(vfsp, sizeof (vfs_t)); } } static int zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp) { switch (token) { case TOKEN_RO: vfsp->vfs_readonly = B_TRUE; vfsp->vfs_do_readonly = B_TRUE; break; case TOKEN_RW: vfsp->vfs_readonly = B_FALSE; vfsp->vfs_do_readonly = B_TRUE; break; case TOKEN_SETUID: vfsp->vfs_setuid = B_TRUE; vfsp->vfs_do_setuid = B_TRUE; break; case TOKEN_NOSETUID: vfsp->vfs_setuid = B_FALSE; vfsp->vfs_do_setuid = B_TRUE; break; case TOKEN_EXEC: vfsp->vfs_exec = B_TRUE; vfsp->vfs_do_exec = B_TRUE; break; case TOKEN_NOEXEC: vfsp->vfs_exec = B_FALSE; vfsp->vfs_do_exec = B_TRUE; break; case TOKEN_DEVICES: vfsp->vfs_devices = B_TRUE; vfsp->vfs_do_devices = B_TRUE; break; case TOKEN_NODEVICES: vfsp->vfs_devices = B_FALSE; vfsp->vfs_do_devices = B_TRUE; break; case TOKEN_DIRXATTR: vfsp->vfs_xattr = ZFS_XATTR_DIR; vfsp->vfs_do_xattr = B_TRUE; break; case TOKEN_SAXATTR: vfsp->vfs_xattr = ZFS_XATTR_SA; vfsp->vfs_do_xattr = B_TRUE; break; case TOKEN_XATTR: vfsp->vfs_xattr = ZFS_XATTR_DIR; vfsp->vfs_do_xattr = B_TRUE; break; case TOKEN_NOXATTR: vfsp->vfs_xattr = ZFS_XATTR_OFF; vfsp->vfs_do_xattr = B_TRUE; break; case TOKEN_ATIME: vfsp->vfs_atime = B_TRUE; vfsp->vfs_do_atime = B_TRUE; break; case TOKEN_NOATIME: vfsp->vfs_atime = B_FALSE; vfsp->vfs_do_atime = B_TRUE; break; case TOKEN_RELATIME: vfsp->vfs_relatime = B_TRUE; vfsp->vfs_do_relatime = B_TRUE; break; case TOKEN_NORELATIME: vfsp->vfs_relatime = B_FALSE; vfsp->vfs_do_relatime = B_TRUE; break; case TOKEN_NBMAND: vfsp->vfs_nbmand = B_TRUE; vfsp->vfs_do_nbmand = B_TRUE; break; case TOKEN_NONBMAND: vfsp->vfs_nbmand = B_FALSE; vfsp->vfs_do_nbmand = B_TRUE; break; case TOKEN_MNTPOINT: vfsp->vfs_mntpoint = match_strdup(&args[0]); if (vfsp->vfs_mntpoint == NULL) return (SET_ERROR(ENOMEM)); break; default: break; } return (0); } /* * Parse the raw mntopts and return a vfs_t describing the options. */ static int zfsvfs_parse_options(char *mntopts, vfs_t **vfsp) { vfs_t *tmp_vfsp; int error; tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP); if (mntopts != NULL) { substring_t args[MAX_OPT_ARGS]; char *tmp_mntopts, *p, *t; int token; tmp_mntopts = t = kmem_strdup(mntopts); if (tmp_mntopts == NULL) return (SET_ERROR(ENOMEM)); while ((p = strsep(&t, ",")) != NULL) { if (!*p) continue; args[0].to = args[0].from = NULL; token = match_token(p, zpl_tokens, args); error = zfsvfs_parse_option(p, token, args, tmp_vfsp); if (error) { kmem_strfree(tmp_mntopts); zfsvfs_vfs_free(tmp_vfsp); return (error); } } kmem_strfree(tmp_mntopts); } *vfsp = tmp_vfsp; return (0); } boolean_t zfs_is_readonly(zfsvfs_t *zfsvfs) { return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY)); } /*ARGSUSED*/ int zfs_sync(struct super_block *sb, int wait, cred_t *cr) { zfsvfs_t *zfsvfs = sb->s_fs_info; /* * Semantically, the only requirement is that the sync be initiated. * The DMU syncs out txgs frequently, so there's nothing to do. */ if (!wait) return (0); if (zfsvfs != NULL) { /* * Sync a specific filesystem. */ dsl_pool_t *dp; ZFS_ENTER(zfsvfs); dp = dmu_objset_pool(zfsvfs->z_os); /* * If the system is shutting down, then skip any * filesystems which may exist on a suspended pool. */ if (spa_suspended(dp->dp_spa)) { ZFS_EXIT(zfsvfs); return (0); } if (zfsvfs->z_log != NULL) zil_commit(zfsvfs->z_log, 0); ZFS_EXIT(zfsvfs); } else { /* * Sync all ZFS filesystems. This is what happens when you * run sync(1). Unlike other filesystems, ZFS honors the * request by waiting for all pools to commit all dirty data. */ spa_sync_allpools(); } return (0); } static void atime_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; struct super_block *sb = zfsvfs->z_sb; if (sb == NULL) return; /* * Update SB_NOATIME bit in VFS super block. Since atime update is * determined by atime_needs_update(), atime_needs_update() needs to * return false if atime is turned off, and not unconditionally return * false if atime is turned on. */ if (newval) sb->s_flags &= ~SB_NOATIME; else sb->s_flags |= SB_NOATIME; } static void relatime_changed_cb(void *arg, uint64_t newval) { ((zfsvfs_t *)arg)->z_relatime = newval; } static void xattr_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == ZFS_XATTR_OFF) { zfsvfs->z_flags &= ~ZSB_XATTR; } else { zfsvfs->z_flags |= ZSB_XATTR; if (newval == ZFS_XATTR_SA) zfsvfs->z_xattr_sa = B_TRUE; else zfsvfs->z_xattr_sa = B_FALSE; } } static void acltype_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; switch (newval) { case ZFS_ACLTYPE_NFSV4: case ZFS_ACLTYPE_OFF: zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF; zfsvfs->z_sb->s_flags &= ~SB_POSIXACL; break; case ZFS_ACLTYPE_POSIX: #ifdef CONFIG_FS_POSIX_ACL zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX; zfsvfs->z_sb->s_flags |= SB_POSIXACL; #else zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF; zfsvfs->z_sb->s_flags &= ~SB_POSIXACL; #endif /* CONFIG_FS_POSIX_ACL */ break; default: break; } } static void blksz_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); ASSERT(ISP2(newval)); zfsvfs->z_max_blksz = newval; } static void readonly_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; struct super_block *sb = zfsvfs->z_sb; if (sb == NULL) return; if (newval) sb->s_flags |= SB_RDONLY; else sb->s_flags &= ~SB_RDONLY; } static void devices_changed_cb(void *arg, uint64_t newval) { } static void setuid_changed_cb(void *arg, uint64_t newval) { } static void exec_changed_cb(void *arg, uint64_t newval) { } static void nbmand_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; struct super_block *sb = zfsvfs->z_sb; if (sb == NULL) return; if (newval == TRUE) sb->s_flags |= SB_MANDLOCK; else sb->s_flags &= ~SB_MANDLOCK; } static void snapdir_changed_cb(void *arg, uint64_t newval) { ((zfsvfs_t *)arg)->z_show_ctldir = newval; } static void vscan_changed_cb(void *arg, uint64_t newval) { ((zfsvfs_t *)arg)->z_vscan = newval; } static void acl_mode_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_acl_mode = newval; } static void acl_inherit_changed_cb(void *arg, uint64_t newval) { ((zfsvfs_t *)arg)->z_acl_inherit = newval; } static int zfs_register_callbacks(vfs_t *vfsp) { struct dsl_dataset *ds = NULL; objset_t *os = NULL; zfsvfs_t *zfsvfs = NULL; int error = 0; ASSERT(vfsp); zfsvfs = vfsp->vfs_data; ASSERT(zfsvfs); os = zfsvfs->z_os; /* * The act of registering our callbacks will destroy any mount * options we may have. In order to enable temporary overrides * of mount options, we stash away the current values and * restore them after we register the callbacks. */ if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) { vfsp->vfs_do_readonly = B_TRUE; vfsp->vfs_readonly = B_TRUE; } /* * Register property callbacks. * * It would probably be fine to just check for i/o error from * the first prop_register(), but I guess I like to go * overboard... */ ds = dmu_objset_ds(os); dsl_pool_config_enter(dmu_objset_pool(os), FTAG); error = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); if (error) goto unregister; /* * Invoke our callbacks to restore temporary mount options. */ if (vfsp->vfs_do_readonly) readonly_changed_cb(zfsvfs, vfsp->vfs_readonly); if (vfsp->vfs_do_setuid) setuid_changed_cb(zfsvfs, vfsp->vfs_setuid); if (vfsp->vfs_do_exec) exec_changed_cb(zfsvfs, vfsp->vfs_exec); if (vfsp->vfs_do_devices) devices_changed_cb(zfsvfs, vfsp->vfs_devices); if (vfsp->vfs_do_xattr) xattr_changed_cb(zfsvfs, vfsp->vfs_xattr); if (vfsp->vfs_do_atime) atime_changed_cb(zfsvfs, vfsp->vfs_atime); if (vfsp->vfs_do_relatime) relatime_changed_cb(zfsvfs, vfsp->vfs_relatime); if (vfsp->vfs_do_nbmand) nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand); return (0); unregister: dsl_prop_unregister_all(ds, zfsvfs); return (error); } /* * Takes a dataset, a property, a value and that value's setpoint as * found in the ZAP. Checks if the property has been changed in the vfs. * If so, val and setpoint will be overwritten with updated content. * Otherwise, they are left unchanged. */ int zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val, char *setpoint) { int error; zfsvfs_t *zfvp; vfs_t *vfsp; objset_t *os; uint64_t tmp = *val; error = dmu_objset_from_ds(ds, &os); if (error != 0) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) return (EINVAL); mutex_enter(&os->os_user_ptr_lock); zfvp = dmu_objset_get_user(os); mutex_exit(&os->os_user_ptr_lock); if (zfvp == NULL) return (ESRCH); vfsp = zfvp->z_vfs; switch (zfs_prop) { case ZFS_PROP_ATIME: if (vfsp->vfs_do_atime) tmp = vfsp->vfs_atime; break; case ZFS_PROP_RELATIME: if (vfsp->vfs_do_relatime) tmp = vfsp->vfs_relatime; break; case ZFS_PROP_DEVICES: if (vfsp->vfs_do_devices) tmp = vfsp->vfs_devices; break; case ZFS_PROP_EXEC: if (vfsp->vfs_do_exec) tmp = vfsp->vfs_exec; break; case ZFS_PROP_SETUID: if (vfsp->vfs_do_setuid) tmp = vfsp->vfs_setuid; break; case ZFS_PROP_READONLY: if (vfsp->vfs_do_readonly) tmp = vfsp->vfs_readonly; break; case ZFS_PROP_XATTR: if (vfsp->vfs_do_xattr) tmp = vfsp->vfs_xattr; break; case ZFS_PROP_NBMAND: if (vfsp->vfs_do_nbmand) tmp = vfsp->vfs_nbmand; break; default: return (ENOENT); } if (tmp != *val) { (void) strcpy(setpoint, "temporary"); *val = tmp; } return (0); } /* * Associate this zfsvfs with the given objset, which must be owned. * This will cache a bunch of on-disk state from the objset in the * zfsvfs. */ static int zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os) { int error; uint64_t val; zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; zfsvfs->z_os = os; error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); if (error != 0) return (error); if (zfsvfs->z_version > zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { (void) printk("Can't mount a version %lld file system " "on a version %lld pool\n. Pool must be upgraded to mount " "this file system.\n", (u_longlong_t)zfsvfs->z_version, (u_longlong_t)spa_version(dmu_objset_spa(os))); return (SET_ERROR(ENOTSUP)); } error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val); if (error != 0) return (error); zfsvfs->z_norm = (int)val; error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val); if (error != 0) return (error); zfsvfs->z_utf8 = (val != 0); error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val); if (error != 0) return (error); zfsvfs->z_case = (uint_t)val; if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0) return (error); zfsvfs->z_acl_type = (uint_t)val; /* * Fold case on file systems that are always or sometimes case * insensitive. */ if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || zfsvfs->z_case == ZFS_CASE_MIXED) zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); uint64_t sa_obj = 0; if (zfsvfs->z_use_sa) { /* should either have both of these objects or none */ error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); if (error != 0) return (error); error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val); if ((error == 0) && (val == ZFS_XATTR_SA)) zfsvfs->z_xattr_sa = B_TRUE; } error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &zfsvfs->z_root); if (error != 0) return (error); ASSERT(zfsvfs->z_root != 0); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, &zfsvfs->z_unlinkedobj); if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 8, 1, &zfsvfs->z_userquota_obj); if (error == ENOENT) zfsvfs->z_userquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 8, 1, &zfsvfs->z_groupquota_obj); if (error == ENOENT) zfsvfs->z_groupquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA], 8, 1, &zfsvfs->z_projectquota_obj); if (error == ENOENT) zfsvfs->z_projectquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA], 8, 1, &zfsvfs->z_userobjquota_obj); if (error == ENOENT) zfsvfs->z_userobjquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA], 8, 1, &zfsvfs->z_groupobjquota_obj); if (error == ENOENT) zfsvfs->z_groupobjquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA], 8, 1, &zfsvfs->z_projectobjquota_obj); if (error == ENOENT) zfsvfs->z_projectobjquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj); if (error == ENOENT) zfsvfs->z_fuid_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, &zfsvfs->z_shares_dir); if (error == ENOENT) zfsvfs->z_shares_dir = 0; else if (error != 0) return (error); error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table); if (error != 0) return (error); if (zfsvfs->z_version >= ZPL_VERSION_SA) sa_register_update_callback(os, zfs_sa_upgrade); return (0); } int zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp) { objset_t *os; zfsvfs_t *zfsvfs; int error; boolean_t ro = (readonly || (strchr(osname, '@') != NULL)); zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os); if (error != 0) { kmem_free(zfsvfs, sizeof (zfsvfs_t)); return (error); } error = zfsvfs_create_impl(zfvp, zfsvfs, os); if (error != 0) { dmu_objset_disown(os, B_TRUE, zfsvfs); } return (error); } /* * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function * on a failure. Do not pass in a statically allocated zfsvfs. */ int zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os) { int error; zfsvfs->z_vfs = NULL; zfsvfs->z_sb = NULL; zfsvfs->z_parent = zfsvfs; mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), offsetof(znode_t, z_link_node)); ZFS_TEARDOWN_INIT(zfsvfs); rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1), ZFS_OBJ_MTX_MAX); zfsvfs->z_hold_size = size; zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size, KM_SLEEP); zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP); for (int i = 0; i != size; i++) { avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare, sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node)); mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL); } error = zfsvfs_init(zfsvfs, os); if (error != 0) { *zfvp = NULL; zfsvfs_free(zfsvfs); return (error); } zfsvfs->z_drain_task = TASKQID_INVALID; zfsvfs->z_draining = B_FALSE; zfsvfs->z_drain_cancel = B_TRUE; *zfvp = zfsvfs; return (0); } static int zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) { int error; boolean_t readonly = zfs_is_readonly(zfsvfs); error = zfs_register_callbacks(zfsvfs->z_vfs); if (error) return (error); zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); /* * If we are not mounting (ie: online recv), then we don't * have to worry about replaying the log as we blocked all * operations out since we closed the ZIL. */ if (mounting) { ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL); dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os); /* * During replay we remove the read only flag to * allow replays to succeed. */ if (readonly != 0) { readonly_changed_cb(zfsvfs, B_FALSE); } else { zap_stats_t zs; if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj, &zs) == 0) { dataset_kstats_update_nunlinks_kstat( &zfsvfs->z_kstat, zs.zs_num_entries); dprintf_ds(zfsvfs->z_os->os_dsl_dataset, "num_entries in unlinked set: %llu", zs.zs_num_entries); } zfs_unlinked_drain(zfsvfs); dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir; dd->dd_activity_cancelled = B_FALSE; } /* * Parse and replay the intent log. * * Because of ziltest, this must be done after * zfs_unlinked_drain(). (Further note: ziltest * doesn't use readonly mounts, where * zfs_unlinked_drain() isn't called.) This is because * ziltest causes spa_sync() to think it's committed, * but actually it is not, so the intent log contains * many txg's worth of changes. * * In particular, if object N is in the unlinked set in * the last txg to actually sync, then it could be * actually freed in a later txg and then reallocated * in a yet later txg. This would write a "create * object N" record to the intent log. Normally, this * would be fine because the spa_sync() would have * written out the fact that object N is free, before * we could write the "create object N" intent log * record. * * But when we are in ziltest mode, we advance the "open * txg" without actually spa_sync()-ing the changes to * disk. So we would see that object N is still * allocated and in the unlinked set, and there is an * intent log record saying to allocate it. */ if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { if (zil_replay_disable) { zil_destroy(zfsvfs->z_log, B_FALSE); } else { zfsvfs->z_replay = B_TRUE; zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); zfsvfs->z_replay = B_FALSE; } } /* restore readonly bit */ if (readonly != 0) readonly_changed_cb(zfsvfs, B_TRUE); } /* * Set the objset user_ptr to track its zfsvfs. */ mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); dmu_objset_set_user(zfsvfs->z_os, zfsvfs); mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); return (0); } void zfsvfs_free(zfsvfs_t *zfsvfs) { int i, size = zfsvfs->z_hold_size; zfs_fuid_destroy(zfsvfs); mutex_destroy(&zfsvfs->z_znodes_lock); mutex_destroy(&zfsvfs->z_lock); list_destroy(&zfsvfs->z_all_znodes); ZFS_TEARDOWN_DESTROY(zfsvfs); rw_destroy(&zfsvfs->z_teardown_inactive_lock); rw_destroy(&zfsvfs->z_fuid_lock); for (i = 0; i != size; i++) { avl_destroy(&zfsvfs->z_hold_trees[i]); mutex_destroy(&zfsvfs->z_hold_locks[i]); } vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size); vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size); zfsvfs_vfs_free(zfsvfs->z_vfs); dataset_kstats_destroy(&zfsvfs->z_kstat); kmem_free(zfsvfs, sizeof (zfsvfs_t)); } static void zfs_set_fuid_feature(zfsvfs_t *zfsvfs) { zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); } static void zfs_unregister_callbacks(zfsvfs_t *zfsvfs) { objset_t *os = zfsvfs->z_os; if (!dmu_objset_is_snapshot(os)) dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); } #ifdef HAVE_MLSLABEL /* * Check that the hex label string is appropriate for the dataset being * mounted into the global_zone proper. * * Return an error if the hex label string is not default or * admin_low/admin_high. For admin_low labels, the corresponding * dataset must be readonly. */ int zfs_check_global_label(const char *dsname, const char *hexsl) { if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) return (0); if (strcasecmp(hexsl, ADMIN_HIGH) == 0) return (0); if (strcasecmp(hexsl, ADMIN_LOW) == 0) { /* must be readonly */ uint64_t rdonly; if (dsl_prop_get_integer(dsname, zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) return (SET_ERROR(EACCES)); return (rdonly ? 0 : SET_ERROR(EACCES)); } return (SET_ERROR(EACCES)); } #endif /* HAVE_MLSLABEL */ static int zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp, uint32_t bshift) { char buf[20 + DMU_OBJACCT_PREFIX_LEN]; uint64_t offset = DMU_OBJACCT_PREFIX_LEN; uint64_t quota; uint64_t used; int err; strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1); err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset, sizeof (buf) - offset, B_FALSE); if (err) return (err); if (zfsvfs->z_projectquota_obj == 0) goto objs; err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj, buf + offset, 8, 1, "a); if (err == ENOENT) goto objs; else if (err) return (err); err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, buf + offset, 8, 1, &used); if (unlikely(err == ENOENT)) { uint32_t blksize; u_longlong_t nblocks; /* * Quota accounting is async, so it is possible race case. * There is at least one object with the given project ID. */ sa_object_size(zp->z_sa_hdl, &blksize, &nblocks); if (unlikely(zp->z_blksz == 0)) blksize = zfsvfs->z_max_blksz; used = blksize * nblocks; } else if (err) { return (err); } statp->f_blocks = quota >> bshift; statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0; statp->f_bavail = statp->f_bfree; objs: if (zfsvfs->z_projectobjquota_obj == 0) return (0); err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj, buf + offset, 8, 1, "a); if (err == ENOENT) return (0); else if (err) return (err); err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, buf, 8, 1, &used); if (unlikely(err == ENOENT)) { /* * Quota accounting is async, so it is possible race case. * There is at least one object with the given project ID. */ used = 1; } else if (err) { return (err); } statp->f_files = quota; statp->f_ffree = (quota > used) ? (quota - used) : 0; return (0); } int zfs_statvfs(struct inode *ip, struct kstatfs *statp) { zfsvfs_t *zfsvfs = ITOZSB(ip); uint64_t refdbytes, availbytes, usedobjs, availobjs; int err = 0; ZFS_ENTER(zfsvfs); dmu_objset_space(zfsvfs->z_os, &refdbytes, &availbytes, &usedobjs, &availobjs); uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os); /* * The underlying storage pool actually uses multiple block * size. Under Solaris frsize (fragment size) is reported as * the smallest block size we support, and bsize (block size) * as the filesystem's maximum block size. Unfortunately, * under Linux the fragment size and block size are often used * interchangeably. Thus we are forced to report both of them * as the filesystem's maximum block size. */ statp->f_frsize = zfsvfs->z_max_blksz; statp->f_bsize = zfsvfs->z_max_blksz; uint32_t bshift = fls(statp->f_bsize) - 1; /* * The following report "total" blocks of various kinds in * the file system, but reported in terms of f_bsize - the * "preferred" size. */ /* Round up so we never have a filesystem using 0 blocks. */ refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize); statp->f_blocks = (refdbytes + availbytes) >> bshift; statp->f_bfree = availbytes >> bshift; statp->f_bavail = statp->f_bfree; /* no root reservation */ /* * statvfs() should really be called statufs(), because it assumes * static metadata. ZFS doesn't preallocate files, so the best * we can do is report the max that could possibly fit in f_files, * and that minus the number actually used in f_ffree. * For f_ffree, report the smaller of the number of objects available * and the number of blocks (each object will take at least a block). */ statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT); statp->f_files = statp->f_ffree + usedobjs; statp->f_fsid.val[0] = (uint32_t)fsid; statp->f_fsid.val[1] = (uint32_t)(fsid >> 32); statp->f_type = ZFS_SUPER_MAGIC; statp->f_namelen = MAXNAMELEN - 1; /* * We have all of 40 characters to stuff a string here. * Is there anything useful we could/should provide? */ bzero(statp->f_spare, sizeof (statp->f_spare)); if (dmu_objset_projectquota_enabled(zfsvfs->z_os) && dmu_objset_projectquota_present(zfsvfs->z_os)) { znode_t *zp = ITOZ(ip); if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid && zpl_is_valid_projid(zp->z_projid)) err = zfs_statfs_project(zfsvfs, zp, statp, bshift); } ZFS_EXIT(zfsvfs); return (err); } static int zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp) { znode_t *rootzp; int error; ZFS_ENTER(zfsvfs); error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); if (error == 0) *ipp = ZTOI(rootzp); ZFS_EXIT(zfsvfs); return (error); } /* * Linux kernels older than 3.1 do not support a per-filesystem shrinker. * To accommodate this we must improvise and manually walk the list of znodes * attempting to prune dentries in order to be able to drop the inodes. * * To avoid scanning the same znodes multiple times they are always rotated * to the end of the z_all_znodes list. New znodes are inserted at the * end of the list so we're always scanning the oldest znodes first. */ static int zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan) { znode_t **zp_array, *zp; int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *)); int objects = 0; int i = 0, j = 0; zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP); mutex_enter(&zfsvfs->z_znodes_lock); while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) { if ((i++ > nr_to_scan) || (j >= max_array)) break; ASSERT(list_link_active(&zp->z_link_node)); list_remove(&zfsvfs->z_all_znodes, zp); list_insert_tail(&zfsvfs->z_all_znodes, zp); /* Skip active znodes and .zfs entries */ if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir) continue; if (igrab(ZTOI(zp)) == NULL) continue; zp_array[j] = zp; j++; } mutex_exit(&zfsvfs->z_znodes_lock); for (i = 0; i < j; i++) { zp = zp_array[i]; ASSERT3P(zp, !=, NULL); d_prune_aliases(ZTOI(zp)); if (atomic_read(&ZTOI(zp)->i_count) == 1) objects++; zrele(zp); } kmem_free(zp_array, max_array * sizeof (znode_t *)); return (objects); } /* * The ARC has requested that the filesystem drop entries from the dentry * and inode caches. This can occur when the ARC needs to free meta data * blocks but can't because they are all pinned by entries in these caches. */ int zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects) { zfsvfs_t *zfsvfs = sb->s_fs_info; int error = 0; struct shrinker *shrinker = &sb->s_shrink; struct shrink_control sc = { .nr_to_scan = nr_to_scan, .gfp_mask = GFP_KERNEL, }; ZFS_ENTER(zfsvfs); #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \ defined(SHRINK_CONTROL_HAS_NID) && \ defined(SHRINKER_NUMA_AWARE) if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) { *objects = 0; for_each_online_node(sc.nid) { *objects += (*shrinker->scan_objects)(shrinker, &sc); /* * reset sc.nr_to_scan, modified by * scan_objects == super_cache_scan */ sc.nr_to_scan = nr_to_scan; } } else { *objects = (*shrinker->scan_objects)(shrinker, &sc); } #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK) *objects = (*shrinker->scan_objects)(shrinker, &sc); #elif defined(HAVE_SINGLE_SHRINKER_CALLBACK) *objects = (*shrinker->shrink)(shrinker, &sc); #elif defined(HAVE_D_PRUNE_ALIASES) #define D_PRUNE_ALIASES_IS_DEFAULT *objects = zfs_prune_aliases(zfsvfs, nr_to_scan); #else #error "No available dentry and inode cache pruning mechanism." #endif #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT) #undef D_PRUNE_ALIASES_IS_DEFAULT /* * Fall back to zfs_prune_aliases if the kernel's per-superblock * shrinker couldn't free anything, possibly due to the inodes being * allocated in a different memcg. */ if (*objects == 0) *objects = zfs_prune_aliases(zfsvfs, nr_to_scan); #endif ZFS_EXIT(zfsvfs); dprintf_ds(zfsvfs->z_os->os_dsl_dataset, "pruning, nr_to_scan=%lu objects=%d error=%d\n", nr_to_scan, *objects, error); return (error); } /* * Teardown the zfsvfs_t. * * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock' * and 'z_teardown_inactive_lock' held. */ static int zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) { znode_t *zp; zfs_unlinked_drain_stop_wait(zfsvfs); /* * If someone has not already unmounted this file system, * drain the zrele_taskq to ensure all active references to the * zfsvfs_t have been handled only then can it be safely destroyed. */ if (zfsvfs->z_os) { /* * If we're unmounting we have to wait for the list to * drain completely. * * If we're not unmounting there's no guarantee the list * will drain completely, but iputs run from the taskq * may add the parents of dir-based xattrs to the taskq * so we want to wait for these. * * We can safely read z_nr_znodes without locking because the * VFS has already blocked operations which add to the * z_all_znodes list and thus increment z_nr_znodes. */ int round = 0; while (zfsvfs->z_nr_znodes > 0) { taskq_wait_outstanding(dsl_pool_zrele_taskq( dmu_objset_pool(zfsvfs->z_os)), 0); if (++round > 1 && !unmounting) break; } } ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG); if (!unmounting) { /* * We purge the parent filesystem's super block as the * parent filesystem and all of its snapshots have their * inode's super block set to the parent's filesystem's * super block. Note, 'z_parent' is self referential * for non-snapshots. */ shrink_dcache_sb(zfsvfs->z_parent->z_sb); } /* * Close the zil. NB: Can't close the zil while zfs_inactive * threads are blocked as zil_close can call zfs_inactive. */ if (zfsvfs->z_log) { zil_close(zfsvfs->z_log); zfsvfs->z_log = NULL; } rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); /* * If we are not unmounting (ie: online recv) and someone already * unmounted this file system while we were doing the switcheroo, * or a reopen of z_os failed then just bail out now. */ if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { rw_exit(&zfsvfs->z_teardown_inactive_lock); ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); return (SET_ERROR(EIO)); } /* * At this point there are no VFS ops active, and any new VFS ops * will fail with EIO since we have z_teardown_lock for writer (only * relevant for forced unmount). * * Release all holds on dbufs. We also grab an extra reference to all * the remaining inodes so that the kernel does not attempt to free * any inodes of a suspended fs. This can cause deadlocks since the * zfs_resume_fs() process may involve starting threads, which might * attempt to free unreferenced inodes to free up memory for the new * thread. */ if (!unmounting) { mutex_enter(&zfsvfs->z_znodes_lock); for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; zp = list_next(&zfsvfs->z_all_znodes, zp)) { if (zp->z_sa_hdl) zfs_znode_dmu_fini(zp); if (igrab(ZTOI(zp)) != NULL) zp->z_suspended = B_TRUE; } mutex_exit(&zfsvfs->z_znodes_lock); } /* * If we are unmounting, set the unmounted flag and let new VFS ops * unblock. zfs_inactive will have the unmounted behavior, and all * other VFS ops will fail with EIO. */ if (unmounting) { zfsvfs->z_unmounted = B_TRUE; rw_exit(&zfsvfs->z_teardown_inactive_lock); ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); } /* * z_os will be NULL if there was an error in attempting to reopen * zfsvfs, so just return as the properties had already been * * unregistered and cached data had been evicted before. */ if (zfsvfs->z_os == NULL) return (0); /* * Unregister properties. */ zfs_unregister_callbacks(zfsvfs); /* * Evict cached data. We must write out any dirty data before * disowning the dataset. */ objset_t *os = zfsvfs->z_os; boolean_t os_dirty = B_FALSE; for (int t = 0; t < TXG_SIZE; t++) { if (dmu_objset_is_dirty(os, t)) { os_dirty = B_TRUE; break; } } if (!zfs_is_readonly(zfsvfs) && os_dirty) { txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); } dmu_objset_evict_dbufs(zfsvfs->z_os); dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; dsl_dir_cancel_waiters(dd); return (0); } #if defined(HAVE_SUPER_SETUP_BDI_NAME) atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0); #endif int zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent) { const char *osname = zm->mnt_osname; struct inode *root_inode = NULL; uint64_t recordsize; int error = 0; zfsvfs_t *zfsvfs = NULL; vfs_t *vfs = NULL; ASSERT(zm); ASSERT(osname); error = zfsvfs_parse_options(zm->mnt_data, &vfs); if (error) return (error); error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs); if (error) { zfsvfs_vfs_free(vfs); goto out; } if ((error = dsl_prop_get_integer(osname, "recordsize", &recordsize, NULL))) { zfsvfs_vfs_free(vfs); goto out; } vfs->vfs_data = zfsvfs; zfsvfs->z_vfs = vfs; zfsvfs->z_sb = sb; sb->s_fs_info = zfsvfs; sb->s_magic = ZFS_SUPER_MAGIC; sb->s_maxbytes = MAX_LFS_FILESIZE; sb->s_time_gran = 1; sb->s_blocksize = recordsize; sb->s_blocksize_bits = ilog2(recordsize); error = -zpl_bdi_setup(sb, "zfs"); if (error) goto out; sb->s_bdi->ra_pages = 0; /* Set callback operations for the file system. */ sb->s_op = &zpl_super_operations; sb->s_xattr = zpl_xattr_handlers; sb->s_export_op = &zpl_export_operations; sb->s_d_op = &zpl_dentry_operations; /* Set features for file system. */ zfs_set_fuid_feature(zfsvfs); if (dmu_objset_is_snapshot(zfsvfs->z_os)) { uint64_t pval; atime_changed_cb(zfsvfs, B_FALSE); readonly_changed_cb(zfsvfs, B_TRUE); if ((error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))) goto out; xattr_changed_cb(zfsvfs, pval); if ((error = dsl_prop_get_integer(osname, "acltype", &pval, NULL))) goto out; acltype_changed_cb(zfsvfs, pval); zfsvfs->z_issnap = B_TRUE; zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; zfsvfs->z_snap_defer_time = jiffies; mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); dmu_objset_set_user(zfsvfs->z_os, zfsvfs); mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); } else { if ((error = zfsvfs_setup(zfsvfs, B_TRUE))) goto out; } /* Allocate a root inode for the filesystem. */ error = zfs_root(zfsvfs, &root_inode); if (error) { (void) zfs_umount(sb); goto out; } /* Allocate a root dentry for the filesystem */ sb->s_root = d_make_root(root_inode); if (sb->s_root == NULL) { (void) zfs_umount(sb); error = SET_ERROR(ENOMEM); goto out; } if (!zfsvfs->z_issnap) zfsctl_create(zfsvfs); zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb); out: if (error) { if (zfsvfs != NULL) { dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs); zfsvfs_free(zfsvfs); } /* * make sure we don't have dangling sb->s_fs_info which * zfs_preumount will use. */ sb->s_fs_info = NULL; } return (error); } /* * Called when an unmount is requested and certain sanity checks have * already passed. At this point no dentries or inodes have been reclaimed * from their respective caches. We drop the extra reference on the .zfs * control directory to allow everything to be reclaimed. All snapshots * must already have been unmounted to reach this point. */ void zfs_preumount(struct super_block *sb) { zfsvfs_t *zfsvfs = sb->s_fs_info; /* zfsvfs is NULL when zfs_domount fails during mount */ if (zfsvfs) { zfs_unlinked_drain_stop_wait(zfsvfs); zfsctl_destroy(sb->s_fs_info); /* * Wait for zrele_async before entering evict_inodes in * generic_shutdown_super. The reason we must finish before * evict_inodes is when lazytime is on, or when zfs_purgedir * calls zfs_zget, zrele would bump i_count from 0 to 1. This * would race with the i_count check in evict_inodes. This means * it could destroy the inode while we are still using it. * * We wait for two passes. xattr directories in the first pass * may add xattr entries in zfs_purgedir, so in the second pass * we wait for them. We don't use taskq_wait here because it is * a pool wide taskq. Other mounted filesystems can constantly * do zrele_async and there's no guarantee when taskq will be * empty. */ taskq_wait_outstanding(dsl_pool_zrele_taskq( dmu_objset_pool(zfsvfs->z_os)), 0); taskq_wait_outstanding(dsl_pool_zrele_taskq( dmu_objset_pool(zfsvfs->z_os)), 0); } } /* * Called once all other unmount released tear down has occurred. * It is our responsibility to release any remaining infrastructure. */ /*ARGSUSED*/ int zfs_umount(struct super_block *sb) { zfsvfs_t *zfsvfs = sb->s_fs_info; objset_t *os; if (zfsvfs->z_arc_prune != NULL) arc_remove_prune_callback(zfsvfs->z_arc_prune); VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); os = zfsvfs->z_os; zpl_bdi_destroy(sb); /* * z_os will be NULL if there was an error in * attempting to reopen zfsvfs. */ if (os != NULL) { /* * Unset the objset user_ptr. */ mutex_enter(&os->os_user_ptr_lock); dmu_objset_set_user(os, NULL); mutex_exit(&os->os_user_ptr_lock); /* * Finally release the objset */ dmu_objset_disown(os, B_TRUE, zfsvfs); } zfsvfs_free(zfsvfs); return (0); } int zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm) { zfsvfs_t *zfsvfs = sb->s_fs_info; vfs_t *vfsp; boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os); int error; if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) && !(*flags & SB_RDONLY)) { *flags |= SB_RDONLY; return (EROFS); } error = zfsvfs_parse_options(zm->mnt_data, &vfsp); if (error) return (error); if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY)) txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); zfs_unregister_callbacks(zfsvfs); zfsvfs_vfs_free(zfsvfs->z_vfs); vfsp->vfs_data = zfsvfs; zfsvfs->z_vfs = vfsp; if (!issnap) (void) zfs_register_callbacks(vfsp); return (error); } int zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp) { zfsvfs_t *zfsvfs = sb->s_fs_info; znode_t *zp; uint64_t object = 0; uint64_t fid_gen = 0; uint64_t gen_mask; uint64_t zp_gen; int i, err; *ipp = NULL; if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { zfid_short_t *zfid = (zfid_short_t *)fidp; for (i = 0; i < sizeof (zfid->zf_object); i++) object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); for (i = 0; i < sizeof (zfid->zf_gen); i++) fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); } else { return (SET_ERROR(EINVAL)); } /* LONG_FID_LEN means snapdirs */ if (fidp->fid_len == LONG_FID_LEN) { zfid_long_t *zlfid = (zfid_long_t *)fidp; uint64_t objsetid = 0; uint64_t setgen = 0; for (i = 0; i < sizeof (zlfid->zf_setid); i++) objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); for (i = 0; i < sizeof (zlfid->zf_setgen); i++) setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); if (objsetid != ZFSCTL_INO_SNAPDIRS - object) { dprintf("snapdir fid: objsetid (%llu) != " "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n", objsetid, ZFSCTL_INO_SNAPDIRS, object); return (SET_ERROR(EINVAL)); } if (fid_gen > 1 || setgen != 0) { dprintf("snapdir fid: fid_gen (%llu) and setgen " "(%llu)\n", fid_gen, setgen); return (SET_ERROR(EINVAL)); } return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp)); } ZFS_ENTER(zfsvfs); /* A zero fid_gen means we are in the .zfs control directories */ if (fid_gen == 0 && (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { *ipp = zfsvfs->z_ctldir; ASSERT(*ipp != NULL); if (object == ZFSCTL_INO_SNAPDIR) { VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp, 0, kcred, NULL, NULL) == 0); } else { /* * Must have an existing ref, so igrab() * cannot return NULL */ VERIFY3P(igrab(*ipp), !=, NULL); } ZFS_EXIT(zfsvfs); return (0); } gen_mask = -1ULL >> (64 - 8 * i); dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask); if ((err = zfs_zget(zfsvfs, object, &zp))) { ZFS_EXIT(zfsvfs); return (err); } /* Don't export xattr stuff */ if (zp->z_pflags & ZFS_XATTR) { zrele(zp); ZFS_EXIT(zfsvfs); return (SET_ERROR(ENOENT)); } (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, sizeof (uint64_t)); zp_gen = zp_gen & gen_mask; if (zp_gen == 0) zp_gen = 1; if ((fid_gen == 0) && (zfsvfs->z_root == object)) fid_gen = zp_gen; if (zp->z_unlinked || zp_gen != fid_gen) { dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen, fid_gen); zrele(zp); ZFS_EXIT(zfsvfs); return (SET_ERROR(ENOENT)); } *ipp = ZTOI(zp); if (*ipp) zfs_znode_update_vfs(ITOZ(*ipp)); ZFS_EXIT(zfsvfs); return (0); } /* * Block out VFS ops and close zfsvfs_t * * Note, if successful, then we return with the 'z_teardown_lock' and * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying * dataset and objset intact so that they can be atomically handed off during * a subsequent rollback or recv operation and the resume thereafter. */ int zfs_suspend_fs(zfsvfs_t *zfsvfs) { int error; if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) return (error); return (0); } /* * Rebuild SA and release VOPs. Note that ownership of the underlying dataset * is an invariant across any of the operations that can be performed while the * filesystem was suspended. Whether it succeeded or failed, the preconditions * are the same: the relevant objset and associated dataset are owned by * zfsvfs, held, and long held on entry. */ int zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) { int err, err2; znode_t *zp; ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs)); ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); /* * We already own this, so just update the objset_t, as the one we * had before may have been evicted. */ objset_t *os; VERIFY3P(ds->ds_owner, ==, zfsvfs); VERIFY(dsl_dataset_long_held(ds)); dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); dsl_pool_config_enter(dp, FTAG); VERIFY0(dmu_objset_from_ds(ds, &os)); dsl_pool_config_exit(dp, FTAG); err = zfsvfs_init(zfsvfs, os); if (err != 0) goto bail; ds->ds_dir->dd_activity_cancelled = B_FALSE; VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); zfs_set_fuid_feature(zfsvfs); zfsvfs->z_rollback_time = jiffies; /* * Attempt to re-establish all the active inodes with their * dbufs. If a zfs_rezget() fails, then we unhash the inode * and mark it stale. This prevents a collision if a new * inode/object is created which must use the same inode * number. The stale inode will be be released when the * VFS prunes the dentry holding the remaining references * on the stale inode. */ mutex_enter(&zfsvfs->z_znodes_lock); for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = list_next(&zfsvfs->z_all_znodes, zp)) { err2 = zfs_rezget(zp); if (err2) { remove_inode_hash(ZTOI(zp)); zp->z_is_stale = B_TRUE; } /* see comment in zfs_suspend_fs() */ if (zp->z_suspended) { zfs_zrele_async(zp); zp->z_suspended = B_FALSE; } } mutex_exit(&zfsvfs->z_znodes_lock); if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) { /* * zfs_suspend_fs() could have interrupted freeing * of dnodes. We need to restart this freeing so * that we don't "leak" the space. */ zfs_unlinked_drain(zfsvfs); } /* * Most of the time zfs_suspend_fs is used for changing the contents * of the underlying dataset. ZFS rollback and receive operations * might create files for which negative dentries are present in * the cache. Since walking the dcache would require a lot of GPL-only * code duplication, it's much easier on these rather rare occasions * just to flush the whole dcache for the given dataset/filesystem. */ shrink_dcache_sb(zfsvfs->z_sb); bail: if (err != 0) zfsvfs->z_unmounted = B_TRUE; /* release the VFS ops */ rw_exit(&zfsvfs->z_teardown_inactive_lock); ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); if (err != 0) { /* * Since we couldn't setup the sa framework, try to force * unmount this file system. */ if (zfsvfs->z_os) (void) zfs_umount(zfsvfs->z_sb); } return (err); } /* * Release VOPs and unmount a suspended filesystem. */ int zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) { ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs)); ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); /* * We already own this, so just hold and rele it to update the * objset_t, as the one we had before may have been evicted. */ objset_t *os; VERIFY3P(ds->ds_owner, ==, zfsvfs); VERIFY(dsl_dataset_long_held(ds)); dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); dsl_pool_config_enter(dp, FTAG); VERIFY0(dmu_objset_from_ds(ds, &os)); dsl_pool_config_exit(dp, FTAG); zfsvfs->z_os = os; /* release the VOPs */ rw_exit(&zfsvfs->z_teardown_inactive_lock); ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); /* * Try to force unmount this file system. */ (void) zfs_umount(zfsvfs->z_sb); zfsvfs->z_unmounted = B_TRUE; return (0); } /* * Automounted snapshots rely on periodic revalidation * to defer snapshots from being automatically unmounted. */ inline void zfs_exit_fs(zfsvfs_t *zfsvfs) { if (!zfsvfs->z_issnap) return; if (time_after(jiffies, zfsvfs->z_snap_defer_time + MAX(zfs_expire_snapshot * HZ / 2, HZ))) { zfsvfs->z_snap_defer_time = jiffies; zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa, dmu_objset_id(zfsvfs->z_os), zfs_expire_snapshot); } } int zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) { int error; objset_t *os = zfsvfs->z_os; dmu_tx_t *tx; if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) return (SET_ERROR(EINVAL)); if (newvers < zfsvfs->z_version) return (SET_ERROR(EINVAL)); if (zfs_spa_version_map(newvers) > spa_version(dmu_objset_spa(zfsvfs->z_os))) return (SET_ERROR(ENOTSUP)); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, ZFS_SA_ATTRS); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); } error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &newvers, tx); if (error) { dmu_tx_commit(tx); return (error); } if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { uint64_t sa_obj; ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, SPA_VERSION_SA); sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, DMU_OT_NONE, 0, tx); error = zap_add(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); ASSERT0(error); VERIFY(0 == sa_set_sa_object(os, sa_obj)); sa_register_update_callback(os, zfs_sa_upgrade); } spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, "from %llu to %llu", zfsvfs->z_version, newvers); dmu_tx_commit(tx); zfsvfs->z_version = newvers; os->os_version = newvers; zfs_set_fuid_feature(zfsvfs); return (0); } /* * Read a property stored within the master node. */ int zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) { uint64_t *cached_copy = NULL; /* * Figure out where in the objset_t the cached copy would live, if it * is available for the requested property. */ if (os != NULL) { switch (prop) { case ZFS_PROP_VERSION: cached_copy = &os->os_version; break; case ZFS_PROP_NORMALIZE: cached_copy = &os->os_normalization; break; case ZFS_PROP_UTF8ONLY: cached_copy = &os->os_utf8only; break; case ZFS_PROP_CASE: cached_copy = &os->os_casesensitivity; break; default: break; } } if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) { *value = *cached_copy; return (0); } /* * If the property wasn't cached, look up the file system's value for * the property. For the version property, we look up a slightly * different string. */ const char *pname; int error = ENOENT; if (prop == ZFS_PROP_VERSION) pname = ZPL_VERSION_STR; else pname = zfs_prop_to_name(prop); if (os != NULL) { ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS); error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); } if (error == ENOENT) { /* No value set, use the default value */ switch (prop) { case ZFS_PROP_VERSION: *value = ZPL_VERSION; break; case ZFS_PROP_NORMALIZE: case ZFS_PROP_UTF8ONLY: *value = 0; break; case ZFS_PROP_CASE: *value = ZFS_CASE_SENSITIVE; break; case ZFS_PROP_ACLTYPE: *value = ZFS_ACLTYPE_OFF; break; default: return (error); } error = 0; } /* * If one of the methods for getting the property value above worked, * copy it into the objset_t's cache. */ if (error == 0 && cached_copy != NULL) { *cached_copy = *value; } return (error); } /* * Return true if the corresponding vfs's unmounted flag is set. * Otherwise return false. * If this function returns true we know VFS unmount has been initiated. */ boolean_t zfs_get_vfs_flag_unmounted(objset_t *os) { zfsvfs_t *zfvp; boolean_t unmounted = B_FALSE; ASSERT(dmu_objset_type(os) == DMU_OST_ZFS); mutex_enter(&os->os_user_ptr_lock); zfvp = dmu_objset_get_user(os); if (zfvp != NULL && zfvp->z_unmounted) unmounted = B_TRUE; mutex_exit(&os->os_user_ptr_lock); return (unmounted); } /*ARGSUSED*/ void zfsvfs_update_fromname(const char *oldname, const char *newname) { /* * We don't need to do anything here, the devname is always current by * virtue of zfsvfs->z_sb->s_op->show_devname. */ } void zfs_init(void) { zfsctl_init(); zfs_znode_init(); dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info); register_filesystem(&zpl_fs_type); } void zfs_fini(void) { /* * we don't use outstanding because zpl_posix_acl_free might add more. */ taskq_wait(system_delay_taskq); taskq_wait(system_taskq); unregister_filesystem(&zpl_fs_type); zfs_znode_fini(); zfsctl_fini(); } #if defined(_KERNEL) EXPORT_SYMBOL(zfs_suspend_fs); EXPORT_SYMBOL(zfs_resume_fs); EXPORT_SYMBOL(zfs_set_version); EXPORT_SYMBOL(zfsvfs_create); EXPORT_SYMBOL(zfsvfs_free); EXPORT_SYMBOL(zfs_is_readonly); EXPORT_SYMBOL(zfs_domount); EXPORT_SYMBOL(zfs_preumount); EXPORT_SYMBOL(zfs_umount); EXPORT_SYMBOL(zfs_remount); EXPORT_SYMBOL(zfs_statvfs); EXPORT_SYMBOL(zfs_vget); EXPORT_SYMBOL(zfs_prune); #endif